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Appendix

In this appendix, we provide additional material to complement our main sub-
mission. Key sections are outlined as follows: In Appendix A, we introduce re-
lated works. In Appendix B, we introduce preliminaries to duffusion models. In
Appendix C, we provide the implementation details of the baseline methods.
Evaluation metrics of CLIP-I, CLIP-T, and DINO used in our study are repre-
sented in Appendix D. In E, we present the specific scenes and visualize the single
instance image from the training dataset. In F, we evaluate the performance of
the proposed ComFusion and baseline methods in scenarios involving unseen
scenes, testing the generalizability of ComFusion. In Appendix G, the perfor-
mance of ComFusion, when trained with multiple instance images, against the
DreamBooth baseline method, demonstrates ComFusion’s effectiveness in var-
ied training contexts. In Appendix H, we visualize additional generated images
by ComFusion, further demonstrating the model’s capabilities. More ablative
studies are conducted in Appendix I to delve deeper into ComFusion’s insights.
Finally, limitation in Appendix J, discuss some failure cases in complex scenes,
highlighting the current limitations and potential areas for personalized subject
generation.

A Related Works

A.1 Diffuion-Based Text-to-Image Generation.

The field of Text-to-Image (T2I) generation has recently witnessed remarkable
advancements [15, 22, 36, 42, 43, 52], predominantly led by pre-trained diffusion
models such as Stable Diffusion [33], DALLE [32], Imagen [36] and etc. These
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Fig. 1: A collection of 25 concept images from the DreamBooth [35] and TI [12]
datasets. The images in the last row are from TI [12] dataset and others from Dream-
Booth [35] dataset.
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models are renowned for their exceptional control in producing photorealistic
images that closely align with textual descriptions. This innovation has paved
the way for diverse applications, including video generation [3,5,11,14,49] and 3D
object creation [27,38,47,50,53]. Despite their superior capabilities in generating
high-quality images, these models encounter challenges in more personalized
image generation tasks , which are often difficult to precisely describe with text
descriptions. This challenge has sparked interest in the rapidly evolving field of
personalized T2I generation [12,24,29,35,44].

A.2 Personalized Text-to-Image Generation

Given a small set of images of the subject concept, personalized T2I genera-
tion [1, 6, 12, 13, 16, 24, 29, 32, 35–37, 40, 44, 46, 48] aims to generate new images
according to the text descriptions while maintaining the identity of the sub-
ject concept. Early studies in training generative models in few-shot setting
focus on alleviating mode collapse [28, 41, 45] for generative adversarial net-
works [9, 10, 17–19, 26, 51]. Recently, diffusion-based text-to-image models with
a few images have also been explored in [2,35]. In the stream of diffusion-based
generators, personalized T2I generation methods can be classified into two cat-
egories: The first stream involves the integration of additional modules (e.g.,
[20, 30, 52]) with a pretrained base model. The second stream adopts a strategy
of finetuning the pretrained model using a few selected images.

A.3 T2I personalization Without Finetuning.

These methods without finetuning [8, 13,21,25,37] generally rely on additional
modules trained on additional new datasets, such as the visual encoder in [37,48]
and the experts in [8, 25] to directly map the image of the new subject to the
textual space. Specifically, [13] introduces an encoder that encodes distinctive
instance information, enabling rapid integration of novel concepts from a given
domain by training on a diverse range of concepts within that domain. In [37],
a learnable image encoder translates input images into textual tokens, supple-
mented by adapter layers in the pre-trained model, thus facilitating rich visual
feature representation and instant text-guided image personalization without re-
quiring test-time finetuning. DisenBooth [6] uses weak denoising and contrastive
embedding auxiliary tuning objectives for personalization. ELITE [48] intro-
duces a method for learning both local and global maps on large-scale datasets,
allowing for instant adaptation to unseen instances using a single image marked
with the subject concept for personalized generation.

A.4 T2I personalization with Finetuning

Various methods employ diverse finetuning strategies to optimize different mod-
ules within pretrained models [12, 24, 35]. DreamBooth [35] and TI [12] are
two popular subject-driven text-to-image generation methods based on finetun-
ing. Both approaches map subject images to a special prompt token during
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finetuning. They differ in their finetuning focus: TI concentrates on prompt em-
bedding, while DreamBooth targets the U-Net model and text-encoder. Recent
finetuning-based methods [24, 46] focus on how to design training strategy to
update core parameters of T2I model for subject concepts on user-provided 4-
6 images. A domain-agnostic method is proposed in [1] that introduce a novel
contrastive-based regularization technique. This technique aims to preserve high
fidelity to the subject concept’s characteristics while keeping the predicted em-
beddings close to editable regions of the latent space. Break-A-Scene [2] utilizes
the subject concept’s mask and employs a two-stage process for personalized T2I
generation using a single image. However, this approach is limited in terms of
the subject’s diversity.

B Preliminaries

Diffusion Models. Diffusion models [16,39] can generate realistic images from
a normal distribution by reversing a gradual noising process. The forward pro-
cess, denoted as q(·), constitutes a Markov chain that incrementally transforms
data from x0 ∼ q(x) to a Gaussian distribution. A single step in the forward
process is defined as q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt represents

a predefined variance schedule over T steps. The forward process allows for the
sampling of xt at any given timestamp t in a closed form:

xt =
√
αtx0 +

√
1− αtϵ,

s.t., αt =

t∏
s=1

(1− βs), ϵ ∼ N (0, I).
(1)

The reverse process in diffusion models, which can be parameterized using deep
neural networks, is defined as pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I). De-
noising Diffusion Probabilistic Models (DDPMs) [16] have demonstrated that
utilizing a noise approximation model ϵθ(xt, t) is more effective than using
µθ(xt, t) for procedurally transforming the prior noise into data. As a result,
the sampling in diffusion models is xt−1 = 1√

1−βt

(
xt − βt√

1−αt
ϵθ(xt, t)

)
+ σtϵ.

Latent Diffusion Models (LDM) [33] innovate by minimizing computational de-
mands through latent space operations, using a pretrained encoder E to embed
an image into latent space, and a pretrained decoder D for image reconstruction.
In LDM, the diffusion process is defined using z = E(x) instead of x itself. LDM
adopts the Denoising Diffusion Implicit Models (DDIM) [40] sampling process,
a neural ODE-based technique [7] enabling fast and deterministic image gen-
eration. The DDIM sampler predicts z0 directly from zt, then generates zt−1

through a reverse conditional distribution. By integrating the textual condition
T and the text encoder Γ (·), the predicted z0 given zt and t is:

hθ(zt, t,T ) =
zt −

√
1− αtϵθ(zt, t, Γ (T ))

√
αt

. (2)
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The deterministic sampling process in LDM using DDIM can be outlined as:
zt−1 =

√
αt−1hθ(zt, t,T ) +

√
1− αt−1ϵθ(zt, t, Γ (T )). Once the diffusion process

is complete, the image is reconstructed by the decoder D, such that x̃ = D(z).

C Implementation Details

C.1 Baselines

In our study, we compare ComFusion with several state-of-the-art (SOTA) meth-
ods:

– DreamBooth [35]: A SOTA approach that fully finetunes all layers of U-Net
and text-encoder.

– Textual-Inversion (TI) [12]: A SOTA approach that only focuses solely on
training word embeddings.

– Custom-Diffusion (CD) [24]: A concurrent work optimizing the cross-attention
weights of the denoising model, along with a newly-added text token. Official
hyperparameters are utilized.

– Extended Textual-Inversion (XTI) [46]: Building on TI [12], XTI inverts
input images into a set of token embeddings, one per layer, demonstrating
faster, more expressive, and precise results than TI.

– ELITE [48]: This method trains a local and global map on large-scale datasets,
enabling the instant generation of new images from a single user-provided im-
age and corresponding mask.

– Break-A-Scene [2]: This method employs a two-stage training strategy, op-
timizing token embedding, text-encoder, and U-Net under the supervision of
an object mask.

It’s noteworthy that existing personalization methods, such as DreamBooth [35],
TI [12], CD [24], and XTI [46] typically require multiple images as input, in
contrast to Break-A-Scene [2] and ELITE [48], which leverage a single image
with a mask indicating the target concept. In our setting, we use a single instance
image without a mask to generate new images featuring the target concept in
multiple specific scenes. For our experiments, unless stated otherwise, we employ
the 30-step DDIM [40] sampler with a scale of 7.5

C.2 Experimental Settings

For the methods mentioned, including DreamBooth [35], CD [24], and our pro-
posed ComFusion, all of which utilize class-aware prior images, we generate 200
prior images to ensure a fair comparison. Besides, Break-A-Scene [2] relies on
instance masks for its training process, while ELITE [48] depends on instance
masks during inference. Therefore, for these methods, we obtain the concept
mask of the instance image using SAM [23]. All experiments are conducted on a
single A100 GPU. For all pre-trained Stable Diffusion (SD) models, we use the
1.5 checkpoint [33] for those baseline methods except for ELITE [48] without
training. Here are the detailed settings for each method:
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– ComFusion: ComFusion uses a pre-trained Stable Diffusion (SD) checkpoint
1.5 [33] and produce 200 prior images, and finetunes text-encoder Γ and de-
noising model ϵθ architectured with U −Net [34] for 1200 steps, using a batch
size of 1 and learning rate 1 × 10−5. During training, the hyper parameters
λS
C (resp., λS

F , λI
F ,τ) is set as 1 (resp., 0.01, 0.01, 3).

– DreamBooth [35]: Similar to ComFusion, DreamBooth uses instance images
and 200 prior images to finetune the text-encoder and denoising model U−Net
based on Stable Diffusion (SD) checkpoint 1.5 [33]. The total training steps
are 1200, set the batch size (resp., learning rate) as 1 (resp., 1× 10−5) .

– TI [12]: Based on Stable Diffusion (SD) checkpoint 1.5 [33], TI leverages
instance images to learn a token embedding with a batch size of 4. The base
learning rate was set to 0.005 and the model is trained with 5, 000 optimization
steps.

– CD [24]: Following original setting in [24], CD loads a pretrained Stable
Diffusion (SD) checkpoint 1.5 [33]. CD [24] learns a new token embedding
and finetunes the U −Net parameters with 250 steps on the combination of
instance image and prior images. The batch size is set as 8 and the learning
rate is 8 × 10−5. During training, training images are randomly resized for
augmentation.

– XTI [46]: Following original setting in [46], XTI adopts a reduced learning
rate of 0.005 without scaling for optimization with batch size of 8, the model
is trained for 500 steps to learn new token embeddings.

– ELITE [48]: ELITE is a pretrained model and can be instantly applied for
generating new images with input of instance image and its mask.

– Break-A-Scene [2]: Following original setting in [2], we load a pretrained
Stable Diffusion (SD) checkpoint 1.5 [33], the Break-A-Scene [2] adopt two-
stage training strategy: in the first stage only the text embeddings is optimized
with a high learning rate of 5 × 10−4, while in the second stage, both the
U − Net weights and the text encoder weights are optimized with a small
learning rate of 2 × 10−6. Both stages use Adam optimizer. Each stage is
trained for 400 steps.

D Evaluation Metrics

To assess the fidelity of both instances and scenes in the generated images,
we conduct both quantitative and qualitative evaluations. Following Dream-
Booth [35], we use DINO score [4], and CLIP-I [31] to evaluate instance fidelity,
and use CLIP-T [31] to evaluate the scene fidelity.

– CLIP-I [35]: Measures the average pairwise cosine similarity between CLIP [31]
embeddings of generated and real images.

– DINO [4]: Calculates the average pairwise cosine similarity using ViT-S/16
DINO [4] embeddings of generated and real images. Unlike supervised net-
works, DINO does not ignore differences within the same class but rather
focuses on distinct features of a subject or image, thanks to its self-supervised
training objective.
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– CLIP-T [35]: This metric evaluates the alignment between the textual prompts
and the image [31] embeddings, thereby assessing the fidelity of the input
scene as represented in the generated images.

E Datasets

The dataset used in this paper contains 25 concepts from DreamBooth Dataset
and TI [12] dataset. The concept images from two datasets are visualized in
Fig. 1. The 15 specific instance-scenes are: “[identifier] [class noun] Scene”,
the specific scenes including: “in the rain”, “in the river”, “in the sky”,
“in the room”, “in the basket”, “in the TV”, “in the snow”, “on the sofa”,
“on the bed”, “on the table”, “on the stage”, “on the top of mountain”,
“on the playground”, “on the floor”, “on the grass”.

Table 1: Adaptation to novel scenes: A quantitative comparison of instance fidelity
(DINO, CLIP-I) and scene fidelity (CLIP-T) metrics.

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑)

Real Images 0.795 0.859 N/A

DreamBooth [35] 0.607 0.735 0.214
TI [12] 0.459 0.632 0.188
CD [24] 0.611 0.725 0.202
XTI [46] 0.431 0.602 0.185
ELITE [48] 0.415 0.607 0.241
Break-A-Scene [2] 0.618 0.749 0.261
Ours 0.621 0.752 0.297

Table 2: ComFusion, trained using multiple instance images, tested across specific
scenes. Quantitative metrics comparison focusing on instance fidelity (DINO, CLIP-I)
and scene fidelity (CLIP-T).

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑)

Real Images 0.795 0.859 N/A

DreamBooth (NI=1) 0.619 0.752 0.229
Ours (NI=1) 0.658 0.814 0.321
DreamBooth (NI=3) 0.639 0.791 0.246
Ours (NI=3) 0.669 0.834 0.332
DreamBooth (NI=5) 0.629 0.761 0.261
Ours (NI=5) 0.661 0.825 0.348
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Fig. 2: Images in unseen scenes generated by baseline methods and our proposed Com-
Fusion trained from a single instance image.

Table 3: ComFusion trained on multiple instance images, and testing in unseen scenes.
Quantitative metrics comparison of instance fidelity (DINO, CLIP-I) and scene fidelity
(CLIP-T).

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑)

Real Images 0.795 0.859 N/A

DreamBooth (NI=1) 0.607 0.735 0.214
Ours (NI=1) 0.618 0.749 0.297
DreamBooth (NI=3) 0.613 0.752 0.219
Ours (NI=3) 0.640 0.767 0.301
DreamBooth (NI=5) 0.611 0.748 0.231
Ours (NI=5) 0.622 0.753 0.306
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Fig. 3: Images generated by DreamBooth [35] and our proposed ComFusion in specific
scenes (the left four columns) and unseen scenes (the right four columns).
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F Generalization to Unseen Scenes

To assess ComFusion’s capability in generating images for unseen scenes, we
follow DreamBooth [35] by using 25 diverse prompts, which include 20 recon-
textualization prompts and 5 property modification prompts. For each prompt,
ComFusion and the baseline methods are employed to sample 10 images. The
instance fidelity and scene fidelity of these images are then evaluated using CLIP-
I, CLIP-T, and DINO metrics. Quantitative comparison results are reported in
Tab. 1, while qualitative outcomes are illustrated in Fig. 2. The results from
Tab. 1 indicate that ComFusion achieves the highest scene fidelity scores, main-
taining instance fidelity comparable to Break-A-Scene [2]. This performance can
be attributed to the integration of class-scene prior images in the training pro-
cess, which supplements the model with additional textual information. This
enhancement aids the model in generalizing to unseen scenes and mitigates the
risk of overfitting to the specific prompt structure “a [identifier] [class
noun]”. However, the combination of instances with unseen scenes, which is not
encountered during training, may result in a slightly lower instance fidelity score.

G Multiple Instance Images

In the main paper, we utilize a single instance image to train ComFusion, aiming
to assess its few-shot learning ability. To further evaluate the impact of the num-
ber of instance images xI on ComFusion’s performance, we conduct additional
experiments. In these tests, we maintain a constant number of class-scene images
at N = 200 while varying the number of instance images N I . Specifically, we
explore scenarios where N I is set to either 3 or 5, allowing us to observe how
changes in the number of instance images influence the effectiveness of our model
in few-shot learning contexts.

G.1 Generalization on Specific Scenes

In accordance with the experimental setting described in Sec. 4.1 in main paper,
we generated 10 images for each of the 25 subjects across each of the 15 scenes,
resulting in a total of 3750 images for evaluation. Additionally, we calculated the
CLIP-I, CLIP-T, and DINO metrics to assess both instance fidelity and scene
fidelity, as detailed in Tab. 2. From the table, it is evident that the proposed
ComFusion model surpasses DreamBooth in performance when the number of
instance images increases. A notable trend observed is the enhancement in scene
fidelity, as indicated by the CLIP-T score, with the increase in the number
of instance images. However, this trend is not mirrored in the instance fidelity
metrics (CLIP-I and DINO), where the scores for “DreamBooth (N I = 3)” (resp.,
“ComFusion (N I = 3)”) are higher than for “DreamBooth (N I = 5)” (resp.,
“ComFusion (N I = 5)”). We hypothesize that the use of multiple instance images
can reduce overfitting to a specific instance image and introduce greater diversity
to the target concept. This hypothesis is supported by the visual evidence in
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Fig. 4: Results of more challenging examples generated from ComFusion.

Fig. 3, which shows a rich variety of bird poses and shapes when models are
trained on either 3 or 5 instance images. This alleviation of overfitting, thanks to
multiple instance images, also helps the pretrained model retain prior knowledge,
thus achieving higher scene fidelity.

G.2 Generalization on Unseen Scenes

Expanding on the 25 unseen scenes described in F, we generated 10 images for
each of these scenes and assessed instance fidelity and scene fidelity using the
CLIP-I, DINO, and CLIP-T metrics. A comparison between Tab. 2 and Tab. 3
reveals that the overall performance in unseen scenes is not as promising as in
specific scenes. Analyzing Fig. 3 and Tab. 3, we observe a trend consistent with
the findings in specific scenes. Specifically, ComFusion surpasses DreamBooth
in performance when an equal number of instance images are used. When we
increase the number of instance images from 1 to 5, there is a noticeable im-
provement in scene fidelity as evaluated by the CLIP-T metric. The best results
for instance fidelity are achieved when the model is trained on 3 instance images.

H More Visualization Results

H.1 More Challenging Examples

To showcase the adaptability of ComFusion, we present a range of challenging
examples in Fig. 4, including alterations in viewpoints, a variety of artistic styles
(e.g ., Van Gogh, Michelangelo), dynamic scenes (e.g ., a teapot pouring tea),
and property transformations (e.g ., transforming a dog into a panda). These
examples underscore ComFusion’s proficiency in navigating complex and diverse
contexts, all derived from a singular instance image.

H.2 More Visualization Comparison to SOTA Methods

In this section, we present more visualization comparisons as shown in Fig. 5
and Fig. 6. Observing Fig. 5, it’s evident that images generated by ComFusion
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Fig. 5: Images generated by DreamBooth [35], TI [12],CD [24],XTI [46],ELITE [48],
Break-A-Scene [2], and our proposed ComFusion in multiple specific scenes from a
single instance image.
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Fig. 6: Images generated by DreamBooth [35], TI [12],CD [24],XTI [46],ELITE [48],
Break-A-Scene [2], and our proposed ComFusion in multiple specific scenes from a
single instance image.
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not only exhibit high instance accuracy but also align well with the input prompt
in terms of the background scene. Break-A-Scene [2] and CD [24] demonstrate
strong instance fidelity, yet they lack diversity in the background and do not ade-
quately respond to the input prompts. DreamBooth [35] tends to either replicate
the instance image closely or generate scene-specific images with compromised
instance fidelity. Both TI [12] and XTI [46] consistently struggle to accurately
depict specific scenes described in the input prompts. ELITE [48], not being
trained with instance images, falls short in instance fidelity compared to the
other baseline methods.

I More Ablative Studies

Table 4: Ablation analysis of the different number of scenes.

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑)

Real Images 0.795 0.859 N/A

DreamBooth (Unseen) 0.607 0.735 0.214
Ours (L = 5, Unseen) 0.613 0.737 0.258
Ours (L = 10, Unseen) 0.617 0.741 0.274
Ours (L = 15, Unseen) 0.618 0.749 0.297

Ours (Full-Fledged) 0.658 0.814 0.321

Table 5: Quantitative results of only instance/scene generation.

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑)

Real Images 0.795 0.859 N/A

Ours (Only Instance) 0.724 0.872 0.369
Ours (Only Scene) N/A N/A 0.378
DreamBooth (Only Instance) 0.638 0.841 0.359
DreamBooth (Only Scene) N/A N/A 0.287

Ours (Full-Fledged) 0.658 0.814 0.321

I.1 Impact of Scene Counts

In our ablation study, we assessed the influence of varying scene counts in our
regularization set (i.e., 5, 10 scenes) on performance. As demonstrated in Tab. 4,
results for unseen scenes reveal that performance marginally declines with a
reduced number of scenes. Notably, ComFusion maintains superior performance
over DreamBooth, irrespective of the scene count variations.
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Fig. 7: Failure cases in unseen scenes.

Table 6: Ablation analysis of individual loss components and alternative designs on
seen/unseen scene.

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑) Time(/s) Memory(G)

Real Images 0.795 0.859 N/A N/A N/A

DreamBooth 0.619/0.607 0.752/0.735 0.229/0.214 491.8 20.2
DreamBooth(w/ LI

F and LS
F ) 0.643/0.616 0.786/0.744 0.232/0.221 597.7 44.5

Ours (w/o {LI
F ,LS

F }) 0.627/0.597 0.771/0.717 0.301/0.276 491.8 20.2
Ours (w/o LI

F ) 0.586/0.561 0.697/0.629 0.342/0.321 597.3 44.5
Ours (w/o LS

F ) 0.716/0.685 0.828/0.769 0.189/0.161 597.1 44.5

Ours (λS
C = 10) 0.619/0.584 0.768/0.707 0.334/0.311 597.7 44.5

Ours (λS
C = 0.1) 0.669/0.641 0.826/0.768 0.296/0.267 597.7 44.5

Ours (λS
F = 0.1) 0.529/0.495 0.638/0.578 0.351/0.328 597.7 44.5

Ours (λS
F = 0.001) 0.732/0.698 0.851/0.794 0.272/0.247 597.7 44.5

Ours (λI
F = 0.1) 0.715/0.684 0.842/0.789 0.302/0.252 597.7 44.5

Ours (λI
F = 0.001) 0.546/0.509 0.672/0.621 0.341/0.321 597.7 44.5

Ours (τ = 1) 0.641/0.608 0.806/0.744 0.334/0.301 537.9 30.9
Ours (τ = 5) 0.698/0.651 0.825/0.763 0.309/0.274 623.1 60.1

Ours(τ = 3) 0.658/0.621 0.814/0.752 0.321/0.297 597.7 44.5
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I.2 Trade-offs between training time, computational resources, and
the quality of the generated images.

We have compared the training resource consumption , training duration in
Tab. 6, and the final image generation quality across different settings in Tab. 6
and in visual comparison results in main paper. τ does increase memory usage
during finetuning. As shown in the memory usage and training time in Tab. 6,
our method requires more memory and time than DreamBooth due to the for-
ward pass of τ times. However, the quality of images generated by ComFusion
surpasses those of DreamBooth. Importantly, the finetuning time remains reason-
able (597.7s vs. 491.8s). Furthermore, ComFusion does not introduce additional
time during inference (10.0G memory usage). Also, there is no extra memory
consumption for more scene prompts, because these prompts are encoded by
the text encoder into embeddings of the same size, and the finetuning steps re-
main unchanged. These comparisons provide a detailed analysis of the training
efficiency and the rationale behind our model settings.

I.3 Special Cases with Only Instance or Scene

ComFusion is adaptable to special cases involving solely instances or scenes.
Specific evaluations were carried out for sets comprising exclusively scenes or
instances. The results of these assessments, as detailed in Tab. 5, demonstrate
ComFusion’s superior performance over DreamBooth in these distinct scenarios.

J Limitations

We visualize some failure cases in Fig. 7, highlighting areas where both the
baseline methods and ComFusion encounter challenges. The first row of Fig. 7
demonstrates that both baseline methods and ComFusion struggle with under-
standing and rendering creative scenes, such as “in an ocean of milk”. The
second row shows that when it comes to descriptions of material properties
(e.g., fabric), the methods exhibit limited capability in integrating instance con-
cepts with such specific prompts. This suggests a gap in accurately representing
detailed material textures and properties. The third row highlights the challenge
with long-term prompts that describe composite semantics, like a scene with a
tree and autumn leaves in the background. Both baseline and proposed meth-
ods find it difficult to coherently integrate the target concept from the instance
image with the background scene, often neglecting the target concept. These lim-
itations point to areas where further research and development could enhance
the model’s understanding and rendering capabilities, particularly in contexts
involving creative, material, or composite semantic descriptions.
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