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Abstract. Recent progress in personalizing text-to-image (T2I) diffu-
sion models has demonstrated their capability to generate images based
on personalized visual concepts using only a few user-provided exam-
ples. However, these models often struggle with maintaining high visual
fidelity, particularly when modifying scenes according to textual descrip-
tions. To address this challenge, we introduce ComFusion, an innova-
tive approach that leverages pretrained models to create compositions
of user-supplied subject images and predefined text scenes. ComFusion
incorporates a class-scene prior preservation regularization, which com-
bines subject class and scene-specific knowledge from pretrained mod-
els to enhance generation fidelity. Additionally, ComFusion uses coarse-
generated images to ensure alignment with both the instance images and
scene texts, thereby achieving a delicate balance between capturing the
subject’s essence and maintaining scene fidelity. Extensive evaluations of
ComFusion against various baselines in T2I personalization have demon-
strated its qualitative and quantitative superiority.

1 Introduction

Text-to-image (T2I) personalization aims to customize a diffusion-based T2I
model with user-provided visual concepts [12, 27, 39]. This innovative approach
enables the creation of new images that seamlessly integrate these concepts
into diverse scenes. More formally, given a few images of a subject (no more
than five), our objective is embed this subject into the model’s output domain.
This allows for the synthesis of the subject with a unique identifier in vari-
ous scenes. The task of rendering such imaginative scenes is particularly chal-
lenging. It entails the synthesis of specific subjects (e.g., objects, animals) in
new contexts, ensuring their natural and seamless incorporation into the scene.
Such a task demands a delicate balance between the subject’s distinctive fea-
tures and the new scene context. Recently, this field of T2I personalization
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Fig. 1: Contrasting with existing methods [2,39] , which often face challenges in simul-
taneously preserving instance fidelity and scene fidelity, ComFusion skillfully compos-
ites the instance image with textual prompts and fuses the visual details of the subject
instance with the textual variations of the scenes, yielding the creation of plausible,
personalized images that exhibit a rich diversity.

has attracted significant attention from the academic community with many
works [1, 2, 12, 25, 31, 41, 43, 48, 51, 53] leveraging the capabilities of advanced
diffusion-based T2I models [16,24,34,36,37,40,50,55,56,58,59].

These approaches broadly fall into two categories: The first category [8,13,22,
27,41] integrates additional modules with a pretrained base model. This stream
enables the creation of personalized subjects without the need for finetuning
during testing. However, it often struggles to maintain the subject’s identity
consistently across different synthesized images. In contrast, the second cate-
gory [2, 12, 25, 39] focuses on finetuning the pretrained model with a select set
of images, employing various regularization techniques and training strategies.
This finetuning process effectively utilize the model’s existing class knowledge,
combined with the unique identifier of the subject, thereby allowing for the gen-
eration of diverse variations of the subject in various contexts.

Methods that finetune diffusion models for high-quality image generation
face considerable challenges, primarily because existing designs [2,12,25,39] often
focus on constraints for instance images and text prompts independently, without
adequately considering the interplay between them. As a result, these models
might lose their pre-finetuning knowledge and the ability to understand and
generate a broad range of classes and scenes. This limitation becomes apparent
in attempts to create images within novel scenes, leading to less-than-optimal
generation or the integration of various prompts or subjects. In Fig. 1, we show
an example of the personalized generation using a specific dog instance image
and the text prompt “A dog in the rain”. The images, generated by existing
leading methods [2, 39] and our proposed approach. Fig. 1 (a) illustrates a lack
of instance fidelity, where the generated images fail to preserve the subject dog’s
appearance, resulting in low-personality output. Fig. 1 (b) highlights examples
with insufficient scene fidelity, failing to accurately represent the rainy scene,
thus limiting the diversity of the generated images.

To enhance the instance fidelity and scene fidelity of generated images, we
propose ComFusion (Composite and Fusion), a novel approach designed for
personalized subject generation across varied scenes. ComFusion integrates vi-
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sual information from instance images with textual information from text prompts
through compositing and fusion, facilitating the synthesis of new images where
high-fidelity instances are seamlessly incorporated into diverse scenes. To achieve
this, ComFusion is structured around two streams: a composite stream and a
fusion stream. The composite stream incorporates a class-scene prior loss to
retain the pretrained model’s understanding of both the subject class and the
novel scene. This approach results in the production of a wide variety of images
that merge the class and scene priors with the subject instances and their respec-
tive contexts, facilitating a cohesive synthesis of subject instances within their
scene contexts. The fusion stream introduces a visual-textual matching loss to
effectively merge the subject instance’s visual data with the scene’s textual infor-
mation. This ensures their collective depiction in the coarsely generated images,
achieving a balanced representation between instance fidelity and scene fidelity.
In Fig. 1, we present some impressive samples obtained by ComFusion. The
images illustrate a remarkable preservation of the dog’s appearance, while the
scene “in the rain” is brought to life with vivid details such as rain spots and
umbrellas. Our extensive experimental analysis across various subject instances
and scenes underscores ComFusion’s superior performance, both qualitatively
and quantitatively, over existing approaches.

2 Related Works

2.1 Diffuion-Based Text-to-Image Generation.

The field of Text-to-Image (T2I) generation has recently witnessed remarkable
advancements [15, 23, 40, 46, 47, 61], predominantly led by pre-trained diffusion
models such as Stable Diffusion [37], DALLE [36], Imagen [40] and etc. These
models are renowned for their exceptional control in producing photorealistic
images that closely align with textual descriptions. This innovation has paved
the way for diverse applications, including video generation [3,5,11,14,54] and 3D
object creation [29,42,52,57,62]. Despite their superior capabilities in generating
high-quality images, these models encounter challenges in more personalized
image generation tasks , which are often difficult to precisely describe with text
descriptions. This challenge has sparked interest in the rapidly evolving field of
personalized T2I generation [12,25,31,39,48].

2.2 Personalized Text-to-Image Generation

Given a small set of images of the subject concept, personalized T2I genera-
tion [1, 7, 12, 13, 17, 25, 31, 36, 39–41, 44, 48, 51, 53] aims to generate new images
according to the text descriptions while maintaining the identity of the sub-
ject concept. Early studies in training generative models in few-shot setting
focus on alleviating mode collapse [30, 45, 49] for generative adversarial net-
works [9, 10, 18–20, 28, 60]. Recently, diffusion-based text-to-image models with
a few images have also been explored in [2,39]. In the stream of diffusion-based
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generators, personalized T2I generation methods can be classified into two cat-
egories: The first stream involves the integration of additional modules (e.g.,
[21, 33, 61]) with a pretrained base model. The second stream adopts a strategy
of finetuning the pretrained model using a few selected images.

2.3 T2I personalization Without Finetuning.

These methods without finetuning [8, 13,22,27,41] generally rely on additional
modules trained on additional new datasets, such as the visual encoder in [41,53]
and the experts in [8, 27] to directly map the image of the new subject to the
textual space. Specifically, [13] introduces an encoder that encodes distinctive
instance information, enabling rapid integration of novel concepts from a given
domain by training on a diverse range of concepts within that domain. In [41],
a learnable image encoder translates input images into textual tokens, supple-
mented by adapter layers in the pre-trained model, thus facilitating rich visual
feature representation and instant text-guided image personalization without re-
quiring test-time finetuning. DisenBooth [7] uses weak denoising and contrastive
embedding auxiliary tuning objectives for personalization. ELITE [53] intro-
duces a method for learning both local and global maps on large-scale datasets,
allowing for instant adaptation to unseen instances using a single image marked
with the subject concept for personalized generation.

2.4 T2I personalization with Finetuning

Various methods employ diverse finetuning strategies to optimize different mod-
ules within pretrained models [12, 25, 39]. DreamBooth [39] and TI [12] are
two popular subject-driven text-to-image generation methods based on finetun-
ing. Both approaches map subject images to a special prompt token during
finetuning. They differ in their finetuning focus: TI concentrates on prompt em-
bedding, while DreamBooth targets the U-Net model and text-encoder. Recent
finetuning-based methods [25, 51] focus on how to design training strategy to
update core parameters of T2I model for subject concepts on user-provided 4-
6 images. A domain-agnostic method is proposed in [1] that introduce a novel
contrastive-based regularization technique. This technique aims to preserve high
fidelity to the subject concept’s characteristics while keeping the predicted em-
beddings close to editable regions of the latent space. Break-A-Scene [2] utilizes
the subject concept’s mask and employs a two-stage process for personalized T2I
generation using a single image. However, this approach is limited in terms of
the subject’s diversity.

3 ComFusion

In this section, we present ComFusion, our cutting-edge technique engineered
to enhance personalized subject generation across diverse scenes. Utilizing a
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Fig. 2: The illustration of ComFusion framework. ComFusion consists of a composite
stream (highlighted with green and orange arrows, details in Sec. 3.1 and Sec. 3.3) and
a fusion stream (highlighted with blue arrows, details in Sec. 3.4).

constrained set of no more than five subject instance images, our goal is to cre-
ate new, high-fidelity images of the subject, steered by textual prompts. These
prompts facilitate a range of alterations including the subject’s placement, back-
drop, posture, perspective, and other context-specific transformations, without
restrictions on the instance images’ capture scenarios. Our main paper prior-
itizes the one-shot scenario—a setting that employs just a single instance
image, marking it as the most challenging setting due to its minimal in-
stance information. While our primary emphasis is on the one-shot setting, it’s
crucial to recognize ComFusion’s extensive adaptability in various personalized
generation contexts, such as using multiple subject images, modifying proper-
ties/styles/viewpoints, etc. Due to space constraints, we direct readers to our
appendix for a deeper exploration of these capabilities. The generated images
aim to be faithful (i.e., accurately reflect the content) both the subject instance
and the text prompts, which manifests in two key aspects - instance fidelity :
ensuring visual congruence with the instance image and scene fidelity : aligning
the scenes in the newly created images with the provided prompts. As shown in
Fig. 2, we design a two-stream training strategy for ComFusion, consisting of a
composite stream supervised by instance finetune loss and class-scene prior loss
(denoted as {LI

C ,LS
C} in green and orange stream of Fig. 2 and demonstrated in

Sec. 3.3) and a fusion stream supervised by visual-textual matching loss (denoted
as {LI

F ,LS
F } in blue stream and presented in Sec. 3.4).

3.1 Finetuning Text-to-Image Diffusion Models.

ComFusion finetunes specific pretrained diffusion models, e.g ., Stable Diffu-
sion [37], which consists of an auto-encoder (encoder E and a decoder D), a
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text-encoder Γ , and a denoising model ϵθ architectured with U-Net [38]. The
auto-encoder maps an image x into low-dimensional latent z with encoder E and
recover the original image x̃ with decoder D after the denoising process. The de-
noising model ϵθ is trained on the latent space to produce denoised latent based
on the textual condition source from Γ (T ), where T is the user-provided prompt
providing the information (e.g ., subject classes, instance attributes, scenes) of
the generated images and Γ denotes the pretrained CLIP text encoder [35]. Given
a single subject instance image xI from a subject class, the instance image is
captioned with instance text T I = “a [identifier] [class noun]” (e.g ., “a
sks dog”), where “[class noun]” is a coarse class (e.g ., “dog”) provided by user
and “[identifier]” is an unique identifier for the subject concept (e.g ., “sks”).
Given a single instance image xI , the pretrained models will be finetuned with
instance finetune loss:

LI
C = Ez∼{zI},ϵ,t

[
∥ϵ− ϵθ(zt, t, Γ (T I))∥22

]
, (1)

where t ∼ N (0, 1) is the time step, ϵ ∼ N (0, I) is the unscaled Gaussian noise, zt
are the noisy latent at time t, and {zI} is the latent of instance images {xI} pro-
cessed by encoder E. This finetuning mechanism integrates a new (unique iden-
tifier, subject) air into the model’s knowledge base, capitalizing on the model’s
inherent class understanding while embedding the subject’s unique identifier.
This strategy enhances the model’s ability to generate novel subject variations
in varied contexts using existing visual priors.

3.2 Class Prior Loss.

Finetuning diffusion models introduces the challenge of language drift [26,32], a
phenomenon where models diverge from understanding the essence of language
syntax and semantics, concentrating excessively on task-specific details. In our
context, this results in the finetuned model losing prior knowledge, including
the ability to recognize various classes and scenes integral to pretrained models,
thereby diminishing scene fidelity. To mitigate this issue, existing methods em-
ploy a specific prior loss to regularize the model. Typically, this loss function
involves using designated prior texts {T P

i |Ni=1}, input into the pretrained model
to generate prior images {xP

i |Ni=1} based on prior texts, where N is the number
of prior text-image pairs. his loss function maintains the model’s dedication to
its pretrained knowledge base, essential for preserving foundational knowledge
during few-shot finetuning. An exemplary approach is the class prior loss pro-
posed by DreamBooth [39]. It leverages coarse class to form class text TC = “a
[class noun]” (e.g ., “a dog”), which is fed into the pretrained model to pro-
duce class prior images {xC

i |Ni=1} depicting the coarse class without requiring
the preservation of specific subject instances. Given class prior images {xC

i |Ni=1},
the pretrained models will be finetuned with:

Ldream = Ez∼{zC},ϵ,t
[
∥ϵ− ϵθ(zt, t, Γ (TC))∥22

]
, (2)

where {zC} represents latent of class prior images {xC} and the other terms are
defined similar to Eq. (1). This class-specific prior-preservation loss supervises
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the model to reconstruct class prior images, balancing this objective with the
instance finetune loss. It facilitate the generation of varied instances within the
subject’s class.

3.3 Composition: Class-Scene Prior Loss

The class prior loss in Eq. (2) leverages semantic priors related to classes, embed-
ding them into the model’s framework to enable the creation of diverse instances
within a given subject class. Ideally, models fine-tuned with both instance fine-
tune loss and class prior loss, drawing on the vast knowledge base of large-scale
T2I pretrained models capable of rendering any scene, should maintain high
levels of both instance and scene fidelity. However, this approach primarily ad-
dresses language drift related to the subject class but may overlook drifts in text
prompts describing the scenes of the generated images, leading to catastrophic
neglecting [6]. In large-scale pretrained T2I models like Stable Diffusion [37],
models trained on a vast array of image-text pairs demonstrate proficiency in
generating novel images based on combinations of random texts. Nonetheless,
the neglecting phenomenon remains an issue in certain scenarios, where some
prompts or subjects are not adequately generated or integrated by these large-
scale models [6]. In contrast, few-shot learning paradigms, relying on a limited
set of image-text pairs, often yield less optimal responses to complex subject
instances and scene texts than their large-scale counterparts, potentially exac-
erbating the neglecting issue. This can lead to loss of scene fidelity or instance
fidelity for personalized generation, as illustrated in Fig. 1.
Class-Scene Prior Loss. Given our objective to composite new subject in-
stance images within various specific scenes, we updated the prior-preservation
loss in Eq. (2) to class-scene prior loss. This update is specifically designed to
maintain the pretrained model’s knowledge of both class and scene, thereby sig-
nificantly enhancing scene fidelity. By integrating class-scene prior loss with in-
stance finetune loss, ComFusion effectively preserves and leverages the extensive
understanding of class and scene inherent to the pretrained model. To elaborate,
we initially generate a descriptive class-scene text set {TCS}. This set composites
the subject class information “[class noun]” (e.g ., “dog”) and scene information
“[scene]” (e.g ., “in the rain”), resulting in class-scene texts “a [class noun]
[scene]” (e.g ., “a dog in the rain”). The class-scene prior images {(xCS} is
generated by pretrained model with the corresponding {TCS}. Subsequently,
these richly detailed class-scene image-text pairs (xCS

k ,TCS
k ) combined with in-

stance image-text pairs (xI ,T I) are fed into ComFusion to finetune the diffusion
model. In a manner akin to Eq. (2), the trainable parameters of ComFusion are
optimized by class-scene prior loss:

LS
C = E(z,T )∼{(zCS ,TCS)},ϵ,t

[
∥ϵ− ϵθ(z, t, Γ (T ))∥22

]
, (3)

where {(zCS ,TCS)} is the set of latent-text pairs corresponding to {(xCS ,TCS)}.
Similar to Ldream in Eq. (2), this class-scene prior loss will be trained together
with instance finetune loss LI

C in Eq. (1) with a λC controls for the relative
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Fig. 3: The coarse generated results x̃IS
k under the supervision of visual-textual fusion

loss {LI
F ,LS

F } with denoising steps τ selected from {1, 3, 5}. The instance within these
coarse-generated images closely resembles the instance image xI , while harmoniously
aligning with the specific scene depicted in prior images xCS

k .

weight of this term. LI
C and LS

C formulate the objective of the composite stream
in ComFusion. Different from Ldream, the class-scene prior text TCS in LC artic-
ulates a comprehensive delineation of subject class information and meticulous
scene descriptors as specified by TCS . This loss formulation adeptly tackles the
language drift issue related to class and scene knowledge in the finetuned model.
It facilitates the generation of a varied collection of images that capture the
essence of both class and scene priors from the pretrained model while inte-
grating these elements with subject instances and their specific contexts. Such
integration enables ComFusion to produce images that accurately depict subject
instances within their respective scenes.

3.4 Fusion: Visual-Textual Matching Loss

ComFusion integrates a visual-textual matching loss to fusethe visual charac-
teristics of subject instances with the textual information of scenes, thereby
amplifying the fidelity of both instances and scenes. This integration ensures a
cohesive and precise portrayal of subject instances within their contextual scenes.
The key idea behind the visual-textual matching loss is to generate coarse images
that encapsulate both the subject instance and scene texts. This loss mechanism
ensures that these initial images blend the distinct visual attributes of the in-
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stances with the descriptive intricacies of the scenes. Consequently, it aligns the
generated images closely with both the visual appearance of the subject instance
and the descriptive elements of the scene texts.
Coarse Generated Images. Specifically, for a class-scene prior image xCS

annotated with detailed class-scene text TCS , according to the standard for-
ward process of DDPMs [17], we add a random and appropriate level of noise
ϵt with timestep t to obtain noisy latent zCS

t . This is designed to infuse new
information while preserving the structural features of class-scene prior images.
We then create instance-scene text T IS by replacing the “[class noun]” with
“[identifier] [class noun]” in class-scene text (e.g ., “a sks dog in the
rain”). This modified text is processed by the text-encoder Γ to obtain condi-
tional textual information, which is then used to iteratively denoise the noisy
latent zCS

t to denoised latent z̃IS . Utilizing the accelerated generation mecha-
nism in DDIMs, we set τ as the number of steps required to denoise zCS

t into
z̃IS = fτ

θ (z
CS
t , t,T IS , τ), where fθ(·) is the coarse denoising function. Gener-

ally, fθ(·) significantly reduces the computational effort required for denoising
from t steps to τ steps, producing a coarse denoised latent. The denoised la-
tent z̃IS is then decoded using decoder D, resulting in a coarse denoised image
x̃IS = D(z̃IS). This image, guided by the instance-scene text, fuses both the
subject and the scene’s features. Fig. 3 illustrates examples of coarse denoised
images under different settings of τ .

fθ(·) is specifically designed to generate coarse denoised images through a τ
steps iteration process. It is intended for recursive application, executed τ times.
Each iteration of fθ(·) progressively reduces the noise in zt, finally resulting in a
coarse denoised latent. For a single-step iteration (τ = 1), the function simplifies
to fθ(zt, t,T , τ) = hθ(zt, t,T ). For multiple iterations (τ > 1), the function
recursively applies as follows:

fθ(zt, t,T , τ) = fθ(
√
αr(τ,t)hθ (zt, t,T )+√

1− αr(τ,t)ϵθ (zt, t, Γ (T )) , t,T , τ − 1),
(4)

where r(τ, t) = ⌈ v×t
τ ⌉. In the implementation, we carefully select the timestep

t from [⌈0.2T ⌉, ⌈0.8T ⌉]. This choice aims to guarantee that the coarse denoised
image aptly merges details from both the subject instance and the scene descrip-
tion. If t is too close to 1, the influence of the instance-scene text T IS becomes
limited, resulting in x̃IS lacking sufficient visual cues of the subject instance. If t
approaches T , the effect of the class-scene latent zCS diminishes due to excessive
noise, causing a loss of scene information in x̃IS .
Visual-Textual Matching. To ensure that the instance image x̃IS closely mir-
rors the textural structure (resp., visual appearance) of class-scene prior image
xCS (resp., instance image xI), we employ a dual visual-textual fusion loss:

LI
F = Ex∼{x̃IS

k }
[
−fV(x,xI)

]
, LS

F = E(x′,T )∼{(x̃IS
k ,TCS

k )} [−fT(x
′,T )] , (5)

where the first (resp., second) term is represented by LI
F (resp., LS

F ) in Fig. 2.
fV(x̃IS

k ,xI) is used to calculate the cosine similarity between DINO embedding:
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DINO(x̃IS
k ) and DINO(xI) with pretrained ViT-S/16 DINO [4]. DINO [4] is

a self-supervised pretrained transformer that excels in visual information ex-
traction from images. By employing self-supervised learning techniques, DINO
adeptly identifies and encodes complex visual patterns, making it particularly
effective for image analysis tasks. Consequently, a higher similarity score from
fV(·) indicates that the generated x̃G

k closely resembles the instance image xI in
visual terms. fT(x̃IS

k ,TCS
k ) aims at calculating the cosine similarity of visual em-

bedding of generated image CLIP(x̃IS
k ) and textual embedding of class-scene

prior text CLIP(TCS
k ). CLIP [35] is a prototype in image-text cross-modal pre-

training model, aligns visual and textual information to enhance model compre-
hension of and correlation between image contents and their textual descriptions.
Its capability to connect visual and textual domains is crucial for tasks requiring
an in-depth understanding of both, ensuring accurate and effective image-text
alignments. A higher similarity from fT(·) suggests that the model is inclined
to produce images that encapsulate specific scene details accurately. By apply-
ing both visual loss LI

F and textual loss LS
F on the same generated image x̃IS

k ,
ComFusion mitigates the catastrophic neglecting problem and achieves a better
balance between instance fidelity and scene fidelity. As a result, it yields a more
harmonious and precise depiction that effectively captures the core characteris-
tics of instance fidelity and scene fidelity.

3.5 Overall Objectives and Inference Process

ComFusion’s objective function integrates the instance finetune loss in Eq. (1)
is combined with the class-scene prior loss in Eq. (3) and visual-textual fusion
loss in Eq. (5):

Ltotal = LI
C + λS

CLS
C + λI

FLI
F + λS

FLS
F , (6)

where λS
C , λI

F , and λS
F represent the respective weights of LS

C , LI
F , and LS

F . Ltotal

is employed to finetune the trainable parameters of text-encoder Γ and U-Net
ϵθ based on pretrained Stable Diffusion [37]. During this process, the parameters
of the auto-encoders remain fixed. In the inference phase, ComFusion follows
the standard T2I inference protocol: generating a random latent, followed by de-
noising this latent using the prompt “a [identifier] [class noun] [scene]”
with the U-Net. Finally, the denoised latent is decoded to produce new images.

4 Experiments

In this section, we compare ComFusion to both state-of-the-art and concurrent
work baselines and provide comprehensive quantitative and qualitative compar-
isons. Then, we study in greater depth the properties of ComFusion by ablation
studies.

4.1 Experimental Settings and Details

Implementation Details. All methods were applied using a pre-trained Stable
Diffusion (SD) checkpoint 1.5 [37]. We trained ComFusion and DreamBooth for
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Table 1: Comparative analysis of quanti-
tative metrics for instance fidelity (DINO,
CLIP-I) and scene fidelity (CLIP-T).
Methods DINO (↑) CLIP-I (↑) CLIP-T (↑)

Real Images 0.795 0.859 N/A

DreamBooth [39] 0.619 0.752 0.229
TI [12] 0.465 0.634 0.185
CD [25] 0.615 0.724 0.205
XTI [51] 0.435 0.601 0.198
ELITE [53] 0.405 0.615 0.249
Break-A-Scene [2] 0.632 0.771 0.294

Ours 0.658 0.814 0.321

Table 2: User preference for instance fi-
delity and scene fidelity across various
methods.
Methods Instance fidelity (↑) Scene fidelity (↑)

DreamBooth [39] 3.1% 3.8%
TI [12] 0.3% 0.0%
CD [25] 6.2% 1.0%
XTI [51] 0.3% 1.8%
ELITE [53] 0.0% 11.1%
Break-A-Scene [2] 34.5% 20.2%

Ours 55.6% 62.1%

Fig. 4: Visual ablative results.

1200 steps, using a batch size of 1 and learning rate 1 × 10−5. The number of
prior images N is set as 200 for fair comparison. During training, the hyper
parameters λS

C (resp., λS
F , λI

F ,τ) is set as 1 (resp., 0.01, 0.01,3). All experiments
are conducted with 1 A100 GPU. Detailed implementation information for all
baselines is provided in appendix.
Datasets. To evaluate the effectiveness of our proposed methods among different
datasets, we use a combined dataset of the TI [12] dataset of 5 concepts, and the
dataset from DreamBooth [39] with 20 concepts. For both datasets, each concept
selects one original image as an instance image. We perform experiments on 25
subject datasets spanning a variety of categories and varying training samples.
We evaluate all the methods with 15 distinct scenes. Also, we use TCS = “a
[class noun] Scene” with the same scene prompts to sample prior images with
15 scenes for ComFusion. Detailed information about the subject datasets and
scene prompts is available in the appendix. Experiments involving more than
one instance image, other specific scenes, and scenarios without specific scenes
for all methods are also documented in appendix.
Baselines. We compare our ComFusion described in Section Sec. 3 with Dream-
Booth [39], Textual-Inversion(TI) [12], Custom-Diffusion (CD) [25], Extended
Textual-Inversion (XTI) [51], ELITE [53], and Break-A-Scene [2]. Details of these
baseline methods are reported in appendix.
Evaluation Metrics. Following DreamBooth [39], for each method, we gen-
erated 10 images for each of 25 instances and each of 15 scenes, totaling 3750
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Fig. 5: Comparative display of images generated from a single instance image in various
specific scenes by DreamBooth [39], TI [12],CD [25],XTI [51],ELITE [53], Break-A-
Scene [2], and our proposed ComFusion.

images for evaluation of robustness and generalization abilities of each method.
Following DreamBooth [39] and CD [25], we evaluate those methods on two di-
mensions including instance fidelity and scene fidelity. CLIP-I [35] and DINO
score [4] were used to evaluate instance fidelity by measuring the similarity be-
tween generated images and instance images, and the alignment between textual
scene with generated images are measured by CLIP-T [35]. Detailed descriptions
of these measurement metrics are provided in appendix.

4.2 Comparisons with Baselines

Quality Assessments of Generated Images. We perform the quantitative
evaluation on the instance fidelity using DINO score and CLIP-I score, and scene
fidelity with CLIP-T score. In Tab. 1, “Real Images” represents a measure of the
similarity between a given single image and the remaining real images belonging
to the same subject as the given image, providing the upper bound of fidelity of
the subject. Comparisons in Tab. 1 indicate that our ComFusion achieves the
highest scores for DINO, CLIP-I, and CLIP-T, indicating that it can generate
high-fidelity images with higher instance fidelity and scene fidelity than baseline
methods.
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Human Perceptual Study. Further, following DreamBooth [39], we conduct
a user study to evaluate the instance fidelity and scene fidelity of generated im-
ages. In detail, based on generated 3750 images per method including 6 baseline
methods and our method, we present results generated from different methods
in random order and we ask 12 users to choose. (1) Instance fidelity: determining
which result better preserves the identity of the instance image, and (2) Scene
fidelity: evaluating which result achieves better alignment between the given
textual scene and the generated image. We collect 90,000 votes from 12 users
(12×3750×2) for instance fidelity and scene fidelity, and show the percentage of
votes for each method in Tab. 2. The comparison results demonstrate that the
generated results obtained by our method are preferred more often than those
of other methods.
Qualitative Evaluations. To evaluate the superiority of our ComFusion in bal-
ancing the accuracy of subjects and the consistency of multiple specific scenes,
we visualize comparison results in Fig. 5. We can see that images generated by
TI [12], CD [25], and XTI [51] are similar to input instance image in terms of
structure, those methods fail to make response to the specific scene in given test-
ing prompts. ELITE [53] may generate distorted images in unexpected scenes.
Images generated by Break-A-Scene [2] maintain instance fidelity while may fail
to composite subject instance in specific scenes. In contrast, our ComFusion can
generate images of higher instance fidelity and scene fidelity. This is attributed
to the class-scene prior loss can introduce specific scene information during the
process of learning subject instance and visual-textual matching loss can enhance
the fusion between visual instance image and textual scene context.

4.3 Ablation Studies

Effect of Class-Scene Prior Loss. Compared with prior preservation loss
(Eq. (2)) proposed in DreamBooth [39], our class-scene prior loss LS

C (Eq. (3))
utilizes detailed texts for prior images to incorporate multiple specific scenes.
During training, this loss explicitly enforces the model to retain prior scene
knowledge while incorporating new information from instance images within
these scenes. From the visual comparison between ComFusion(“w/o visual-textual
loss {LI

F ,LS
F }”) and DreamBooth [39] in Fig. 4, and quantitative results in

Tab. 3, we can see that class-scene prior loss LS
C significantly improves the CLIP-

T score while achieves comparable CLIP-I(resp., DINO) score, which indicates
that it can effectively improve scene fidelity without undermining the instance
fidelity.
Effect of Visual-Textual Matching Loss. We further conduct ablation to
evaluate the effect of the proposed visual-textual loss {LI

F ,LS
F } in Eq. (5). To

evaluate the effect of each item in visual-textual loss, we alternatively remove
{LI

F ,LS
F } (resp.,LI

F , LS
F ) from total loss function in Eq. (6), and report visual

results in Fig. 4 and quantitative results in Tab. 3. The comparison results
indicate that {LI

F ,LS
F } are well-design to balance the instance fidelity and scene

fidelity, removing them degrades the instance fidelity in generated images in 2nd
row in Fig. 4. To further study effect of each item in visual-textual loss, removing
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Table 3: Ablation analysis of individual loss components and alternative designs on
seen/unseen scene.

Methods DINO (↑) CLIP-I (↑) CLIP-T (↑) Time(/s) Memory(G)

Real Images 0.795 0.859 N/A N/A N/A

DreamBooth 0.619/0.607 0.752/0.735 0.229/0.214 491.8 20.2
DreamBooth(w/ LI

F and LS
F ) 0.643/0.616 0.786/0.744 0.232/0.221 597.7 44.5

Ours (w/o {LI
F ,LS

F }) 0.627/0.597 0.771/0.717 0.301/0.276 491.8 20.2
Ours (w/o LI

F ) 0.586/0.561 0.697/0.629 0.342/0.321 597.3 44.5
Ours (w/o LS

F ) 0.716/0.685 0.828/0.769 0.189/0.161 597.1 44.5

Ours (λS
C = 10) 0.619/0.584 0.768/0.707 0.334/0.311 597.7 44.5

Ours (λS
C = 0.1) 0.669/0.641 0.826/0.768 0.296/0.267 597.7 44.5

Ours (λS
F = 0.1) 0.529/0.495 0.638/0.578 0.351/0.328 597.7 44.5

Ours (λS
F = 0.001) 0.732/0.698 0.851/0.794 0.272/0.247 597.7 44.5

Ours (λI
F = 0.1) 0.715/0.684 0.842/0.789 0.302/0.252 597.7 44.5

Ours (λI
F = 0.001) 0.546/0.509 0.672/0.621 0.341/0.321 597.7 44.5

Ours (τ = 1) 0.641/0.608 0.806/0.744 0.334/0.301 537.9 30.9
Ours (τ = 5) 0.698/0.651 0.825/0.763 0.309/0.274 623.1 60.1

Ours(τ = 3) 0.658/0.621 0.814/0.752 0.321/0.297 597.7 44.5

LS
F leads to degrading the score of DINO and CLIP-I reflecting by poor instance

fidelity in 4th row in Fig. 4, while lower scene fidelity in 3rd row in Fig. 4 is
caused by removing LC

F .
Effect of Hyperparameters. To assess the impact of coarse denoising timesteps
τ in the fusion stream, we experimented with varying τ values from {1, 3, 5} to
train ComFusion. From Fig. 4 and Tab. 3, our observations indicate that a
larger τ value tends to better preserve instance fidelity but at the expense of
reduced scene fidelity. We selected τ = 3 as the default setting for ComFusion,
considering time cost and a balance between instance fidelity and scene fidelity
Furthermore, to investigate the impact of λS

C , λI
F , and λS

F , we tune them to see
the influence on performance, we adjusted these hyperparameters and analyzed
the outcomes in-depth, as detailed in Tab. 3. This analysis justified our chosen
settings of λS

C = 1, λS
F = 0.01, and λI

F = 0.02, ensuring an optimal balance for
model performance.

5 Conclusions

We present ComFusion, a novel approach designed to facilitate personalized sub-
ject generation within multiple specific scenes from a single image. ComFusion
introduces a class-scene prior loss to composite knowledge of subject class and
specific scenes from pretrained models. Moreover, a visual-textual matching loss
to further improve the fusion of visual object feature and textual scene feature.
Extensive quantitative and qualitative experiments demonstrate the effectiveness
of ComFusion.
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