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Abstract. Monocular 3D object detection (Mono 3Det) aims to identify
3D objects from a single RGB image. However, existing methods often
assume training and test data follow the same distribution, which may
not hold in real-world test scenarios. To address the out-of-distribution
(OOD) problems, we explore a new adaptation paradigm for Mono 3Det,
termed Fully Test-time Adaptation which aims to adapt a well-
trained model to unlabeled test data by handling potential data dis-
tribution shifts at test time. However, applying this paradigm in Mono
3Det poses significant challenges due to OOD test data causing a re-
markable decline in object detection scores. This decline conflicts with
the pre-defined score thresholds of existing detection methods, leading to
severe object omissions (i.e., rare positive detections and many false neg-
atives). Consequently, the limited positive detection and plenty of noisy
predictions cause test-time adaptation to fail in Mono 3Det. To han-
dle this problem, we propose a novel Monocular Test-Time Adaptation
(MonoTTA) method, based on two new strategies. 1) Reliability-driven
adaptation: we empirically find that high-score objects are still reliable
and the optimization of high-score objects can enhance confidence across
all detections. Thus, we devise a self-adaptive strategy to identify reliable
objects for model adaptation, which discovers potential objects and alle-
viates omissions. 2) Noise-guard adaptation: since high-score objects may
be scarce, we develop a negative regularization term to exploit the numer-
ous low-score objects via negative learning, preventing overfitting to noise
and trivial solutions. Experimental results show that MonoTTA brings
significant performance gains for Mono 3Det models in OOD test sce-
narios, approximately 190% gains by average on KITTI and 198% gains
on nuScenes. The source code is now available at Hongbin98/MonoTTA.
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1 Introduction

Three-dimensional (3D) Object Detection is a significant computer vision task,
with the objective of identifying objects and determining their spatial and di-
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Fig. 1: An illustration of the generalizability issue of Mono 3Det models. Compared
with in-distribution (In-dis) scenarios (e.g., sunny), the detection scores within out-of-
distribution (OOD) test data suffer severe degradation when the well-trained model
(MonoFlex [48]) is directly applied to test scenarios affected by common natural dis-
ruptions, like weather changes (e.g., snow and fog). Since existing Mono 3Det methods
mainly adopt a pre-defined score threshold (e.g., 0.2) for object detection, it leads to
severe omissions and unreliable detections, thereby suffering serious performance degra-
dation. Note that test images are the same but under different weather conditions.

mensional attributes through diverse sensor inputs [3,5,16,37,38]. To reduce the
cost of sensors, there is an increasing trend towards implementing autonomous
driving systems via Monocular 3D Object Detection (Mono 3Det) [2,42], where
only one single RGB image and the camera calibration information are given.
Even if this practical task is challenging, Mono 3Det methods have achieved
promising results across various tasks and datasets [4,22,29,40,48]. Behind the
success, a common presupposition is assuming that test images have the same
distribution as the training images. However, this assumption could be possibly
invalidated in many real-world scenarios due to prevalent natural corruptions
such as weather changes, diminished sharpness, and other factors that intro-
duce noise and contribute to uncalibrated cameras. In such circumstances, the
well-trained model often suffers substantial performance degradation as a con-
sequence of the data distributional shifts between the training images and the
unlabeled test images. As shown in Fig. 1, the model performance degrades from
46.2 mAP in in-distribution data to 0.3 mAP in Snow and 7.2 mAP in Fog. Con-
sidering the widespread application of Mono 3Det in autonomous driving, the
severe performance degradation due to out-of-distribution (OOD) test data may
lead to unexpected traffic accidents and pose serious safety risks. Therefore, it
is crucial to deal with the OOD generalization problem for Mono 3Det.

In addressing the OOD challenges specifically in test scenarios, one paradigm
that has emerged as highly promising and gaining traction is Test-Time Adap-
tation (TTA), which seeks to tackle data distribution shifts by adapting a
well-trained model to unlabeled test images in real time. Test-time training
(TTT) [34] represents an initial approach of TTA in classification tasks, by
adjusting the well-trained model to predict rotations through additional model
training, while its computation demands at the adaptation stage are prohibitive
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in Mono 3Det applications, particularly in autonomous driving. To enhance effi-
ciency, Tent [36] and EATA [26] have been developed for Fully Test-Time Adap-
tation (Fully TTA) where only unlabeled test images and a well-trained model
are provided. Besides, Ev-TTA [12] and SOD [35] devise TTA methods to handle
the event-based object recognition and weakly supervised salient object detec-
tion, respectively. Considering the constraints on time of Mono 3Det, we explore
the fully TTA paradigm which seeks to deal with OOD test data in real time.

To investigate this paradigm for Mono 3Det, we dig into the detection out-
comes for objects within test scenarios with variations or corruptions that are
commonly caused by weather or cameras. Specifically, we directly apply the well-
trained model to the validation set of KITTI which has been artificially injected
with four distinct types of weather-related corruptions, namely Brightness, Frost,
Fog, and Snow. Subsequently, we plot their distributions of detection scores (c.f.
Fig. 1). It is observed that the detection scores of test objects tend to markedly
decline as well as the high-score objects are scarce in the extreme scenario (Snow)
when the well-trained model is directly applied to the scenarios with corruptions.
This phenomenon indicates that: 1) The pre-trained Mono 3Det model strug-
gles to discriminate between objects and the background within OOD test data,
presenting as quantities of omissions and unconfident detections. 2) Directly
applying existing fully TTA methods to Mono 3Det could only get suboptimal
performance since they struggle to optimize the model without enough high-score
(positive) detections, especially in certain extreme scenarios.

To handle it in Mono 3Det, we propose a Monocular Test-Time Adaptation
(MonoTTA) method, consisting of the reliability-driven adaptation and noise-
guard adaptation strategies: 1) Reliability-driven adaptation. Specifically, data
distribution shifts lead to omissions and noisy detections while our empirical
analysis suggests that high detection score objects are still reliable (c.f. Fig. 3 (a)).
Moreover, even if we only optimize the model via high-score objects (e.g., >0.5),
both the numbers of low-score and high-score objects increase (c.f. Fig. 3 (b)).
These investigations motivate us that exploiting high-score objects rather than
all objects for model adaptation would be a more reliable way to alleviate
data distribution shifts and discover potential objects. Hence, we develop a
self-adaptive strategy for the identification of reliable high-score objects in test
images and devise the adaptive optimization loss £ 40 to exploit the reliable sub-
set for model adaptation, alleviating the detection score decline issue of OOD
test data and digging out more potential objects. 2) Noise-guard adaptation.
In addition, data distribution shifts may also result in a scarcity of high-score
objects, i.e., the majority of objects presenting low scores as the ‘Snow’ scenario
in Fig. 3 (a). To this end, we develop a negative regularization term to make
rational use of the numerous low-scoring objects in the Negative Learning man-
ner [13]. On the one hand, the negative regularization term Ly,eq allows the
model to conduct adaptation via numerous noisy low-scoring objects. Thus, the
model can achieve more high-score objects after alleviating distribution shifts.
On the other hand, this term also prevents the model from overfitting to noise
and trivial solutions, i.e., assigning all classes of one object with high scores.
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We summarize the main contributions as follows:

— To the best of our knowledge, we are the first to explore Fully Test-Time
Adaptation to address OOD generalization problems for Mono 3Det. We
show that the explored novel paradigm can bring significant improvements
to Mono 3Det models in OOD test scenarios, e.g., 137% and 244% average
performance gains across 13 types of OOD shifts on KITTI.

— Our empirical investigation reveals an important insight that high-score ob-
jects maintain their reliability amidst various corruptions, while optimiz-
ing these high-score objects significantly boosts model confidence across all
detections. This motivates the first effective test-time adaptation method
(i.e., our MonoTTA) in Mono 3Det.

— Extensive experiments on 13 types of corruptions of KITTI and 2 real sce-
narios (daytime <> night) of nuScenes demonstrate the effectiveness of our
MonoTTA in boosting existing Mono 3Det methods [29, 48] to handle test-
time OOD problems. Even for instance-level methods [40], MonoTTA also
maintains sufficient improvement, which further confirms its applicability.

2 Related Work

We first review the literature on Monocular 3D Object Detection, and then dis-
cuss Source-free Domain Adaptation and Test-Time Adaptation methods. More
discussions on Unsupervised Domain Adaptation [18,41,47] are in Appendix A.
Monocular 3D Object Detection aims to perceive 3D objects from a sin-
gle 2D image. Existing Mono 3Det methods could be divided into two groups
according to the use of extra information. On the one hand, some existing meth-
ods leverage extra pre-trained depth estimation modules [6,39,49] to solve one
of the most difficult problems in Mono 3Det, i.e., depth estimation from a sin-
gle image. Other methods utilize LIDAR information, e.g., generating pseudo-
LiDAR [23,31,37]. It is worth noting that Monoground [29] proposes to introduce
the ground plane as prior information, and MonoNeRD [40] proposes to utilize
scene geometric clues to enhance the detector’s performance in the implicit re-
construction manner. On the other hand, some Mono 3Det methods try to detect
3D objects without extra data. For example, SMOKE [20] proposes to detect 3D
objects as the key points estimation task. Then, Monoflex [48] improves this
idea by providing a flexible definition of object centers, which unifies the cen-
ters of regular and truncated objects. GrooMeD-NMS [15] proposes a grouped
mathematically differentiable Non-Maximal Suppression for Mono 3Det.

Source-free Domain Adaptation (SFDA) aims to adapt the pre-trained
source model to an unlabeled target domain without using the source data due
to privacy issues [17,30]. SF-UDA3D [32] first explores the SFDA framework to
adapt the PointRCNN 3D detector to target domains, which consists of pseudo-
labeling, reversible scale-transformations and motion coherency. Recently, the
authors [10] seek to exploit the source model more reliably and propose an
uncertainty-aware teacher-student framework to filter incorrect pseudo labels
during model adaptation, alleviating the negative impact of label noise.
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Nonetheless, SFDA assumes all target data to be known in advance and
makes predictions after multiple epochs of optimization, which may not be viable
for real-time applications due to computational or time constraints.
Test-Time Adaptation (TTA) seeks to improve model performance on test
data via model adaptation through test samples even if data shifts exist. Early
TTA methods [19, 34] endeavor to conduct additional model optimization on
training data by self-supervised objectives, and then adapt the well-trained
model to the test data via self-supervised objectives. However, in Mono 3Det
applications like autonomous driving, the computation demands of such meth-
ods are prohibitive. To solve this, Fully Test-Time Adaptation methods are de-
veloped to adapt the well-trained model, where only unlabeled test images are
available. Specifically, certain methods [25,27,33] tackle data distribution shifts
by adapting the batch normalization layer statistics, while others alleviate this
issue either by the entropy minimization of test data [8,36] or maximizing the
prediction consistency of different augmentations [13-46]. As for object detec-
tion tasks, Ev-TTA [12] and SOD [35] try to handle the event-based object
recognition and weakly supervised salient object detection offline, respectively.

However, existing fully TTA methods struggle to optimize the model and
solve distribution shifts in Mono 3Det due to numerous false negative detections.
To the best of our knowledge, our MonoTTA stands as the first fully TTA method
that handles distribution shifts for Mono 3Det models in real time.

3 Monocular Test-Time Adaptation

3.1 Problem Statement

Without loss of generality, we denote the pre-trained (or well-trained) model as
fo,(x), which is achieved via training on labeled training images {(x3,y$)}Y .
The training images follow the training distribution P (x) (i.e., x* ~ P (x)).
Here, @, represents the parameters of the pre-trained model and N is the num-
ber of training data. During the training stage, the model is optimized to fit
(or overfit) the training data. Then, at the test stage, the model will be able to
perform well if the unlabeled test images Dt:{xi}ﬁvztl follows the identical data
distribution, i.e., x ~ P (x) where N; is the total number of test images. How-
ever, in real applications, it is possible for the pre-trained model to encounter
Out-Of-Distribution (OOD) test samples due to prevalent natural corruptions,
namely distribution shifts, i.e., x ~ Q (x) and P (x) # Q (x).

To address this issue, fully test-time adaptation [36] seeks to tackle distribu-
tion shifts by adapting the pre-trained model fo,(x) to unlabeled test images
{xi}f\gl in real time. To achieve this goal, existing methods typically endeavor to
update the model through the minimization of unsupervised objectives defined
on test samples by ming £(x; @), where x ~ @ (x) and © C ©. Here, O denotes
the subset of model parameters that should be updated (i.e., batch normaliza-
tion layers following existing methods [26,36]). Most existing fully TTA methods
focus on classification tasks, heavily relying on sufficient positive predictions for
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Fig. 2: An illustration of our MonoTTA. During the test phase, only the pre-trained
model fo,(x) and unlabeled test images {x; ;N:tl are given. To conduct model adap-
tation, we initialize the model fo(x) by ©¢ and only update the parameters of batch
normalization layers. When a batch of test images arrives, we first compute test ob-
ject scores and refine the adaptive threshold « to select the reliable high-score objects,
thereby optimizing © via the adaptive optimization loss £L40. Meanwhile, we devise a
negative regularization term Lnreq to facilitate the model to avoid overfitting to noise

and trivial solutions. Here, Ped. and Cyc. represent Pedestrian and Cyclist in KITTI.

model adaptation. Nevertheless, there is a significant difference between conven-
tional classification tasks and Mono 3Det. As previously indicated, the detection
scores of test images x derived from fg,(x) are prone to markedly decrease in
the presence of corruptions as shown in Fig. 1, leading to severe omissions (nu-
merous false negatives) in Mono 3Det. In such circumstances, the scarcity of
positive detections presents a significant challenge for model adaptation to test
distributions while adapting the model with unreliable low-score detections may
significantly introduce the noise. Therefore, existing fully TTA methods tend to
fail in the OOD generalization problems of Mono 3Det.

3.2 Overall Scheme

After thoroughly examining the characteristics and challenges of Mono 3Det,
we introduce a Monocular Test-Time Adaptation (MonoTTA) method to ad-
dress the OOD problems for Mono 3Det models, which seeks to solve the ob-
ject score declining issue within unlabeled OOD test data. As shown in Fig. 2,
MonoTTA consists of two strategies: 1) Reliability-driven adaptation and 2)
Noise-guard adaptation. We first briefly introduce the two strategies below.
First, we develop a reliability-driven adaptation strategy (c.f. Section 3.3) to
conduct reliable model adaptation for OOD test data based on dependable test
objects. Our empirical investigations inspire us to exploit those relatively reliable
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Fig. 3: Based on MonoGround [29], we conduct two empirical studies (Car, KITTI),
with the 3D IoU threshold of 0.5. (a) We visualize the accuracy of the objects across
varied scoring ranges, which shows that the accuracy of objects with high scores remains
relatively stable even in the presence of diverse corruptions (Ideal means in-distribution
scenarios). (b) We visualize the number of low & high-score objects before and after
optimization. Although only high-score objects are optimized, the model treats low-
score objects with more confidence.

test objects for alleviating distribution shifts, thereby discovering more potential
objects. To this end, MonoTTA excludes unreliable test objects involving an
adaptive threshold « for any unlabeled test data. Subsequently, the model is
optimized by the adaptive optimization loss £ 4o via the selected reliable objects.
Second, we tend to utilize plenty of low-score objects to adapt the model in an
indirect manner instead of directly optimizing the model since low-score objects
are noisy. Hence, we devise a noise-guard adaptation strategy (c.f. Section 3.4)
to prevent the model from overfitting to noisy predictions and falling into trivial
solutions. Specifically, we randomly choose one of the negative classes of low-
score objects and minimize the scores (e.g., score 0.03 of [0.10,0.12,0.03] c.f.
Fig. 2) after simply filtering out extremely low-score detections. Even though
the positive class is noisy (i.e., score 0.12), this term is capable of optimizing
the model indirectly, i.e., learn to deny the negative category of the object.
Overall, the training scheme of MonoTTA is as follows:

min EAO(é) + /\ENreg(é)v (1)
e

where X is the balance hyper-parameter. The pseudo-code of MonoTTA is sum-
marized in Algorithm 1.

3.3 Reliability-Driven Adaptation

To identify dependable test objects and conduct test-time model adaptation, we
propose a reliability-driven adaptation strategy that consists of two components:
1) Reliable object identification and 2) Adaptive model optimization.

Reliable object identification. When unlabeled test images arrive, it is dif-
ficult for the pre-trained model to get accurate detections on OOD test data
due to the decline in detection scores. To resolve this, we dig into the detection
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accuracy of the pre-trained model in test scenarios with various corruptions.
Specifically, based on MonoGround [29], we visualize the detection precision for
the Car category within the KITTI dataset across varied scoring ranges, with
the 3D Intersection over Union (IoU) threshold of 0.5. As shown in Fig. 3 (a),
we find that high-score objects are more reliable and relatively stable even in
the presence of diverse corruptions. Following this, we propose to select reliable
high-score objects to conduct model adaptation via an adaptive threshold a.
Specifically, we exploit the model fgo(:) (initialized by @) to infer a batch of
test images {x;}£_, and obtain the heatmap h; of each image x; by h; = fo(x;),
where ¢ ranges from 0 to B — 1 and B denotes the batch size. Then, we could
achieve object score maps s; € RB*Nm like the peaks in h; [7] after normal-
ization, where K and N,, denotes the number of classes and the maximum of
detected objects, respectively. With the score map s;, we update the adaptive
threshold «; at the iteration ¢ in the exponential moving average manner by:

N Z ift=1
= {ﬁmt+(1—ﬁ)at1, ift>1 @)

] 1 sij -+ W(si; > 7)
=% Z . )

N?‘n.
1 1(sij =)

In Eqn. (2), m: denotes the average score of all detected objects in a single
batch of B test samples at iteration ¢, while 8 € [0,1] is a decay coefficient.
As for Eqn. (3), s;;€(0,1) denotes the score of the j-th object in the i-th test
image while I(-) is the indicator function. Note that y€R! is a pre-defined object
detection threshold adopted from existing methods at their original inference
stage as well as N,,.

Adaptive model optimization. As shown in Fig. 3 (b), the optimization of
high-score objects can also enhance the confidence of the model for relatively
low-score objects. It motivates us that exploiting high-score objects rather than
all objects for model adaptation would be a more reliable way to learn from
OOD test data. Therefore, with the adaptive threshold «y, we select the reliable
subset of high scores from s; and calculate the adaptive optimization loss £ 40
to adapt the model by:

B Nm

Lo =—= Z ZIOg Sij 51j > ay)), (4)

21]1

The adaptive optimization loss £40 alleviates the potential data distribution
shifts in OOD test data by allowing the model to confidently identify high-score
test objects. As we mentioned, it solves the score decline issue of OOD test data
in a more reliable way rather than directly optimizing all test objects, thereby
avoiding overfitting to noise and discovering more potential test objects.
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Algorithm 1 The pipeline of the proposed MonoTTA

Require: Unlabeled test data D;={x;}\*;; Pre-trained model fo,(x); Batch size B;
Parameters A, 3, n.
1: for a batch images {x;}£ ; in D; do
2 Update the adaptive threshold « based on Eqn. (2);
3:  Calculate adaptive optimization loss £L40 based on Eqn. (4);
4
5

Calculate negative regularization term Lyyey based on Eqn. (6);
Update © by optimizing Eqn. (1)

6: end for

7: return Detection Results for all x € D;.

3.4 Noise-Guard Adaptation

Through the optimization of adaptive optimization loss £ 40, the model is refined
to yield more confident detection outcomes. Nevertheless, high-scoring objects
may be scarce due to the distribution shifts, making the adaptation procedure
difficult. Meanwhile, exclusive reliance on L40 for adaptation may result in
trivial solutions, whereby the model indiscriminately assigns high scores to all
categories. Previous studies 13, 14] indicate that deep neural networks could
learn from noisy pseudo labels in classification tasks through negative learning.
Thus, MonoTTA proposes to learn from noisy low-score objects in a negative
learning manner for Mono 3Det. Specifically, we denote §;€RBXNm*K a5 the
multi-class score map for the test image x;, i.e. the multi-class score map §;
contains not only the highest score of objects but also the scores for other classes.
Here s; = arg max,, 8, where k is the class index. Employing a simple constant
threshold 7, we filter out extremely low-score objects and then randomly select
a negative class k for each object. Subsequently, we compute the regularization
loss ey, for each class k with relatively low object scores s;; € [, ;) by:

B N,
ek ==Y Fijlog(l—s;z -1k = k), (5)

i=1 j=1

where g;;=1 — s,;;; is a constant weight. We further define ny as the frequency
of negative scores corresponding to class k in the test batch and balance e by:

K €
k
EN?"eg - nf (6)
k=1 'k

As we mentioned before, detections with low and intermediate scores tend
to be more noisy (c.f. Fig. 3 (a)), which is unreliable for direct model adapta-
tion. To this end, we introduce the regularization term Ly,.4 to leverage noisy
low-score detections and improve the model for assimilating potentially accurate
information (c.f. Term 2 in Fig. 2). Moreover, this term also prevents the model
from trivial solutions, i.e., indiscriminately assigning high scores to all classes of
a single object (e.g., TENT [36]). In addition, high-score objects may be absent
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Table 1: Comparison with baselines on the KITTI-C validation set, severity level 1
regarding Mean APs;p|r,,. The bold number indicates the best result.

Car, IoU @ 0.7, 0.5, 0.5
Noise | Blur | Weather | Digital

Method I

| Gauss. Shot Impul. | Defoc. Glass  Motion | Snow  Frost Brit. | Contr. Pixel |
Monoflex [15] 381 748 531 | 259 373 1105 | 023 7.7 2087 | 692 2816 5| 10.84
e BN adaptation [33] 13.58 21.93 18.78 15.87 24.32 5.42 21.45 31.80 30.58 41.04 22.21
o TENT [36] 17.80 27.09 23.18 21.66 2 6.84 26.58 35.65 34.72 41.71 26.35
o EATA [26] 16.67 26.42 25.07 22.54 27.7: 7.87 26.58 35.39 35.28 41.40 26.62
e ActMAD [24] 12.26 21.49 20.47 11.10 7. 23. 5.57 19.11 26.24 23.92 38.51 20.7¢
e MonoTTA (Ours) 21.15 28.65 26.64 25.91 19.26 31.48 12.43 30.24 33.75 36.84 | 36.83 41.97 38.13 | 29.48
MonoGround [29] 2.40 4.10 3.31 3.71 2.67 8.13 0.22 5.54 4.59 25.37 4.00 33.57 28.08 9.67
e BN adaptation [33] 13.49 23.52 19.69 16.33 7.61 23.99 7.98 20.71 24.00 31.34 29.03 43.06 32.99 22.60
o TENT [36] 1790 2960 1990 | 2345 1390 2039 | 1032 2665 3335 3596 | 3639 4335 37.79 | 27.54
o EATA [26] 16.03 26.08 18.08 20.28 12.40 27.37 9.22 23.79 29.49 33.65 32.58 43.61 36.00 25.28
o ActMAD [21] 13.65 22.39 20.56 14.99 8.17 21.09 9.13 18.77 19.52 28.34 25.32 42.63 31.58 21.24

o MonoTTA (Ours) | 26.13 33.11 28.60 | 30.38 25.48 32.44 | 18.72 32.60 37.75 37.87 | 39.57 43.67 37.98 | 32.64
Pedestrian, IoU @ 0.5, 0.25, 0.25
Noise | Blur | Weather | Digital |

Method I

Avg.

| Gauss.  Shot Impul | Defoc. Glass Motion | Snow  Frost  Fog  Brit. | Contr. Pixel  Sat. | ¢

Monoffex 019 162 032 | 372 847 622 | 000 4 225 919 | 208 183 911 | 379
o BN adaptation [33] | 6.21 820 920 | 7.8 535 752 | 289 647 924 912 | 993 1273 976 | 803
o TENT [36 602 796 957 | 775 606 863 | 263 671 991 1026 | 10.55 1233 10.27 | 836
o EATA [20] 605 796 974 | 7.93 606 801 624 994 970 | 1002 1241 1012 | 821
o ActMAD [2] 241 427 468 | 146 162 648 425 484 642 | 619 829 707 | 455
o MonoTTA (Ours) | 6.54 841 939 | 763 712 899 764 10.26 1055 | 10.06 13.28 10.66 | 8.75
MonoGround 061 093 073 | 841 757 803 319 139 1382 | 183 370 726 | 442
o BN adaptation [33] | 509 708 777 | 763 663 945 672 840 972 | 1L06 1670 1243 | 853
o TENT [30] 727 1010 1002 | 853 830 1103 873 911 1L74 | 1212 17.70  15.03 | 10.25
o EATA [20] 592 805 858 | 812 759 1095 7911000 1102 | 1095 1730 1434 | 9.55
o ActMAD [2] 396 575 648 | 561 573 714 537 574 727 | 810 1312 927 | 655
o MonoTTA (Ows) | 8.58 1118 1179 | 9.22 940  13.20 9.95 1446 1285 | 13.25 1713 1485 | 11.59

Cyclist, IoU @ 0.5, 0.25, 0.25

Method | Noise | Blur | Weather | Digital |

Avg.

| Gauss. Shot Impul. | Defoc. Glass Motion | Snow  Frost  Fog  Brit. | Contr. Pixel  Sat. |
Monofex 028 164 047 | 059 497 360 | 000 742 381 13.07 | 379 380 839 | 3.99
e BN adaptation [33] 2.39 6.26 4.36 5.78 6.76 9.09 1.70 8.53 9.16 12.91 11.26 10.55 11.02 7.67
o TENT [36] 2.72 7.94 5.63 6.27 7.20 9.49 1.07 8.94 10.96 12.75 12.72 9.64 11.28 8.20

2.33 7.46 5.46 7.19 7.23 7.51 1.24 8.60 10.18 12.86 11.02 10.89 10.30 7.87
2.22 5.32 4.36 2.29 1.57 5.64 0.48 5.68 6.46 10.56 9.31 9.97 7.80 5.51

e MonoTTA (Ours) 3.01 7.24 5.98 7.00 6.09 9.51 1.45 10.63 11.22 12.85 11.85 11.59 10.81 8.40
MonoGround 0.12 0.46 0.48 0.33 0.72 2.03 0.00 0.56 0.35 5.55 0.52 2.08 5.24 1.42
. 1.76 3.58 2.08 3.61 3.05 5.41 0.57 3.82 4.47 6.30 5.60 11.02 8.87 4.63
e TENT 1.7¢ 4.85 3.00 3.36 3.49 6.05 0.49 4.43 6.20 7.19 6.50 10.43 9.23 5.15
o EATA [26] 1.89 4.20 2.41 4.13 317 5.73 0.38 4.06 6.27 6.41 6.14 10.93 7.72 4.88
o ActMAD [21] 1.14 2.84 1.53 3.3 3.08 3.15 0.32 2.74 3.47 6.36 5.75 9.69 6.95 3.87
e MonoTTA (Ours) 3.93 5.78 4.55 5.43 4.70 6.09 0.69 4.66 7.53 7.69 7.74 11.71 9.43 6.15

in certain extreme scenarios. For instance, the Snow scenario (c.f. Fig. 3 (a))
lacks objects with scores exceeding 0.4 when the pre-trained model is directly
applied. Under such a circumstance, £ x4 plays a more important role in model
adaptation since it can alleviate distribution shifts even only low-score objects,
i.e., deny the negative category. In other words, Ly ,e4 enables the model to al-
leviate distribution shifts and achieve more relatively high-score objects, thereby
laying a crucial foundation for £40 in extremely challenging scenarios.

4 Experiments

We conduct experiments based on KITTT [9] and nuScenes [1]. The results pre-
sented in this manuscript represent the average value across three difficulty levels,
i.e., Basy, Moderate, Hard. Note that we provide more results of higher severity
levels of KITTI and more detailed results in Appendix D.

Datasets. For KITTI, we adopt the protocol established by Monoflex [18] to
split the training images into the training set (3712) and validation set (3769)
to perform model training and adaptation, respectively. Following the official
KITTI evaluation criteria, we evaluate detection results on three levels of diffi-
culty. Then, we construct the KITTI-C dataset through the incorporation of 13
distinct types of data corruptions [11] to the validation set and each corruption
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Average performance of 13 corruptions on KITTI-C Validation set, severity level 2
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Fig. 4: We visualize the comparison with baselines on the KITTI-C validation set,
severity level 2 regarding Mean APsp|r,,. The bold number indicates the best result.

has 5 severity levels. The model is trained on the original training set and then
tested on the KITTI-C validation set within one of the corruptions.

As for nuScenes, we adopt the front-view images and construct the Daytime
and Night scenarios via their scene descriptions following [21]. Specifically, there
exist 24.7k/5.4k train/test images in Daytime while 3.3k/0.6k train/test images
in Night. Based on these splits, we construct two real-world adaptation tasks,
i.e., Daytime — Night and Night — Daytime. For simplification, we transfer
the nuScenes dataset into the KITTI format and only consider the Car category.
More details of data construction are provided in Appendix B.

Implementation details. We implement our method and other baselines in
PyTorch [28]. In MonoTTA, we conduct model adaptation based on the public
pre-trained weights and the parameter settings provided by their authors [29,
10, 48]. Besides, we employ the Stochastic Gradient Descent (SGD) optimizer
with a half learning rate of the initial rate used in base training over different
methods, a momentum of 0.9 and a batch size of 16 for KITTI, 4 for nuScenes.
Parameters A\, 8, n are assigned default values of 1, 0.1, and 0.05, respectively.
More training details of MonoTTA are provided in Appendix C.

Compared methods. Based on three typical or state-of-the-art (SOTA) Mono
3Det methods [29,40, 48], we fully compare MonoTTA with following methods:
1) source-only, i.e., directly apply the pre-trained model to the test data within
corruptions; 2) BN adaptation [33] updates batch normalization statistics via
target data; 3) TENT [36] minimizes the entropy loss of test data; 4) EATA [26]
identifies reliable samples to update the model by entropy loss minimization.
Here we compare MonoTTA with its variant Efficient Test-time Adaptation. 5)
ActMAD [24] matches activation statistics for the distribution alignment.

Evaluation protocols. In order to fully evaluate the proposed method, we
report our experimental results in the Average Precision (AP) for 3D bounding
boxes, denoted as APs;p|g,,- The results present the mean values across three
levels of difficulty and the Intersection over Union (IoU) thresholds are set to
0.7, 0.5, 0.5 for Cars and 0.5, 0.25, 0.25 for Pedestrians and Cyclists.
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Performance on Daytime to Night and Night to Daytime scenarios of nuScenes
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Fig. 5: Comparison with baselines on Daytime — Night and Night — Daytime of
nuScenes, regarding Mean APsp|r,,- The bold number indicates the best result.

4.1 Comparisons with Previous Methods

We first compare our MonoTTA with previous methods in severity level 1 of
KITTI-C. The results are reported in Table 1, which gives the following obser-
vations: 1) Due to distribution shifts, directly applying the pre-trained model
to the test data (i.e., source-only) suffers severe performance degradation in all
categories. 2) Existing TTA methods are able to mitigate the negative effect of
distribution shifts for Mono 3Det to some degree. However, they only achieve
suboptimal performance since they tend to increase the scores of all positive
detections, containing severe noise. 3) MonoTTA consistently outperforms all
compared methods over all categories within various base models in terms of
mean APsp|r,,- Specifically, MonoTTA achieves the best or comparable perfor-
mance in all categories under all corruptions, attaining a large performance gain
over TENT and EATA (e.g., improving an average AP;p|g,, about 5.1 and 7.4
of the Car category based on MonoGround).

4.2 More Severe Corruption and Real Scenario

On the one hand, to fully validate the effectiveness of our MonoTTA, we visu-
alize experimental results under more severe corruption conditions at severity
level 2 as shown in Fig. 4, which clearly gives additional observations: 1) With
the escalation of severity level, the pre-trained models suffer a larger perfor-
mance decline within various corruptions, enlarging the difficulty of TTA. 2)
The performance improvements of existing TTA methods become relatively lim-
ited, particularly in Pedestrian and Cyclist classes. 3) Even if the tasks are more
challenging, MonoTTA still stably obtains the best average performance within
all corruptions since Lyr.y plays an important role in alleviating distribution
shifts for certain extreme scenarios, i.e., only low-score objects exist.
On the other hand, we further validate different methods within real scenarios
as shown in Fig. 5. The experimental results also give the following observations:
1) Under real corruptions, the pre-trained model still suffers severe performance
degradation due to the data distribution shifts. 2) TENT tends to increase the
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Table 2: Comparison with baselines based on the instance-level method (i.e., batch
size is 1) on the KITTI-C validation set, regarding Mean AP;pg,, and the severity
levels 1 and 2. The bold number indicates the best result.

Method | Level 1 | Level 2
| Car Pedes.  Cyclist _ Ava | Car _ Pedes.  Cyclist _ Avg
Mono! NeRD 19.84 5.96 2.27 9.36 13.02 3.83 1.61 6.15
. adaptation [33] 30.73 8.85 3.81 14.46 26.47 6.94 291 1211
TENT [30] 3572 9.99 475 1682 | 3185 78 340 1435
o EATA [20] 34.60 10.04 4.20 16.28 30.66 7.86 3.28 13.93
o MonoTTA (Ours) | 87.40 1039 435  17.38 | 33.99 825 333 15.19

Table 3: Based on MonoGround [29], we conduct ablation studies of Lao and Lnreg
on the KITTI-C validation set, regarding APsp|r,,-

| Level 1 | Level 2
Car  Pedes. Cyclist  Avg | Car  Pedes. Cyclist  Avg

Backbone  Lao  Lrey

9.67 1.42 142 517 5.72 2.43 0.95 3.03
v 27.94 10.17 5.10 14.40 21.27 779 3.82 10.96
23.26 8.60 4.60 1215 | 18.93 6.81 3.55 9.77
32.64 11.59 6.15 16.79 | 25.66 8.78 4.12 12.85

AR NN
AN

confidence of all positive detections and thus overfits to noise, i.e., failing to
handle the extremely challenging task N—D. 3) EATA still achieves sub-optimal
performance while our MonoTTA brings sufficient average performance improve-
ment on both MonoFlex (6.23 mAP) and MonoGround (8.26 mAP), maintaining
the best performance in real scenarios . Detailed results are in Appendix D.

4.3 Application to Instance-Level Inference Method

In this section, we seek to investigate whether the proposed MonoTTA can be
used to effectively enhance Mono 3Det methods which only process a single
image sequentially, i.e., B = 1. To be specific, it may be crucial for Mono 3Det
methods to make immediate decisions based on the most recent scene (image) in
real-world scenarios like autonomous driving. To this end, it is essential for TTA
methods devised for Mono 3Det to allow a single image as input and then conduct
model adaptation. To validate it, we integrate MonoTTA into the SOTA Mono
3Det method namely MonoNeRD [40] which accepts one image each time at the
test phase. As shown in Table 2, MonoTTA achieves the best or comparable
performance across all categories at both severity levels 1 and 2, illustrating the
applicability of our method to boost these approaches for handling OOD test
data. Detailed results can be also found in Appendix D.

4.4 Ablation Studies and Quantitative Results

Ablation studies. To examine the effectiveness of the losses in MonoTTA,
we show the results of the models optimized by different losses. As shown in
Table 3, introducing L40 or Lnreq enhances the model performance compared
to directly applying the pre-trained model (i.e., source only). On the one hand,
such a result verifies that our strategy is able to alleviate the score decline
issue in test OOD data with high-score objects. On the other hand, introducing
LNreg could obtain a higher average AP3p|g,, value, which also verifies that the
negative regularization term is able to enhance the pre-trained model even only



14 Hongbin Lin, Yifan Zhang and et al.

Ground Truth Source-only BN Adaptation
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Fig. 6: Qualitative results of baselines and the proposed MonoTTA based on
MonoGround [29]. We visualize the results on KITTI-C validation set, where predicted
cars, pedestrians and cyclists are in lime green, sky blue and yellow, respectively.

with low-score objects. When combining the losses (i.e.L40, Lnreg) together,
we obtain the best performance.

Quantitative Results. We provide visualizations within Snow, Fog and Frost
based on Monoground as shown in Fig. 6. It is evident that the source-only
setting suffers severe omissions, while BN adaptation, TENT and EATA alle-
viate distribution shifts to some degree and give more detections. As for our
MonoTTA, it can produce superior detections even in severe conditions, includ-
ing fewer omissions and accurate detections as highlighted by red circles.

5 Conclusion

In this paper, we propose a monocular test-time adaptation method to improve
the pre-trained model on the shifted test data for monocular 3D object detec-
tion. Specifically, our method consists of two strategies: 1) Reliability-driven
adaptation. To discover more potential objects, we devise a self-adaptive strat-
egy to identify reliable objects for adaptive model adaptation. 2) Noise-guard
adaptation. To avoid overfitting to noise and trivial solutions, we devise the neg-
ative regularization term to mitigate the negative effects of noisy detections and
alleviate distribution shifts. Experiments on KITTI-C and nuScenes datasets
demonstrate the effectiveness of MonoTTA in handling fully test-time adapta-
tion for monocular 3D object detection.

Future directions. 1) Our work focuses on 2D images, while future studies
could explore 3D information in handling distribution shifts. 2) This work ex-
plores TTA by assuming one OOD distribution at a time, where the forgetting
issue is not severe as the source model weights are recoverable. Exploring sce-
narios with dynamically OOD distributions offers a compelling future direction,
where the forgetting issue would become more severe.
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