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A1 Video Qualitative Results

Please refer to videos on the project page 3, which contains:

– Videos qualitative results of the multiple applications of EgoLifter (corre-
sponding to Fig. 1).

– Video qualitative results on the ADT dataset, comparing EgoLifter and its
variants (corresponding to Fig. 3).

– Video qualitative results on the ADT dataset, comparing with Gaussian
Grouping [12] (corresponding to Fig. 4).

– Video qualitative results on the AEA and Ego-Exo4D datasets. (correspond-
ing to Fig. 3).

– Demonstration video of the interactive visualization and segmentation sys-
tem.

A2 Experiment Details

A2.1 Image Formation Model for Project Aria

Aria Glasses [4] use a fisheye camera, and thus recorded images have a fisheye
distortion and vignette effect, but 3DGS uses a linear camera model and does
not have a vignette effect. Therefore we account for these effects in training
3D Gaussian models using the image formation model f(·) in Eq. 1, such that
not the raw rendered image but a processed one is used for loss computation.
Specifically, we apply an image processing pipeline as shown in Fig. A.1. In the
pipeline, the raw recorded images are first rectified to a pinhole camera model
using projectaria_tools4, and then multiplied with a valid-pixel mask that
removes the pixels that are too far from the image center. The rendered image
⋆ Work done during internship at Reality Labs, Meta.
3 https://egolifter.github.io/
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Fig.A.1: Image processing pipeline during training. The
⊗

symbol indicates element-
wise multiplication.

from 3DGS is multiplied with a vignette mask and also the valid-pixel masks.
Then the photometric losses are computed between the processed rendered image
and the processed GT image during training. This pipeline models the camera
model used in Aria glasses and leads to better 3D reconstruction. Empirically
we found that without this pipeline, 3DGS will create a lot of floaters to account
for the vignette effect in the reconstruction and significantly harm the results.

A2.2 Additional Training Details

Due to the GPU memory constraint, we sampled at most |U| = 4096 pixels within
the valid-pixel mask for computing the contrastive loss in Eq. 2. Note that for
EgoLifter where the transient prediction is used, the samples are additionally
constrained to be pixels with transient probability less than δ = 0.5.

For the segmentation masks generated by SAM, some masks may have over-
lapped with each other. In our experiments, we discarded the information about
overlapping and simply overlaid all masks on the image space to get a one-hot
segmentation for each pixel. While making use of these overlapping results leads
to interesting applications like hierarchical 3D segmentation as shown in [6,13],
this is beyond the scope of EgoLifter and we left this for future exploration.
The images used for training are of resolution of 1408× 1408 and segmentation
masks from SAM are in the resolution of 512× 512. Therefore, during training,
two forward passes are performed. In the first pass, only the RGB image is ren-
dered at the resolution of 1408×1408 and in the second, only the feature map is
rendered at 512 × 512. The losses are computed separately from each pass and
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Table A.1: 2D instance segmentation results (measured in mIoU) and novel view
synthesis results (measured in PNSR) on seen subsets in the ADT dataset.

Evaluation mIoU (In-view) mIoU (Cross-view) PSNR
Object set Static Dynamic All Static Dynamic All Static Dynamic All

SAM [7] 62.74 52.48 61.00 - - - - - -
Gaussian Grouping [12] 40.86 42.24 41.09 32.26 26.23 31.24 27.97 19.13 25.53
EgoLifter -Static 64.34 57.71 63.21 62.20 35.39 57.64 27.65 19.60 25.64
EgoLifter -Deform 63.33 57.11 62.27 62.24 34.91 57.59 28.60 19.89 26.24
EgoLifter (Ours) 65.08 52.12 62.88 63.65 33.70 58.56 26.86 16.02 23.34

summed up for gradient computation. Note that the view-space gradients from
both passes are also summed for deciding whether to split 3D Gaussians.

For optimization on the 3D Gaussian models, we adopt the same setting
as used in the original implementation [5], in terms of parameters used in the
optimizer and scheduler and density control process. The learning rate for the
additional per-Gaussian feature vector fi is 0.0025, the same as that for updat-
ing color ci. All models are trained for 30,000 iterations on each scene in the
ADT dataset, and for 100,000 iterations on scenes in the AEA and Ego-Exo4D
datasets, as these two datasets contain more frames in each scene. In the latter
case, the learning rate scheduler and density control schedule are also propor-
tionally extended.

A2.3 Timing

Using one NVIDIA A100 (40GB), training EgoLifter on one ADT sequence
takes around 130 minutes (training vanilla 3DGS takes around 100 minutes).
For a trained EgoLifter model, rendering both the RGB image and the instance
feature map of 1408 × 1408 resolution runs at around 103 fps. If only RGB
images are rendered, the speed goes to 158 fps. Note that we use a different
implementation than the original 3DGS, where we made several changes like
not caching images on GPU to enable training on large datasets, e.g. AEA and
Ego-Exo4D.

A2.4 ADT Dataset Benchmark

Sequence selection Based on the 218 sequences in the full ADT datasets [9],
we filter out the sequences that have too narrow baselines for 3D reconstruction
(sequences with name starting with Lite_release_recognition) or do not have
segmentation annotation on human bodies. From the rest of the sequences, we
select 16 sequences for evaluation, where 6 of them contain recordings of Aria
glasses from two human users in the scene (sequences with multiskeleton in
the name), and the rest 10 only have recordings from one user, although there
may be multiple two persons in the scene (sequences with multiuser in the
name). The names of the selected sequences are listed as follows:

Apartment_release_multiskeleton_party_seq121
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Apartment_release_multiskeleton_party_seq122
Apartment_release_multiskeleton_party_seq123
Apartment_release_multiskeleton_party_seq125
Apartment_release_multiskeleton_party_seq126
Apartment_release_multiskeleton_party_seq127
Apartment_release_multiuser_cook_seq114
Apartment_release_multiuser_meal_seq140
Apartment_release_multiuser_cook_seq143
Apartment_release_multiuser_party_seq140
Apartment_release_multiuser_clean_seq116
Apartment_release_multiuser_meal_seq132
Apartment_release_work_skeleton_seq131
Apartment_release_work_skeleton_seq140
Apartment_release_meal_skeleton_seq136
Apartment_release_decoration_skeleton_seq137

A2.5 Comparison with NeRF

Fig.A.2: Qualitative results on ADT datasets. From left to right: GT image; Render
by Nerfacto; Render by EgoLifter.

Method Nerfacto EgoLifter

PSNR (all) 17.22 20.28
Table A.2: Comparison to Nerfacto on the ADT dataset.
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Method INGP-Big M-NeRF360 3DGS EgoLifter

PSNR 25.59 27.69 27.21 27.26
Table A.3: Quantitative comparison on the MipNeRF 360 dataset.

Fig.A.3: Qualitative results on MipNeRF 360. From left to right: GT image; Ego-
Lifter RGB render; EgoLifter feature map (PCA).

Subset Splitting For sequences that only have a recording from one pair of
Aria glasses, the first 4/5 of the video is considered as seen views and the rest
are considered as novel ones. For sequences that have videos from two pairs, the
video from one pair is considered as seen views and the other is considered as
novel views. During training, every 1 out of 5 consecutive frames in the seen views
are used for validation the remaining 4 are used for training. The entire novel
subset is hidden from training and solely used for evaluation. For evaluation on
2D instance segmentation, we uniformly sampled at most 200 frames from each
subset for fast inference. The objects in each video sequence are also split into
dynamic and static subsets, according to whether their GT object positions have
changed by over 2cm over the duration of each recording. Humans are always
considered dynamic objects.

A3 Additional Results

A3.1 Results on ADT Seen Subset

For completeness, we also report the 2D instance segmentation and photometric
results on the seen subset of ADT in Tab. A.1. Note that the frames used for
evaluation in the seen subset are closer to those for training, and therefore these
results mostly reflect how well the models overfit the training viewpoints in each
scene, rather than generalize to novel views. As we can see from Tab. A.1, Ego-
Lifter outperforms the baselines in segmenting static objects using both in-view
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Method Office0 Office1 Office2 Office3 Office4 Room0 Room1 Room2 Mean

MVSeg [8] 31.4 40.4 30.4 30.5 25.4 31.1 40.7 29.2 32.4
SA3D [3] 84.4 77.0 88.9 84.4 82.6 77.6 79.8 89.2 83.0

OmniSeg3D [13] 83.9 85.3 89.0 87.2 78.3 83.0 79.4 88.9 84.4
EgoLifter (Ours) 82.9 78.4 85.1 84.1 80.0 77.0 85.4 84.3 82.1

Table A.4: Instance Segmentation results (mean IoU) on Replica dataset.

Fig.A.4: Qualitative result on Replica datasets. From left to right: GT image; Om-
niSeg3D feature map; EgoLifter feature map

and cross-view queries. When both static and dynamic objects are considered
(the “All” column), EgoLifter still achieves the best results in cross-view, which
is a harder setting for open-world segmentation. EgoLifter also has the second
place in the in-view setting.

A3.2 NeRF on ADT Dataset

In Tab. A.2 and Fig. A.2, we compare EgoLifter with the (default) nerfacto
model in Nerfstudio [11] on the ADT dataset. As we can see from Fig. A.2,
although Nerfacto uses per-image appearance embeddings to filter out transient
phenomena in reconstruction, it still fails on challenging egocentric datasets like
ADT and results in many floaters in the rendering. Quantitatively, EgoLifter also
outperforms as shown in Fig. A.2.

A3.3 Non-egocentric public benchmarks

Non-egocentric benchmarks (Replica, ScanNet, MipNeRF 360) use careful hand-
held scanning motions and lack dynamic phenomena. Therefore, they do not
reflect the full capability of EgoLifter. We evaluate EgoLifter on the MipNeRF
360 dataset [1] in Tab. A.3 and Fig. A.3, where we use EgoLifter -static variant as
the scenes are all static. Due to the lack of GT segmentation masks, we provide
qualitative results on learned instance features in Fig. A.3. As shown in Tab. A.3
and Fig. A.3, EgoLifter has a similar PSNR as the original 3DGS and learns
clean instance features that distinguish different instances.

We also test EgoLifter on Replica [10] and compare to OmniSeg3D [13],
a recent feature lifting method based on NeRF representation and contrastive
learning [2]. We evaluate the instance segmentation task using the multi-view
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mask propagation protocol [3, 8, 13], where the GT mask from one view is used
for computing reference instance features and masks on other view are computed
based on the feature distance from the reference ones. We follow the evaluation
protocol in [13] and use Eq. (11) in [13] for computing the similarity scores.
Similar to the experiments on MipNeRF 360, we used EgoLifter -static as there
is no dynamic content in Replica scenes.

We report the quantitative results (in mIoU) in Tab. A.4 and a qualitative
example in Fig. A.4. From Tab. A.4, we can see that EgoLifter has similar
performance with the state-of-the-art NeRF-based segmentation methods [3,13]
on the non-egocentric Replica dataset. From the qualitative example in Fig. A.4,
we can see that EgoLifter also results in clean and sharp feature boundaries
on Replica as contemporary work OmniSeg3D [13], which distinguish different
object instances and even the parts within each object.

A4 Additional Discussion on Limitations

Due to form factor and power constraints, egocentric videos are often captured
with more challenges. Due to rapid head motion and lighting condition changes
in the egocentric videos, the images contain significant motion blur that causes
challenges in recovering sharp reconstructions from them. This explains in part
the blurry results shown in some of the reconstruction results by EgoLifter. We
leave how to improve the reconstruction quality from egocentric videos for future
work.
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