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Abstract. Although recent advancements in text-to-3D generation have
significantly improved generation quality, issues like limited level of de-
tail and low fidelity still persist, which requires further improvement. To
understand the essence of those issues, we thoroughly analyze current
score distillation methods by connecting theories of consistency distilla-
tion to score distillation. Based on the insights acquired through anal-
ysis, we propose an optimization framework, Guided Consistency Sam-
pling (GCS), integrated with 3D Gaussian Splatting (3DGS) to alleviate
those issues. Additionally, we have observed the persistent oversatura-
tion in the rendered views of generated 3D assets. From experiments,
we find that it is caused by unwanted accumulated brightness in 3DGS
during optimization. To mitigate this issue, we introduce a Brightness-
Equalized Generation (BEG) scheme in 3DGS rendering. Experimental
results demonstrate that our approach generates 3D assets with more
details and higher fidelity than state-of-the-art methods. The codes are
released at https://github.com/LMozart/ECCV2024-GCS-BEG.

Keywords: Text-to-3D Generation · Score Distillation Sampling · Con-
sistency Model

1 Introduction

Text-to-3D generation [4, 11, 17, 27, 29, 43, 44] has gained substantial attention
due to its great potential and indispensable role in many applications, such as
gaming, filmmaking, and architecture. While an end-to-end text-to-3D gener-
ative model [11, 27] is often difficult to train and lacks versatility due to the
limited 3D assets in the training set, distillation 3D assets from a well-trained
2D generative model (e.g., diffusion model (DM) [9, 30]) has become a popular
option due to its data-free feature. A typical work, DreamFusion [29], transfers
knowledge from the pre-trained diffusion model to a learnable 3D representation
through Score Distillation Sampling (SDS), generating text-aligned 3D assets.
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“A <Taylor_Swift> wearing sunglasses.” “A warrior with a red cape riding a horse.”

“A forbidden castle high up in the mountains. ” “A highly detailed sand castle.”

“A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.” “White marble bust of BATMAN, head, 8K, HDR.”

Fig. 1: Text-to-3D generation results of the proposed Guided Consistency Sam-
pling (GCS) and Brightness-equalized Generation. Each 3D asset is distilled
from a pre-trained 2D diffusion model and demonstrated with three different views.
The results below the dotted line are generated by the fine-tuned diffusion models.

Nevertheless, as highlighted in many subsequent works [17, 39, 43–45], SDS
suffers from a low level of detail in generation results. Such an issue stems from
the poor generalization ability of the distillation method [43] and the inherent
randomness in the sampling process [17, 44]. Although work like [43] is pro-
posed to enhance the generalization ability, it necessitates fine-tuning the diffu-
sion model during training, dramatically extending the training time. By con-
trast, more recent works [17,44] aim to mitigate the randomness in the sampling
process by introducing Probability Flow Ordinary Differential Equations (PF-
ODEs) [38], and speed up the distillation process through 3D Gaussian Splatting
(3DGS) [13], resulting in cost-efficient, high-quality 3D generation.

Despite the effectiveness of score distillation methods, issues like limited de-
tail and low fidelity remain in the generated 3D asset. To reveal the essence
of those issues, we conduct an in-depth analysis to connect consistency distil-
lation [14, 37, 51], a method that distills information from a pre-trained DM
through PF-ODEs, to score distillation. Such a novel view helps us identify po-
tential causes of those issues in the score distillation process: 1) the inherent
distillation errors of PF-ODEs, 2) ineffective conditional guidance accounting
for classifier-free guidance (CFG) effects [10], and 3) lack of constraints in pixel
domain to avoid out-of-distribution problem, requiring further improvements.

Except for identified issues in score distillation, there is another noteworthy
concern in the 3D rendering process, i.e, the over-saturated views for generated
3D asset [17, 43, 44]. While the cause of such an issue is correlated with types
of 3D representation, this paper particularly focuses on one (i.e, 3DGS) due to
its remarkable reduction in optimization time. Through experiments, we observe
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Fig. 2: An overview of the proposed GCS. We first initialize the 3D representation via
the pre-trained 3D generator. For each training epoch, we randomly render a batch of
views xπ and diffuse them to x{π,e} with a fixed noise ϵ∗. We then apply the ODE
diffusion process to gradually add noise to the x{π,e} and transfer it to x̄{π,e→s} and
x̄{π,s→t}. In the denoising path, we conduct conditional and unconditional denoising
steps, as shown in the figure. Eventually, we calculate the LGCS (Eq. 17) to update
the parameters of 3D representation (3DGS). Note that we add ‘∗’ on x̄{π,e→0;y} to
indicate that it is obtained from different sampling trajectories.

that the brightness in generated 2D views accumulates to the next epoch during
distillation, eventually leading to over-saturation.

To achieve better performance and overcome the aforementioned issues, this
paper proposes Guided Consistency Sampling (GCS) with Brightness-
equalized Generation (BEG) for 3DGS-based text-to-3D generation (Fig. 2).
The proposed GCS includes three components to solve the identified issues in
score distillation: a compact consistency loss reduces distillation errors, a con-
ditional guidance loss provides more effective conditional guidance, and a con-
straint on pixel domain enhances the fidelity of the 3D assets. Additionally, the
proposed BEG helps regularize the accumulation of brightness in 3DGS, which
significantly alleviates over-saturation issues. Examples of generated 3D assets
can be found in Fig. 1. In summary, our contributions are as follows:

1. We identify three problems in the PF-ODEs-based score distillation method
by connecting consistency distillation to score distillation.

2. We propose Guided Consistency Sampling, an improved score distilla-
tion method, to enhance the details and fidelity of the generated 3D asset.

3. We find an accumulated brightness issue in the 3DGS-based rendering pro-
cess that causes over-saturation and propose Brightness-equalized Gen-
eration to alleviate it in the 3DGS-based rendering process.

2 Related Work

Text-to-3D Generation by Score Distillation. SDS, introduced in Dream-
Fusion [29], and concurrent Score Jacobian Chain (SJC) proposed in [42], have



4 Z. Li et al.

been regarded as milestone works in distilling information from a 2D pre-trained
diffusion models to differentiable 3D representations, which inspiring many sub-
sequent Text-to-3D generation methods [4, 5, 7, 12,18,19,24,33,35,39–41,43,44,
47–49, 53] to improve the quality of generated 3D assets. Generally, they either
endow the DM with the pose-aware generative ability [19, 24, 35, 41, 48, 49] to
alleviate the Janus problem [1] for a more consistent 3D asset, or redesign the
distillation process and optimization objectives [4, 5, 12, 18, 43, 44, 47, 53] to re-
duce the distillation error from the 2D pre-trained diffusion model for a higher
level of details. While the performance of the former methods may be restricted
by the inherent limitations of SDS [17], the latter methods dedicated to over-
coming these limitations have recently gained increasing attention. For instance,
ProlificDreamer [43] proposes sampling from the parameter distribution instead
of seeking the optimal solution for high-fidelity generation. CSD [10] introduces
insights into the effects of SDS’s components and proposes improved strategies.
More recent works like [17, 44] introduce PF-ODEs into the SDS for a stable,
deterministic distillation process. After thoroughly investigating recent works,
we recognize a connection between consistency distillation and score distillation,
which motivates us to analyze and redesign the optimization objectives in view
of consistency distillation. Although concurrent work [44] also highlighted the
effectiveness of text-to-3D generation using consistency distillation, our analysis
delves deeper into such connection from a broader perspective. We also compare
with the findings of [44] in Tab. 1. Another concurrent study [23] established
a relationship between SDS and bridge matching [6, 15], leading to an improve-
ment similar to that seen in our method. Guided by acquired insights, we propose
GCS that integrates techniques in CM to improve generation quality and gain
state-of-the-art performance.
Differentiable 3D Representations, such as NeRF [17, 25, 29, 43], 3DGS [7,
13, 39], or learnable intrinsic that integrated with differentiable geometry [4,
34] and textures [2, 3, 8, 16], can be optimized by minimizing the loss between
rendered and ground truth images, establishing a connection between 3D and
2D representations. Text-to-3D by distillation relies heavily on differentiable 3D
representations. While NeRF is well-known to be slow to optimize, we use 3DGS
considering its efficiency and comparable performance with NeRF.

3 Preliminary

Diffusion Models (DM) [9,31] apply a forward process to perturb data sam-
ples x0 drawn from a data distribution pdata(x) by the Gaussian noise N (0, σ2

t I)
with time-dependent variance σt, where t ∈ [0, T ]. As such, the distribution of
noisy samples xt at time-step t is:

pt (xt | x0) = N
(
xt;x0, σ

2
t I
)
, (1)

which can be re-parameterized to xt = αtx0 + σtϵt, where ϵt ∼ N (0, I). A
reverse process can denoise the noisy samples from xt to x0, expressed as varia-
tional inference of Markov processes [9]. For all diffusion processes, there exists a
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corresponding deterministic process with trajectory sharing the same marginal
distribution, known as PF-ODE [38]:

PF-ODE: dxt =

[
f(xt, t)−

1

2
g(t)2∇xt

log pt(xt)

]
dt, (2)

where f(xt, t) is the drift coefficients, dt is the infinitesimal negative timestep,
∇xt

log pt(xt) is the score function of pt(xt), estimated by a neural network
ϵθ (xt, t). An ODE solver (e.g., DDIM [36], DPM-Solver [20], etc.) can be used
to derive the solution of ODE, identical as a sampling process. The sampling
trajectory of ODE is deterministic, and the randomness comes from the initial
value, which is more stable than a random sampling process described by the
inverse Stochastic Differentiable Equation (SDE) [38].
Consistency Model (CM) [37] is proposed to facilitate a single-step or low
number of function evaluations (NFEs) [28] generation by distilling knowledge
from pre-trained DM models. It defines a one-step generator fθ(.; .) with train-
able parameters θ that directly predicts the denoised image x0 given t and xt,
constrained by some boundary conditions [37]. fθ(.; .) is trained by minimizing
consistency distillation loss [37] defined as:

LCD

(
θ,θ−) = E

[
ω(t)

∥∥fθ

(
xtn+1

; tn+1

)
− fθ−

(
x̄{tn+1→tn}; tn

)∥∥2
2

]
, (3)

where, 0 = t1 < t2 · · · < tN = T , x̄{tn+1→tn} is calculated given ODE solver
Φ(.) as x̄{tn+1→tn} = Φ

(
xtn+1 ; tn+1, tn

)
, θ− is updated during training pro-

cess through an exponential moving average (EMA) strategy [38]. The ultimate
goal of CM is to maintain the self-consistency condition along the trajectory
{xt}t∈[0,T ], satisfying,

f (xt; t) = f (xt′ ; t
′) ∀t, t′ ∈ [0, T ]. (4)

Subsequent works of CM [10,14,51] integrate Classifier-free guidance (CFG) [10]
or jumps along PF-ODE trajectory into the CM for high-fidelity samples given
low or high NFEs, respectively. Inspired by those works, we seek to improve the
performance of SDS further in view of CM given their connection.

4 Methodology

In Sec. 4.1, we analyze current advances [17,29,43,44,47] in a unified framework
obtained by connecting consistency distillation [14, 37, 51] to score distillation.
We revisited and identified three problems in the current PF-ODEs-based score
distillation from the perspective of consistency distillation. We further proposed
our solution, i.e., Guided Consistency Sampling (GCS), and explained in detail
in Sec. 4.2. While GCS is integrated with 3DGS, we observe the accumulated
brightness causing over-saturation in 3DGS, as explained in Sec. 4.3. We propose
Brightness Equalized Generation (BEG) to alleviate this issue.
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Table 1: Specific design space employed by proposed GCS and selected 2D diffusion-
based score distillation text-to-3D generation method.

DreamFusion [29] ProlificDreamer [43] Consistent3D [44]

3D Representation NeRF / GS NeRF NeRF / GS
CFG Weight - 7.5+ 50+
Objective SDS (Eq. 7) VSD (Eq. 9) CDS (Eq. 15)

Objective #1: Generator Loss
term A xπ Fϕ

(
x{π,t}; t, y

)
Fθ

(
x{π,t}; t, y

)
term B Fθ

(
x{π,t}; t, y

)
Fθ

(
x{π,t}; t, y

)
Fθ

(
x̄{π,t→s;y}; s, y

)
LucidDreamer [17] DreamFusion w/ CFG [29] Ours

3D Representation NeRF / GS NeRF / GS GS w/ BEG
CFG Weight 7.5+ 100+ 7.5+
Objective ISD (Eq. 13) SDS w/ CFG (Eq. 10) GCS (Eqs. 20, 22, 23)

Objective #1: Generator Loss
term A - xπ Gθ

(
x̂{π,t}; t, e, ∅

)
term B - Fθ

(
x{π,t}; t, y

)
Fθ

(
x̄{π,t→s;y}; s, e, ∅

)
Objective #2: Classifier Loss
term A Fθ

(
x̂{π,s}; s, ∅

)
Fθ

(
x{π,t}; t, ∅

)
Fθ

(
x̂{π,e}; e, ∅

)
term B Fθ

(
x̂{π,t}; t, y

)
Fθ

(
x{π,t}; t, y

)
Fθ

(
Gθ

(
x̂{π,t}; t, e, y

)
; e, y

)
Pixel Constraint +SDS on pixel domain [53] +LCP (Eq. 23)

4.1 Connecting Consistency Distillation to Score Distillation

Through theoretical analysis, we find that consistency and score distillation share
a similar optimization objective. While CM enforces a self-consistency of a PF-
ODE sampling trajectory (Eq. 3), SDS and its variants (score distillation) facil-
itate a cross-consistency5 between the diffusion trajectory of the rendered view
and the denoising trajectory (usually with text condition) of a noisy sample.
This cross-consistency is maintained by minimizing the gap between a sample
on the diffusion and denoising trajectory. The score distillation method diver-
sifies in choosing those samples to form the optimization objectives (see Tab. 1
for a summary). In the following part, we unify the optimization objective of the
score distillation method by sample (x) instead of score (ϵ) to connect consis-
tency distillation to score distillation based on their similarity.

In vanilla SDS, given a camera poses π, a 3D representation ξ can be projected
to a specific 2D view, noted as xπ = g(π, ξ). The optimization objective of SDS
on 3D parameters ξ is given as:

min
ξ

LSDS(ξ) = Et,π

[
ω(t) ∥ϵθ (xt; t, y)− ϵ∥22

]
, (5)

where ϵθ (xt; t, y) is the predicted noise given xt, time-step t, and y; ω(t) is a t
related weight function. As suggested in [32, 52, 53], SDS loss is equivalent to:

5 We define cross-consistency as an alignment between the diffusion trajectory of the
rendered view and the text-conditioned sampling trajectory.
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LSDS(ξ) = Et,π

[
ω(t)

∥∥ϵθ (x{π,t}; t, y
)
− ϵ

∥∥2
2

]
, (6)

= Et,π

[
c(t)

∥∥x{π,t} − Fθ(x{π,t}; t, y)
∥∥2
2

]
, (7)

=: LDistill(ξ), (8)

where x{π,t} = αtxπ + σtϵ, Fθ(x{π,t}; t, y) =
x{π,t}−σtϵθ(x{π,t};t,y)

αt
, c(t) is an-

other t related weight function. In CM [9, 22], fθ(.; .) can be parameterize as
Fθ(.; .), which makes Eq. 3 similar to Eq. 7 in formula. As stated in [36, 44], we
interpret minimizing LSDS as facilitating a cross-consistency of the stochastic
and deterministic trajectory. The variance of SDS injects different conditions on
samples. For instance, replacing xπ by samples from another fine-tuning diffusion
model, noted as Fϕ(x{π,t}; t, y) in Eq. 7, we have Variational Score Distillation
(VSD) [43] as:

LVSD(ξ) = Et,π

[
c(t)

∥∥Fϕ(x{π,t}; t, y)− Fθ(x{π,t}; t, y)
∥∥2
2

]
, (9)

which distills information by enforcing cross-consistency of the trajectory pa-
rameterized by ϕ and θ. In practice, CFG with a higher guidance weight w (e.g.,
w = 100) is imperative in SDS. Specifically, the expression of SDS with CFG in
the form of distillation loss [10,47] is:

LCFG
Distill(ξ) := Et,π[c(t)∥ [xπ − Fθ(x{π,t}; t, y)]︸ ︷︷ ︸

generator loss

+w [Fθ(x{π,t}; t, ∅)− Fθ(x{π,t}; t, y)]︸ ︷︷ ︸
classifier loss

∥22]. (10)

Notably, we extend the definition in [47], noting the generator loss as a guidance
to make xπ more close to the prior distribution and the classifier loss as an
update direction for xπ to align with the text-condition. As studied in [47], the
driving force of SDS is the classifier loss. By omitting the generator loss, they
derive Classifier Score Distillation (CSD), given:

LCSD(ξ) := Et,π[c(t)∥[Fθ(x{π,t}; t, ∅)− Fθ(x{π,t}; t, y)]∥22]. (11)

Additionally, as shown in [17], x{π,t} could be replaced by the deterministic
status derived from DDIM to improve the distillation quality:

x̂{π,t} =

s∑
k=0

α(k+δk)

(
1

αk
xk −

σ(k+δk)

α(k+δk)
ϵθ(xk; k, ∅)

)
+ σ(k+δk)ϵθ(xk; k, ∅), (12)

where t > s with t = s + δs. Similar to derive Eq. 8, based on Eq. 12, we can
express Interval Score Distillation (ISD) [17] as follows:

LISD(ξ) = Et,s,π

[
c(t)

∥∥Fθ(x̂{π,s}; s, ∅)− Fθ(x̂{π,t}; t, y)
∥∥2
2

]
, (13)
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which can be regarded as a classifier loss. With CFG, an additional generator
loss is combined with ISD,

LCFG
ISD (ξ) = Et,s,π[c(t)∥[Fθ(x̂{π,s}; s, ∅)− Fθ(x̂{π,t}; t, ∅)]

+ w[Fθ(x̂{π,t}; t, ∅)− Fθ(x̂{π,t}; t, y)], ∥22],
(14)

we find the generator loss in Eq. 14 is highly correlated to a Consistency Distil-
lation Sampling (CDS) studied in [44]:

LCDS(ξ) = Et,s,π

[
c(t)∥Fθ(x{π,t}; t, y)− Fθ(x̄{π,t→s;y}; s, y)∥22

]
, (15)

where, x̄{π,t→s;y} = Fθ

(
x{π,t}; t, s, y

)
= Φ

(
x{π,t}; t, s, y

)
. Particularly, CDS is a

special case as it mainly guides the generated views to match a particular origin
of PF-ODE trajectory from the prior distribution through self-consistency. In
such case, an upper bound for the distillation error can be deduced [44]:

∥xπ − x0∥2 = O ((∆t)p)T. (16)

where x0 ∼ pdata(x) is an real image, ∆t = max {|δk|}, k ∈ [0, ..., s] and t =
s+δs. With CFG, CDS can further facilitate a cross-consistency of text and null
condition trajectories. However, it performs poorly with low CFG weight [44],
which needs further improvement. Inspired by the similarity of CM and the
optimization objectives of the score distillation method, we are motivated to
reformulate the optimization objective in SDS by extending the theories in CM to
improve text-to-3D generation quality. We sum up our solution in three aspects:
1) we reduce the error bound suggested Eq. 16 to improve the distillation quality;
2) we provide more reliable guidance during distillation accounting for CFG
effects; 3) we implement constraints on pixel domain to enhance the fidelity.

4.2 Guided Consistency Sampling

In this section, we introduce the Guided Consistency Sampling (GCS), which in-
cludes three parts of objectives: a Compact Consistency (CC) loss, a Conditional
Guidance (CG) score, and a Constraint on Pixel domain (CP):

LGCS(ξ) = LCC(ξ) + LCG(ξ) + LCP(ξ). (17)

Compact Consistency (CC) Loss aims to improve further the self-consistency
of PF-ODE denoising trajectory, which eventually reduces the distillation error
bound in Eq. 16 for a more aligned distribution of rendered views. Inspired
by [14,51], we define a solution function:

Gθ(xt; t, s, y) := xt +

∫ s

t

xu − E[x|xu]

u
du. (18)

which Gθ(xt; t, s, y) solves the PF-ODE from initial time t to a final time s
according to exponential integrator [20, 21, 50]. Owing to the fact that G is



Connecting Consistency Distillation to Score Distillation 9

intractable as it can only be obtained by calculating s partial derivative at time
t, we follow the scheme in [51] and adhere to the first-order definition6 of DPM-
Solver [20], re-parameterised G as:

Gθ(xt; t, s, y) =
σs

σt
xt − αs(e

−h − 1)ϵθ(xt, t, y), (19)

where h = λs − λt with the log-SNR λ defined as λ = log(α/σ) and ϵθ is the
prediction from the network. According to the previous definition, we mathe-
matically define Compact Consistency Loss, a critical part of GCS, to improve
the details of the 3D asset:

LCC(ξ) = Et,s,e,π

[
∥Gθ(x̂{π,t}; t, e, ∅)−Gθ(x̄{π,t→s;y}; s, e, ∅)∥22

]
, (20)

where t > s > e, and x̂{π,t} is obtained by DDIM inversion from x{π,e}, calcu-
lated as x{π,e} = αexπ + σeϵ

∗ to x̄{π,e→s} and eventually to x̄{π,s→t}. A null
condition is applied to all DDIM inversion steps. Notably, ϵ∗ is the random noise
that will only be sampled once and kept fixed in practice7. During the training
process, the parameters in the pre-trained model are frozen. In this condition,
we substantiated Lemma 1, which extends the premises established in [37,44].

Lemma 1 ( [14, 37, 44, 51]). Let ∆t = max {|δk|}, k ∈ [0, ..., ns], where
ns is the index of δ at time step s, and Fθ(·, ·) is the origin prediction function
grounded on the empirical PF-ODE. Assume Fθ satisfies the Lipschitz condition,
if there is a xπ satisfying LCC(ξ) = 0, given an image x0 ∼ pdata(x), for any
t, s, e ∈ [[0, ..., T ]] with t > s > e, we have:

sup
t,e,xπ

∥x̂{π,e}, x̂{0,e}∥2 = O ((∆t)p) (T − e), (21)

x̂{0,e} is the distribution of x0 diffused to time e, p is the order of ODE solver.

Proof. The proof is provided in the Appendix for completeness.

Lemma. 1 validates that CC achieves a lower upper limit on error margins than
CDS (Eq. 16) for a better distillation from the pre-trained model. Considering
the importance of CFG in generating high-quality contents, another issue worth
noting is whether it is practical to integrate CFG (or Perp-Neg [1]) into a gen-
erator loss LCC. In CDS, it applies CFG in every ODE denoising step, which
leads to a large accumulated error magnified by CFG [22, 26]. Instead, we only
implement CFG in one step [22] (see Fig. 2), leading to lower accumulated errors.
This strategy significantly improves the generation quality with low CFG weight
(see Fig. 3). However, we still observe artifacts in the generated 3D model, likely
due to a lack of effective classifier loss that provides text-conditional guidance.

6 For the effect of higher orders, please refer to the Appendix for more details.
7 We use ϵ∗ to ensure a valid diffusion process at low time step and reduce the com-

putational cost, compared to [17].
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Fig. 3: Generated views by using LCC with different
CFG strategies at a low CFG weight (w = 7.5). While
LCC (left) implements CFG in only one denoising step,
L∗

CC (right) applies CFG in every ODE denoising step.

Conditional Guidance (CG) Loss is proposed to accommodate guidance
while maintaining a lower accumulated error, which we interpret as conditional
guidance. Inspired by [10,17,26], we facilitate an alignment between the uncondi-
tional trajectory (T{e→0,∅} from a noisy sample at e to 0) and the text-conditional
trajectory (T{t→e→0,y} derived from a noisy sample x̂{π,t} then sampling down
to e and 0), separately. Mathematically, the CG score can be expressed as:

LCG(ξ) = Et,e,π

[
∥Fθ(x̂{π,e}; e, ∅)− Fθ(Gθ(x̂{π,t}; t, e, y); e, y)∥22

]
, (22)

where Fθ(x; t, y) predicts the x0 from time step t given the conditional informa-
tion y as shown in Eq. 8, and Gθ(x; t, e, y) access the midpoint e of the trajectory
from initial timestep t as explained in Eq. 19. In practice, we can integrate CFG
into LCG for better performance. We believe the proposed LCG provides more
reliable guidance with less accumulated error, as it avoids long navigation along
the trajectory. Specifically, the gap between T{e→0,∅} and T{t→e→0,y} is a more
precise guidance since it directly affects x̂{π,e}, which is a more similar sample
to xπ [26] due to the DDIM inversion.

It is also interesting to see that LISD is equivalent to LCG when set e =
0 in computing Fθ(Gθ(x̂{π,t}; t, e, y); e, y). We intuitively explain the effect of
a midpoint e to reduce the error of one-step denoising from a noisy sample
conditioned at large t. Eventually, we find LCC and LCG work together improving
the quality of generated 3D asset.

Constraint on Pixel (CP) Domain aims to achieve a closer resemblance
in the pixel domain for LCG. While a satisfactory xπ is obtained in the latent
domain, whether such an xπ is equally satisfactory in the pixel domain appears
to have been overlooked. In fact, the optimized xπ may not adhere to the prior
distribution stipulations of VAE, leading to out-of-distribution artifacts. Conse-
quently, this leads to unrealistic color in the decoded images (e.g., a paint-like
color in the generated results of LucidDreamer [17]). Inspired by similar meth-
ods proposed in [53], we further calculate LCG in the pixel domain for enhanced
supervision. In this context, given an image decoder D along with x̂{π,e}, the
definition of CP can be articulated as follows:

LCP(ξ) = Et,e,π

[
∥D(ẋπ)−D(x̃π)∥22

]
, (23)

ẋπ = Fθ(Gθ(x̂{π,t}; t, e, y); e, y), (24)
x̃π = Fθ(x̂{π,e}; e, ∅). (25)

Our empirical observations indicate that optimizing CP yields notable enhance-
ments in color fidelity, albeit with increased computational cost and over-saturation.
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Consequently, we suggest an additional strategy outlined in Sec. 4.3, aimed at
alleviating over-saturation. Extensive experiments lead us to conclude that the
CP term is constructive in bolstering the overall quality of 3D assets.

4.3 Brightness-equalized Generation

A common problem in previous works is that the generated 3D assets often suffer
from over-saturation, especially in those that use Gaussian Splatting as the 3D
representation to be trained. We experimentally find that the high brightness
region (highlight) generated in the current training epoch is carried over to
the next epoch8. That is, the brightness of the highlight points accumulates
during training, eventually leading to over-saturation. To alleviate this issue,
we propose resetting the brightness of the Gaussian9 adaptively according to
the exposure status of the generated view. Specifically, in each training epoch,
we calculate the mth(85) percentile of each image xi

π in an image batch Xπ =
{xi

π, i ∈ [1, ..., B]}, noted as Pm = {pim, i ∈ [1, ..., B]}, where B is the batch size.
We then find the maximum value in Pm and reset the brightness of Gaussian
to TB = 0.8 of the current brightness if max(Pm) > TGS, TGS = 0.9. Such a
simple method will significantly alleviate the over-saturation issues and facilitate
brightness equalization.

5 Experiments

5.1 Implementation Details

We implement the GCS with PyTorch and train it on an A800 GPU with the
Adam optimizer. Some hyperparameters (the learning rates, camera positions,
rendering resolution, etc.) are similar to that in [17]. We use 5000 epochs as [43]
for total training iterations, which takes about one hour per scene.
Time schedule. In the experiment, t is sampled from a uniform distribution
U(20, 500 + δwarm), where δwarm is linearly decreasing from 480 to 0 in the first
1500 epochs. s = t−δ, where δ = 100 for most cases. e is sampled from a uniform
distribution as U(s− δ, s− δ

10 ).
Initialization. We apply Shap-E [11] and Point-E [27] to initialize the 3D Gaus-
sians, which are widely used in 3DGS-based text-to-3D generation [17,44].

5.2 Text-to-3D Generation

Qualitative Comparison. We have showcased diverse views of the 3D assets
generated by our versatile approach, indicating that we can not only gener-
ate highly detailed figures but also create reasonable outputs to align with the
complex prompt (results shown in the first row). To comprehensively assess the
efficacy of our proposed Guided Conditional Sampling (GCS), we conducted a
8 A visualization of the brightness accumulation can be found in the Appendix.
9 We use the average of RGB channels as the brightness.
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“a DSLR photo of a cat wearing armor.”

“A beagle in a detective outfit.”

“An astronaut is riding a horse.”

LucidDreamerProlificDreamerDreamFusion GaussianDreamer Ours

Fig. 4: Qualitative comparison among the proposed and other methods on text-to-3D
generation results. From left to right, results generated by DreamFusion [29], Gaus-
sianDreamer [46], ProlificDreamer [43], LucidDreamer [17], and the proposed method,
with a CFG weight 100, 100, 7, 7, 7, respectively. For each sub-figure, left: main view,
right-top: back view, right-bottom: normal/depth map of the 3D asset.

comparative analysis against the current state-of-the-art in GS-based [17, 46]
and baseline NeRF-based [29, 43] methods in text-to-3D generation, as shown
in Fig. 4. To ensure a fair comparison, all listed methods implement Stable Dif-
fusion 2.1 as the base model. Other hyperparameters were configured following
the default settings of the respective methods. The results indicate that previ-
ous methods often struggled with insufficient details, prominent artifacts (e.g.,
Janus problem [1]), or over-saturation. In contrast, our approach exhibits no-
table improvements in detail (e.g., the armor of the cat), fidelity, and exposure.
Specifically, we can generate highly detailed textures, achieve photorealistic ef-
fects (such as lights on the cat’s armor), and maintain more consistent colors
(such as the cat’s fur color) even with a low CFG weight, illustrating the effective-
ness of our proposed GCS and the brightness-equalization techniques employed
during training. Additional results can be found in the Appendix.
Quantitative Comparison. We present the average CLIP Score, FID Score,
and user preference of five comparative methods [17, 29, 39, 43, 46] and the pro-
posed GCS on 120 generated views across 30 prompts selected from the Dream-
Fusion gallery10 in Table 2. For CLIP Score computation, we follow the steps
presented in [29]. Results show that our performance is comparable to that of
VSD [43] in the evaluation of prompt alignment, with much fewer instances of
Janus problems [1], as evidenced in the qualitative comparison shown in Fig. 4.
The proposed approach exhibits improved 3D consistency and fidelity for the 3D
asset, resulting in a higher user preference in prompt alignment.

10 https://dreamfusion3d.github.io/gallery.html

https://dreamfusion3d.github.io/gallery.html
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Table 2: Quantitative comparison regarding CLIP Score, FID Score, and user pref-
erence on three given questions (Q1, Q2, and Q3). The bold (underline) number
indicates the best (second-best) results.

GaussianDreamer DreamGaussian DreamFusion LucidDreamer ProlificDreamer Ours

CLIP Score↑ 30.29 28.65 30.68 31.30 33.17 32.37
FID Score↓ 133.48 215.89 137.22 109.57 119.53 103.40
User Preference: Q1↑1 9.47 1.05 6.32 24.21 12.63 46.32
User Preference: Q2↑2 10.53 1.05 6.32 30.53 7.37 44.21
User Preference: Q3↑3 9.47 2.11 6.32 26.32 11.58 44.21

1 Q1: From the perspective of color brightness, which of the following methods produces the most balanced brightness
(e.g.., no over-saturation, moderate saturation)?

2 Q2: From the perspective of prompt alignment, which of the following methods align most with the prompt?
3 Q3: From the perspective of fidelity, which of the following methods produces the most realistic objects?

LucidDreamer (ISM) 𝓛𝑪𝑪 𝝃 + 𝓛𝑪𝑮 𝝃 𝓛𝑮𝑪𝑺 𝝃 + 𝐁𝐄𝐆𝓛𝑮𝑪𝑺 𝝃

“a DSLR photo of a cat wearing armor.”

LucidDreamer + BEG

T$% = 0.8 T$% = 0.85

“A Tudor style house.”

T$% = 0.95𝛿 = 50 𝛿 = 100 𝛿 = 150

“A Ripe Strawberry.”

T& = 0.6 T& = 1.0T& = 0.8

“A Lego Castle”Fig. 5: Ablation study of proposed components.LucidDreamer [17] serves as the base-
line, we demonstrate the results under settings: (a) LucidDreamer [17] + BEG, (b)
LCC(ξ) +LCG(ξ), (c) LGCS(ξ), and (d) full mode (LGCS(ξ)+ BEG) from left to right.

For FID, we follow similar steps in [43] to calculate FID between 120 views of
3D object11 and 50k Stable Diffusion 2.1 generated images. We implement Perp-
Neg when necessary for different objects. The results show that the generated
views of the proposed method are more similar to the prior distribution compared
to other methods, indicating that the proposed GCS reduces distillation error.
User Study. We further conduct a user study among 30 volunteers for a more
comprehensive evaluation. Specifically, we asked the volunteers to evaluate the
generation quality regarding brightness (Q1), prompt alignment (Q2), and fi-
delity (Q3). Those volunteers are also required to indicate their preference based
on rendered 360◦ videos of 5 objects randomly sampled from 30 examples within
six methods. We shuffled the presented order of the generated results to avoid
any form of leakage. The results of user preference in percentage form shown
in Table 2 indicate that our method performs best in all aspects. An example
question can be found in the Appendix.

5.3 Ablation Study

We conducted an ablation study to assess the effects of parameter setup (includ-
ing δ, TGS, and TB), the proposed Guided Consistency Sampling (GCS) loss,
and the brightness-equalized generation method (BEG).
11 Views are generated with fixed elevation (0◦, 3.6k views generated in total) and

varying azimuth (uniformly covering 360◦)
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LucidDreamer (ISM) 𝓛𝑪𝑪 𝝃 + 𝓛𝑪𝑮 𝝃 𝓛𝑮𝑪𝑺 𝝃 + 𝐁𝐄𝐆𝓛𝑮𝑪𝑺 𝝃

“a DSLR photo of a cat wearing armor.”

LucidDreamer + BEG

T$% = 0.8 T$% = 0.9

“A Tudor style house.”

T$% = 0.95𝛿 = 50 𝛿 = 100 𝛿 = 150

“A Ripe Strawberry.”

T& = 0.6 T& = 1.0T& = 0.8

“A Lego Castle”

Fig. 6: Ablation study of hyperparameters’ effects (left: δ, middle: TGS, right: TB)

Effect of time interval δ is evaluated by an ablation study on δ shown in
Fig. 6. We find that large δ causes over-smoothness (e.g., low level of detail on
the strawberry’s surface), while small δ causes color distortion (e.g., unrealistic
color in strawberry). 100 is set to generate visual-pleasant results.
Effect of Different Loss and BEG12. As illustrated in Fig. 5, we compared
the full model’s (LGCS(ξ) + BEG) generated results with those from Lucid-
Dreamer [17], and two alternative models: LCC(ξ)+LCG(ξ) and LGCS(ξ) without
BEG method, with a CFG weight set to 7.5. Compared to LucidDreamer [17],
the full model successfully generated more intricate details (e.g., armor’s pat-
terns and higher armor coverage). While there was a slight alleviation in color
distortion (inconsistency of fur color between the back and front of the cat), the
issue may persist. Consequently, we introduced LCP to mitigate color distortion
further (comparing LCC(ξ) + LCG(ξ) and LGCS(ξ)).

However, we observed a significant increase in overall brightness during opti-
mization. The implementation of the BEG method notably alleviates this issue,
as evidenced in the qualitative comparison between LGCS(ξ) and the full model
in Fig. 5. We find that BEG will only affect the overall brightness, but not
the fidelity, as shown in a qualitative comparison between LucidDreamer [17]
and LucidDreamer [17] + BEG. The effect of BEG is controlled by TB and TGS.
Specifically, large (small) TB causes over-saturation (color distortion) results (see
the comparison in Fig. 6). TB = 0.8 works for general cases. Small TGS will reset
the brightness too frequently to cause artifacts, TGS = 0.9 is a suitable setup.

6 Conclusion

In this work, we connect consistency distillation to score distillation. From this
connection, we propose Guided Consistency Sampling (GCS), an optimization
framework that includes three parts: Compact Consistency (CC) loss for im-
proved generator loss, Conditional Guidance (CG) score to enhance conditional
guidance, and Constraints in the Pixel domain (CP) for improved fidelity. In
addition, we innovate the Brightness-equalized Generation (BEG) to tackle the
over-saturation issue in 3DGS training. The proposed approach improves the
details, quality, and lighting effects of the generated 3D assets.

12 We conduct additional ablation studies regarding CC and CG to analyze the indi-
vidual effect on generated 3D assets in the Appendix.
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