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Abstract. The CLIP and Segment Anything Model (SAM) are remark-
able vision foundation models (VFMs). SAM excels in segmentation tasks
across diverse domains, whereas CLIP is renowned for its zero-shot recog-
nition capabilities. This paper presents an in-depth exploration of inte-
grating these two models into a unified framework. Specifically, we in-
troduce the Open-Vocabulary SAM, a SAM-inspired model designed for
simultaneous interactive segmentation and recognition, leveraging two
unique knowledge transfer modules: SAM2CLIP and CLIP2SAM. The
former adapts SAM’s knowledge into the CLIP via distillation and learn-
able transformer adapters, while the latter transfers CLIP knowledge into
SAM, enhancing its recognition capabilities. Extensive experiments on
various datasets and detectors show the effectiveness of Open-Vocabulary
SAM in both segmentation and recognition tasks, significantly outper-
forming the naïve baselines of simply combining SAM and CLIP. Fur-
thermore, aided with image classification data training, our method can
segment and recognize approximately 22,000 classes.

Keywords: Scene Understanding · Promptable Segmentation

1 Introduction

The Segment Anything Model (SAM) [30] and CLIP [53] have made significant
strides in various vision tasks, showcasing remarkable generalization capabili-
ties in segmentation and recognition, respectively. SAM, in particular, has been
trained with a massive dataset of mask labels, making it highly adaptable to
a wide range of downstream tasks through interactive prompts. On the other
hand, CLIP’s training with billions of text-image pairs has given it an unprece-
dented ability in zero-shot visual recognition. This has led to numerous stud-
ies [18,64,72,78] exploring the extension of CLIP to open vocabulary tasks, such
as detection and segmentation.

While SAM and CLIP offer considerable advantages, they also have inher-
ent limitations in their original designs. SAM, for instance, lacks the capability
to recognize the segments it identifies. Efforts to overcome this by integrating a
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Fig. 1: Open-Vocabulary SAM not only can segment anything with prompts just like
SAM but also has the capability of recognition in the real world, like CLIP. With
drastically lower computational cost, Open-Vocabulary SAM has a higher recognition
performance than directly combining SAM and CLIP with image or feature cropping
(measured on the COCO open vocabulary benchmark).

classification head have been made [32,83], but these solutions are constrained to
specific datasets or closed-set settings. On the other hand, CLIP, which is trained
using image-level contrastive losses, faces challenges in adapting its representa-
tions for dense prediction tasks. To address this, several studies [18,57,66,67,76]
have investigated ways to align CLIP’s representation for dense predictions. How-
ever, these approaches tend to be dataset-specific and not universally applicable.
For example, some research has focused on open vocabulary segmentation on the
ADE-20k [84] dataset, using the COCO [43] dataset for pre-training. Merging
SAM and CLIP in a naïve manner, as illustrated in Fig. 2 (a) and (b), proves
to be inefficient. This approach incurs substantial computational expenses and
yields subpar results, including recognition of small-scale objects, as evidenced
by our experimental results.

In this study, we address these challenges with a unified encoder-decoder
framework that integrates a CLIP encoder and a SAM decoder, as depicted in
Fig. 2 (c). To bridge these two distinct components effectively, we introduce
two novel modules, SAM2CLIP and CLIP2SAM, facilitating dual knowledge
transfer. First, we distill knowledge from the SAM encoder to the CLIP encoder
using SAM2CLIP. This distillation process is uniquely executed not directly on
the CLIP encoder, which is kept frozen to maintain its existing knowledge, but
rather on a lightweight transformer-like adapter using a pixel-wise distillation
loss. The adapter takes multi-scale features as input, with the goal of aligning
CLIP features with SAM representation. On the decoding side, the CLIP2SAM
module transfers knowledge from the frozen CLIP encoder to the SAM decoder.
In particular, we design a feature pyramid adapter with a RoIAlign operator
to be jointly trained with the SAM decoder. Both modules are lightweight and
naturally combine the strengths of CLIP and SAM.

Following the spirit of SAM, we enhance our model’s recognition capabilities
by harnessing the power of established semantic datasets, including COCO [43],
LVIS [19], and ImageNet-22k [11]. This strategy elevates our model to the ver-
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Fig. 2: Comparison of two simple SAM-CLIP combination baselines (a) and (b), and
our proposed single encoder architecture (c). The adapters for (a) and (b) are optional
and can be replaced with various designs (please refer to Sec. 4.1 for details). Note
that, in our method, the SAM encoder will be discarded during inference.

satility of SAM, endowing it with enhanced capability to segment and recognize
any objects, as shown in Fig. 1. As our approach is an adaptation of SAM, it
is flexible enough to be integrated with various detectors, making it suitable for
both closed-set and open-set environments.

We conduct extensive experiments across a range of datasets and scenarios,
encompassing closed-set and open-vocabulary interactive segmentation. Notably,
when compared to basic combined baselines, our approach demonstrates supe-
rior performance, achieving over 2% improvement in IoU and 3% in mAP with
various detectors on the COCO dataset. In particular, in the case of recognition
on LVIS, our approach achieves over 20% improvements over previous adapters.
Furthermore, by expanding our approach with a more diverse array of datasets,
we have developed a versatile, interactive tool suitable for practical applications.
For detailed results, we direct the reader to Sec. 4 and the appendix.

2 Related Work

Vision Language Models (VLMs). Vision-language pre-training has given
rise to models with aligned image and text representations [25, 26, 28, 41, 53].
Recent studies on contrastive vision-language pre-training [26, 53, 58, 80] have
significantly improved the generalization ability of recognition models. Mean-
while, several works [28, 33–35] aim to design better optimization goals for
downstream multi-modal tasks, including caption and visual question answer-
ing. Among these works, CLIP models [53] that are pre-trained on billion-scale
image-text pairs have shown impressive zero-shot classification performance on
a wide range of datasets. Our goal is to enable SAM to perform recognition tasks
with the help of pre-trained VLMs.
Open Vocabulary Dense Prediction. This direction aims to recognize re-
gion visual concepts of arbitrary categories described by texts, which includes
object detection [18,63,64,69,79], semantic segmentation [37,38,40,71,86,87], and
panoptic segmentation [70,75,76]. This necessitates the alignment between region
and text representations with the help of VLMs [26,53,58]. For open-vocabulary



4 H. Yuan et al.

detection, a series of works [18,57,66,78] distill knowledge from the CLIP mod-
els to recognize novel objects. In contrast to distillation-based methods, sev-
eral works [31, 68] directly build object detectors upon frozen CLIP CNNs. For
open-vocabulary segmentation, the typical works [12, 70, 72, 76] first generate
class-agnostic mask proposals and then classify the proposals with CLIP. Re-
cently, several works [70,76] build the mask generator upon the frozen diffusion
model [54] and CLIP model [53]. Meanwhile, several studies [27,47,51,52] focus
on class-agnostic segmentation and detection to enrich generalization ability in
various domains. However, most approaches are trained and tested on specific
datasets. Our approach is based on SAM, which provides a general, interactive
tool to support different open vocabulary detectors.
Prompting in Computer Vision. Prompting, originating from in-context
learning in natural language processing (NLP) as seen in works like Brown et
al . [4] and Rubin et al . [55], leverages a large language model to infer unseen tasks
through context-specific input-output pairs. Recent studies [1,3,16,45,61,62,88]
have explored in-context learning for visual tasks. Common techniques involve
mask image modeling [2, 21, 77] for cross-task visual prompting, as employed
by approaches like Painter [61] and Bar et al . [3]. SAM [30] demonstrates in-
context learning through interactive segmentation, using diverse visual prompts
like points, boxes, and masks, although it is limited to class-agnostic mask pre-
diction. Meanwhile, other studies [8,17,23,39,42] have concentrated on efficient
parameter tuning of visual foundation models, typically focusing on a single
model. Our work uniquely bridges two models, CLIP and SAM, exploring their
combined potential for enhanced general segmentation and recognition capabil-
ities. In particular, we adopt visual prompts (box, point) as the model’s inputs.
Segmentation Anything Model. SAM [30] presents a new data engine and
portable model for segmentation. Subsequent research has employed SAM as an
interactive segmentation tool for various vision tasks, including grounding [44],
tracking [10], distillation [81, 85], medical analysis [5, 65], and generation [82].
While some studies use SAM and CLIP for segmentation [6, 20, 36, 49, 59], none
have yet integrated VLMs and SAM into a unified model capable of both seg-
mentation and recognition of novel classes. Our work makes the first attempt to
merge the capabilities of VLMs with SAM for enhanced task versatility.

3 Methodology

We first review the SAM, CLIP, and combined baselines in Sec. 3.1. Then, we
detail our Open Vocabulary SAM in Sec. 3.2. Last, we present our model’s
training details and application in Sec. 3.3.

3.1 Preliminaries and Baselines

SAM. SAM is a prompt-driven segmentor. It contains an image encoder, a
prompt encoder, and a light-weight mask decoder. Here, we use box prompts
as an example. We denote an input image as X ∈ RH×W×3 and input visual
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Fig. 3: Illustration of Open-Vocabulary SAM. For training, the SAM encoder is as a
teacher network, while SAM2CLIP plays the role of a student network and aligns the
knowledge of SAM into CLIP. The CLIP2SAM transfers the CLIP knowledge to the
SAM decoder and performs joint segmentation and classification for close-set and open
vocabulary settings.

prompts as P ∈ RN×4, where H×W are the spatial size, N is the number of box
prompts. The image encoder is a modified vision transformer (ViT). It encodes
an image into dense feature FSAM ∈ RH

16×
W
16×d. The prompt encoder encodes

P into sparse prompts Qsp. Meanwhile, mask tokens Qmask and an IoU token
QIoU are initialized for the mask decoder.

The mask decoder takes the image feature F , sparse prompts Qsp, mask
tokens Qmask, and the IoU token QIoU as input. All the inputs will be concate-
nated and encoded with a lightweight two-way transformer. Consequently, each
mask token is transformed into a dynamic linear classifier, capable of calculat-
ing the foreground mask probability for every sparse prompt. Simultaneously,
the IoU token is tasked with predicting the confidence score for each mask.
Considering the multi-granular nature of SAM’s data annotations, encompass-
ing both instance and part level, Qmask naturally encodes multi-granularity. Our
study concentrates exclusively on the object level, which aligns more closely with
prevalent real-world applications and datasets such as COCO [43] and LVIS [19].
CLIP. Given an input image X and a corresponding caption C, the CLIP frame-
work processes these modalities to produce respective embeddings: the image
embedding EI , derived from its image encoder, and the text embedding t, ob-
tained from its text encoder. In the context of open-vocabulary object detection
and segmentation, CLIP’s capability to generalize beyond fixed class labels is
leveraged to replace traditional classifiers. For instance, in open-vocabulary de-
tection scenarios, the text embedding tc for the c-th object category is generated
by inputting the category name into the CLIP text encoder. This process can
employ a single template prompt, such as "a photo of {category}," or multi-
ple prompt templates. Subsequently, for a given region embedding r, that is
produced by the RoI-Align [22], the classification score for the c-th category is
computed as: pc =

exp(τ ·<r,tc>)∑C
i=0 exp(τ ·<r,ti>)

, where < ·, · > denotes the cosine similarity,
and τ is a learnable or fixed temperature to re-scale the value.
Combined Baselines. We introduce two different baselines for combining CLIP
and SAM, as depicted in Fig. 2 (a) and (b). The first approach, termed the
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‘cropped image baseline’, employs the SAM mask decoder’s output to segment
and resize the original input image. This processed image then serves as the
input for the CLIP image encoder, and, in conjunction with the CLIP text
embedding, the mask is classified using the similarities between visual and text
embeddings. The second approach referred to as the ‘cropped CLIP image feature
baseline’, employs the same initial CLIP feature extraction step. However, in this
method, masks predicted by the SAM decoder are used to crop the CLIP image
features. Subsequent pooling of these masked features yields the final label, akin
to baseline (a).

While both baselines enable zero-shot inference of images, they exhibit a no-
ticeable knowledge gap on specific datasets. To address this, we draw inspiration
from recent advancements in visual prompting or adapters [8,88]. Specifically, we
propose incorporating additional learnable tokens as an adapter to fine-tune the
model for enhanced performance on downstream datasets. These zero-shot infer-
ence capabilities and the fine-tuned models constitute our primary comparison
baselines under various experimental conditions, detailed in Sec. 4.1.

3.2 Open Vocabulary SAM

While both baseline models can be enhanced through visual prompting or adapters,
as we will discuss in Sec. 4, they face several challenges in real-world applications.
First, the requirement for two independent backbones in the combined model
increases computational costs (Prob.1). Second, SAM and CLIP are trained with
distinct objectives – SAM through supervised learning and CLIP via contrastive
learning – and there is limited research on knowledge transfer between such di-
verse architectures (Prob.2). Third, despite adapter integration, significant per-
formance gaps remain in recognizing small objects (Prob.3). Fourth, there is a
lack of exploration into integrating open-vocabulary capabilities for SAM and
CLIP, particularly in the context of feature fusion and data scaling (Prob.4).
Our work aims to solve these problems in a unified yet effective framework.
Unified Architecture. We design a unified architecture for both segmentation
and recognition to address Prob.1. Specifically, we adopt the frozen CLIP visual
encoder as our feature extractor. Then, both SAM’s mask decoder and prompt
encoder are appended behind the CLIP encoder. The meta-architecture of open-
vocabulary SAM is shown in Fig. 2 (c), with the more detailed version shown in
Fig. 3. This unified architecture is made possible via the SAM2CLIP, which
transfers knowledge of SAM to CLIP with distillation, and CLIP2SAM, which
employs CLIP knowledge and combines the SAM mask decoder for recognition.
We have chosen convolution-based visual backbones for the frozen CLIP back-
bone, aligning with previous studies that have highlighted their superiority in
capturing spatial structures [31,73]. The efficacy of different CLIP backbones is
further explored in Sec. 4.2.
SAM2CLIP. To resolve Prob.2, we design the SAM2CLIP module that bridges
the gap in feature representations learned by SAM and CLIP, using adap-
tation and distillation methods. Through comprehensive experiments, we dis-
covered that employing distillation loss Ldistill along with transformer-based
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adapters [14], yields effective results. Specifically, the distillation process involves
a simple pixel-wise approach, where SAM-Huge serves as the teacher, and the
frozen CLIP equipped with an adapter assumes the student’s role. We then im-
plement a per-pixel mean squared error (MSE) loss to align the SAM feature
Fsam with the CLIP feature EI , as detailed below:

Ldistill = MSE(Fsam, EI). (1)

We design a multi-scale adapter Asam2clip to align the features from CLIP and
SAM. In particular, we take pyramid CLIP features Ei

I , i = 1, 2, 3 as the inputs.
Such pyramid features contain both high-resolution and semantic information,
which is proven crucial for semantic segmentation [29]. The MSE loss is revised
as follows:

Ldistill = MSE(Fsam, Asam2clip(Fusion(E
i
I))), (2)

where Asam2clip comprises several transformer layers, and Fusion is achieved by
bilinear upsampling and addition.

With SAM2CLIP, we can even achieve comparable segmentation results with
the SAM-Huge with much lower computational costs. As detailed in Sec. 4.2,
we observe that employing convolution-based methods specifically designed for
backbone adaptation [8, 15] results in sub-optimal outcomes. The reason for
this might be in the inherent architecture of the SAM encoder, which is purely
based on ViT. A symmetrical structure is crucial for effective knowledge transfer.
With the implementation of SAM2CLIP, we can achieve segmentation results
comparable to those of SAM-Huge across various detectors, while significantly
reducing computational costs.
CLIP2SAM. This module aims to leverage CLIP’s knowledge to enhance the
recognition capabilities of the SAM decoder. A straightforward approach involves
appending a label token Qlabel to the existing mask token Qmask and IoU token
QIoU . Using Qlabel, we introduce a specialized adapter to facilitate the transfer
of knowledge from the frozen CLIP to the SAM decoder. Subsequently, the
enhanced Qlabel, combined with the output of the prompt encoder and adapted
CLIP features, is fed into a two-way transformer. Following the cross-attention
process, the improved Qlabel undergoes further refinement through a multilayer
perceptron (MLP), ensuring better alignment with CLIP’s text embedding. The
final labels are derived by calculating the distance between the refined label
token and the CLIP text embedding.

This design, however, falls short of recognizing small objects (Prob.3) since
the adaptation only involves the single-scale feature, which is mainly focused
on segmentation. We present a simple yet effective solution to handle this is-
sue, introducing a lightweight feature pyramid network (FPN) for CLIP2SAM
adaption. As shown in Fig. 3, the pyramid network extracts multi-scale CLIP
features as the inputs. Then, we apply the RoI-Align [22] operation to extract
region features. Like the R-CNN framework [22], we apply one convolution layer
and a MLP to learn the feature embedding without introducing cross-attention
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in the mask decoder. In particular, for point prompts, we first obtain the corre-
sponding masks via the SAM decoder and obtain the box via the corresponding
masks. For box prompts, we can directly send it to the FPN for region feature
extraction. Given that our method incorporates only a few convolution layers,
it does not significantly increase computational costs compared to the original
SAM.
Open Vocabulary. To tackle Prob.4, the open-vocabulary challenge, we lever-
age the knowledge embedded in the frozen CLIP backbone, which aids in rec-
ognizing novel and unseen objects during inference. In line with previous stud-
ies [31,67], we fuse the learned class scores with those from the frozen CLIP via
a geometric mean to leverage information from both the CLIP and CLIP2SAM.
Additionally, we investigate various strategies to expand the vocabulary size,
such as joint training with multiple datasets, as detailed in Sec. 4.2. Our exper-
imental results show that the model scales effectively with large datasets.

While our approach can address the open vocabulary challenge, it is impor-
tant to distinguish the setting of Open-Vocabulary SAM from that of previous
open vocabulary segmentation methods [6,13,24,74]. Unlike previous techniques,
which typically depend on a separate segmentor to produce mask proposals,
our method only uses visual prompts, such as boxes and points, to generate
masks and labels. Furthermore, our method specifically targets foreground ob-
jects, aligning with the ImageNet [11] datasets and the purpose of box prompts.
To show the effectiveness of our method, we compare the performance of our
method with previous open vocabulary segmentation methods in Sec. 4.1.

3.3 Training and Application

Training and Loss Function. We first use the SA-1B (1%) dataset [30]
for training the SAM2CLIP module to transfer SAM’s knowledge into open-
vocabulary SAM, with the loss Ldistill (Equ. (2)). Then, we joint train the
CLIP2SAM and mask decoder using segmentation mask and label annotations
from COCO or LVIS. The final loss function is given as L = λclsLt_cls +
λceLt_ce + λdiceLt_dice. Here, Lt_ce is the Cross-Entropy (CE) loss for mask
classification, and Lt_ce and Lt_dice are mask Cross Entropy (CE) loss and Dice
loss [48] for segmentation, respectively. In addition, we adopt joint training with
the ImageNet dataset for classifying over 22,000 categories.
Inference and Demo Tools. Our model performs inference like SAM, with
points and boxes as visual prompts. Specifically, we test boxes and points as
visual prompts for the encoder in Sec. 4. In the appendix, we show a demo of
our model, which can segment and recognize with prompts.

4 Experiments

Datasets and Metrics. We mainly use COCO [43] and LVIS [19] datasets
for the experiments. Moreover, we also use part of SA-1B [30] data (1%) for
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Table 1: Comparison of combined baselines and Open-Vocabulary SAM using visual
prompts. “*” indicates using mask center point as prompts, while others indicate using
ground truth boxes prompts. IoUb and IoUn refer to the average IoU for each mask of
base classes and novel classes, respectively.

Method COCO LVIS FLOPs #Param
IoUb IoUn Acc IoUb IoUn Acc

Image-Crop baseline 78.1 81.4 46.2 78.3 81.6 9.6 3,748G 808M
Feature-Crop baseline 78.1 81.4 55.1 78.3 81.6 26.5 3,545G 808M

Image-Crop baseline + CoOp [88] 79.6 82.1 62.0 80.1 82.0 32.1 3,748G 808M
Feature-Crop baseline + CoOp [88] 79.6 82.1 70.9 80.1 82.0 48.2 3,545G 808M

Open-Vocabulary SAM 81.5 84.0 84.3 80.4 83.1 66.6 1,180G 304M
Image-Crop baseline* 60.7 66.7 24.5 53.0 62.3 6.2 3,748G 808M
Feature-Crop baseline* 60.7 66.7 32.1 53.0 62.3 11.0 3,545G 808M

Image-Crop baseline + CoOp [88]* 64.7 66.7 28.2 58.9 64.2 8.3 3,748G 808M
Feature-Crop baseline + CoOp [88]* 64.7 66.7 35.1 58.9 64.2 13.2 3,545G 808M

Open-Vocabulary SAM* 68.4 65.2 76.7 63.6 67.9 60.4 1,180G 304M

SAM2CLIP knowledge transfer. For COCO, we report the results of both close-
set and open-vocabulary settings for the instance segmentation task. In par-
ticular, following Zareian et al . [79], we split 48 base classes with annotations
and 17 target classes without annotations. We use the base class annotations
for training. For LVIS datasets, we adopt the open-vocabulary setting and re-
port the results of APrare for novel classes. For evaluation metrics, we report
the accuracy of recognition for reference to evaluate the recognition capability.
Meanwhile, each prompt’s intersection-over-union (IoU) with its ground truth
mask is also adopted to evaluate the segmentation ability of our method. As
mentioned in Sec. 3.2, different from previous open vocabulary segmentation
tasks, boxes or points serve as visual prompts in our method.
Baselines. As shown in Fig. 2 (a) and (b), based on different adapter designs,
we append these adapters to the different locations of the combined models. For
example, when using CoOp [88], we append the learnable tokens by combining
them with CLIP features. For several convolution-based adapters [8], we add the
extra convolution layers along with SAM or CLIP backbone for fair comparison.
By default, we adopt SAM-huge and CLIP R50x16.
Implementation Details. We implement our models in PyTorch [50] with
MMDetection [7]. We use 8 A100 GPUs for distributed training. Each mini-
batch has two images per GPU. The optimizer is AdamW [46] with a weight
decay of 0.0001. We adopt full image size for a random crop in the pre-training
and training process following Cheng et al . [9]. All the class names are transferred
into CLIP text embedding, following previous works [18]. We train each model
for 12 epochs for fair comparison. Due to the limitation of computation costs, we
do not adopt joint SAM data and COCO data training. We first perform training
the SAM2CLIP on SA-1B (1%), and then we finetune the model on COCO or
LVIS data. Please refer to the supplementary material for more details.
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Table 2: Comparison of combined baselines and Open-Vocabulary SAM on prompts
generated by the open vocabulary detector. For the LVIS dataset, only ‘normal’ and
‘frequent’ classes are in the training set. The labels are generated by each baseline or
our method. We adopt Detic [89] as the OV-Detector to provide box prompts.

Method COCO LVIS FLOPs #Params
APbase APnovel AP APrare APnorm APfreq AP

Image-Crop baseline + CoOp [88] 26.2 31.2 27.3 19.8 18.3 16.3 17.2 3,748G 808M
Feature-Crop baseline + CoOp [88] 28.0 33.8 29.5 24.2 21.4 18.6 20.8 3,545G 808M

Open-Vocabulary SAM 31.1 36.0 32.4 24.0 21.3 22.9 22.4 1,180G 304M

Table 3: Comparison of Open-Vocabulary SAM with previous methods on open vo-
cabulary instance segmentation. The results presented in the table all use the Mask-
RCNN [22] with ResNet-50 backbone. Different from previous works, Open-Vocabulary
SAM uses the bounding box as the prompt to generate the mask. We report mask AP50
following base-novel setting as [24].

Method Venue Constrained Generalized
Base Novel Base Novel All

XPM [24] CVPR’22 42.4 24.0 41.5 21.6 36.3
MaskCLIP [13] ICML’23 42.8 23.2 42.6 21.7 37.2
MasQCLIP [74] ICCV’23 40.9 30.1 40.7 28.4 37.5

Open-Vocabulary SAM (Ours) 41.7 37.5 39.3 39.8 39.4

Table 4: Comparison of mask quality with various detectors on COCO dataset. We
report the mask mean AP for comparison. The masks are generated by each method,
while the labels are from the corresponding detectors.

Method Detectors mAP AP50 AP75 APS APM APL #Params FLOPs

SAM-Huge Faster-RCNN (R50) 35.6 54.9 38.4 17.2 39.1 51.4 641M 3,001G
SAM-Huge (finetuned) Faster-RCNN (R50) 35.8 55.0 38.4 16.5 38.6 53.0 641M 3,001G
Open-Vocabulary SAM Faster-RCNN (R50) 35.8 55.6 38.3 16.0 38.9 53.1 304M 1,180G

SAM-Huge Detic (swin-base) 36.4 57.1 39.4 21.4 40.8 54.6 641M 3,001G
SAM-Huge (finetuned) Detic (swin-base) 36.8 57.4 39.8 20.8 40.6 55.1 641M 3,001G
Open-Vocabulary SAM Detic (swin-base) 36.7 57.2 39.7 20.7 40.8 54.9 304M 1,180G

SAM-Huge ViTDet (Huge) 46.3 72.0 49.8 25.2 45.5 59.6 641M 3,001G
SAM-Huge (finetuned) ViTDet (Huge) 46.5 72.3 50.3 25.2 45.8 60.1 641M 3,001G
Open-Vocabulary SAM ViTDet (Huge) 48.8 73.8 52.9 24.8 46.3 64.2 304M 1,180G

Benchmark Setup. Open Vocabulary SAM is different from both SAM [30]
and open vocabulary segmentation methods [13, 24, 74]. Compared with Open-
Vocabulary SAM, SAM [30] cannot recognize segmented objects while open
vocabulary segmentation methods [13, 24, 74] usually rely on a separate seg-
mentor (e.g., Mask-RCNN [22]) instead of prompts like points or boxes. For a
complete evaluation of Open-Vocabulary SAM, we set the benchmark as three
parts, including 1).comparison with combined baselines to verify the effective-
ness; 2).comparison with open-vocabulary segmentation methods to evaluate the
recognition; 3).comparision with SAM models to evaluate segmentation.
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Table 5: Scaling up with large-scale datasets.

Datasets Accuracy #vocaulary #images

LVIS 83.1 1,203 99K
V3Det 78.7 13,204 183K
I-21k 44.5 19,167 13M
V3Det + LVIS 82.7 13,844 282K
V3Det + LVIS + I-21k 83.3 25,898 13M
V3Det + LVIS + I-21k + Object365 83.0 25,970 15M

Table 6: The effectiveness of each component. We use Detic [89] as the detector. The
labels are generated by the corresponding model. S2C and C2S denote SAM2CLIP and
CLIP2SAM respectively. The baseline refers to the image-crop variant.

Setting AP APbase APnovel FLOPs (G) #Params (M)

Baseline + CoOp [88] 29.5 28.0 33.8 3,545 808
Our + S2C 28.7 27.3 33.3 1,127 291

Our + S2C + C2S 34.4 33.1 38.0 1,180 304

4.1 Main Results

Comparison with Combined Baselines Using Ground Truth. To avoid
the influence of other modules, we first demonstrate the recognition ability of
our model in Tab. 1. Compared to the simple combined approaches, adding
adapters with joint co-training leads to better results. However, the recognition
ability is still limited on both COCO and LVIS. Our Open-Vocabulary SAM
achieves the best results on both boxes and points as visual prompts. We observe
more significant gains on LVIS datasets. We argue that LVIS contains more
small objects, which is more challenging than COCO. Our method can solve
Prob.2 and lead to over 20% accuracy improvement. Although the segmentation
quality is pretty good (about 80 IoU on COCO and LVIS with box prompt),
our method still achieves 2% IoU improvements. This indicates the effectiveness
of our joint co-training on mask prediction and classification. Compared with
boxes as prompts, using points as prompts is more challenging since the location
clues of points are much weaker than boxes. However, our approach is still better
than combined baselines or them with adapters.
Comparison with Combined Baselines on OV-Detector. In Tab. 2, we
adopt a more challenging setting by using the box prediction from the existing
open-vocabulary detector to simulate the interactive segmentation process with
deviation. We choose the representative Detic [89] as the open-vocabulary detec-
tor. Again, our method also achieves the best performance on both COCO and
LVIS datasets. In particular, on COCO, compared with previous works [88], our
method achieves 3.0 mask mAP improvements with much lower costs.
Comparison with Open-vocabulary Segmentation. In Tab. 3, we com-
pare our method with previous open-vocabulary instance segmentation meth-
ods. Open-Vocabulary SAM uses the boxes generated by Mask- RCNN [22] and
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Table 7: Ablation studies on COCO open-vocabulary dataset. We use boxes of the
ground truth as a prompt to generate masks and labels. (left): Ablation on SAM2CLIP
design. (right): Ablation on CLIP2SAM design.

Setting IoU FLOPs (G) #Params (M)

SAM 78.7 3,001 641
Conv-L + MultiScale Neck 78.3 1,313 321
Conv-L + SingleScale Neck 73.6 1,280 307
R50x16 + MultiScale Neck 78.1 1,180 304

R50 + MultiScale Neck 77.3 728 165

Setting IoU Acc APbase APnovel

SAM2CLIP (baseline) 78.1 54.2 27.6 33.2
+ Cls Token 81.3 79.3 29.8 34.5
+ Cls Token & CLIP MLP fusion 80.9 78.9 29.0 33.9
+ light FPN (Ours) 81.5 84.3 31.1 36.0

Table 8: (left): Ablation study on different CLIP backbone. We test results on the
COCO open-vocabulary dataset. We use boxes of the ground truth as a prompt to
generate masks and labels. (right): Comparison with other SAM models.

Backbone IoU Acc #FLOPs(G) #Params (M)

RN50 77.3 50.8 728 165
RN50x16 78.1 55.1 1,180 304
RN50x64 78.1 54.1 2,098 568

ConvNeXt-L 78.3 59.1 1,313 321
ViT-L-14 38.6 14.3 2,294 441

Method 1-IoU (COCO) cls. open.

SAM [30] (H) 78.2 - -
SEEM [90] (T) 73.7 ✓ -
Semantic-SAM [32] (T) 76.1 ✓ -
OV-SAM (ours) 81.7 ✓ ✓

previous works use the masks of Mask-RCNN. The results show that our Open-
Vocabulary SAM performs strongly, especially in the novel classes.
Comparison with SAM on Various Detectors. In Tab. 4, we test the mask
prediction quality of our model and original SAM on different detectors. Our
method performs better than the original SAM and performs comparably with
fine-tuned SAM. It is worth noting that our Open-Vocabulary SAM has much
lower computational costs and parameters than SAM.
Comparison on Interactive Segmentation. In Tab. 8 (right), we compare
interactive segmentation performance. Notably, our approach excels beyond in-
teractive segmentation and can recognize classes in an open-vocabulary setting.
Visualization Comparison. In Fig. 4, we compare our approach with the
feature-crop baseline. Our model shows better performance in classifying small
and rare object classification and handling occlusion scenarios.
Model as a Zero Shot Annotation Tool. In addition to COCO and LVIS
standard datasets training, following the spirit of SAM, we also scale up our
model by training it with more data (Tab. 5). In particular, we adopt more detec-
tion data (V3Det [60], Object365 [56]) and classification data (ImageNet22k [11]).
Owing to significant costs, we have not conducted comparisons with other base-
lines for this setting. Rather, we have adapted our method into an interactive
annotation tool capable of segmenting and recognizing over 22,000 classes.

4.2 Ablation Studies and Analysis

Effectiveness of SAM2CLIP and CLIP2SAM. We first verify the effective-
ness of our proposed two modules in Tab. 6. We adopt image-crop variant of the
baseline for comparison. In particular, by sharing a single backbone, we observe
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Input SAM + CLIP OV SAM

Ski Pole

Scarf

Television Set

Ski Boot

Turtleneck

Cat

Fig. 4: Visualization Comparison. We compare the mask and classification results of
the image-crop baseline (SAM + CLIP) and Open-Vocabulary SAM (OV SAM). The
predicted labels are presented on the mask.

a significant drop in the number of parameters and FLOPs, with a little drop
in segmentation performance. The slight drop is caused by the domain gap be-
tween SAM data and COCO data during the training of the SAM2CLIP module.
However, after adding our CLIP2SAM module and joint co-training with mask
classification and prediction, a significant improvement in both segmentation
and classification is observed, with just a negligible increase in compute cost.
Detailed Design on SAM2CLIP. In Tab. 7, we explore the detailed design of
SAM2CLIP in the first stage of open-vocabulary SAM training. The results show
that distillation benefits most when multi-scale features are adopted, suggesting
that both high-resolution features and high-level semantics are important to
align CLIP’s feature with the SAM’s feature.
Detailed Design on CLIP2SAM. In Tab. 7, we present extensive design for
the CLIP2SAM module. We compare two designs: a simple classification token
with cross attention (Cls Token) and a combination of this token with mask
pooled CLIP feature (CLS Token & CLIP MLP fusion). These designs work
better than the combined baseline shown in the first row. Nonetheless, due to
resolution constraints, these variants cannot handle small objects well, as shown
in Fig. 4. In contrast, our design improves the performance considerably.
Ablation on Different CLIP Backbones. In Tab. 8, we explore the effect
of frozen CLIP visual backbone. We do not add the CLIP2SAM. Motivated
by recent works [31, 67, 73, 76], CNN-based CLIPs encapsulate more structural
information, which is good for our goal since we have location-sensitive visual
prompts. Thus, adopt CNN-based CLIPs, aligned with previous works. As shown
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Faucet Ski Bird Blanket Taxi

DoughnutSheep SheepVase Toilet

Fig. 5: Qualitative results of Open-Vocabulary SAM. In the visualization, boxes refer
to box prompts (up), and the red stars refer to the point prompts (middle). The
masks can be merged into a segmentation map (bottom). We show the mask and
labels generated by the proposed Open-Vocabulary SAM. Our method can segment
and recognize open vocabulary objects in diverse scenes identified by prompts.

in the table, we find ConvNext large achieves the best performance, but we
choose RN50x16 since it has comparable performance and better efficiency.

5 Conclusion

We present Open Vocabulary SAM, a SAM-inspired method for interactive seg-
mentation and recognition. Unlike previous open-vocabulary detection and seg-
mentation methods, our method explores interactive open-vocabulary segmen-
tation for the first time. Given the user’s inputs, such as boxes or points, the
proposed approach can interactively segment and label each visual prompt. Com-
pared with the combined baselines and various visual adapters, our proposed
CLIP2SAM and SAM2CLIP are both efficient and effective in various settings.
Our open vocabulary segmentation is compatible with different detectors, in-
cluding open-vocabulary detectors and close-set detectors. With more data, our
model plays a similar role as SAM, offering an effective annotation tool for both
segmentation and instance labeling. In particular, our method can perform large
vocabulary segmentation and recognition over 22K classes. We hope our Open-
Vocabulary SAM can provide a solid baseline for combining the strengths of
different forms of vision foundation models and inspire further research.
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