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Abstract. Video outpainting is a challenging task, aiming at generat-
ing video content outside the viewport of the input video while main-
taining inter-frame and intra-frame consistency. Existing methods fall
short in either generation quality or flexibility. We introduce MOTIA
(Mastering Video Outpainting Through Input-Specific Adaptation), a
diffusion-based pipeline that leverages both the intrinsic data-specific
patterns of the source video and the image/video generative prior for
effective outpainting. MOTIA comprises two main phases: input-specific
adaptation and pattern-aware outpainting. The input-specific adapta-
tion phase involves conducting efficient and effective pseudo outpainting
learning on the single-shot source video. This process encourages the
model to identify and learn patterns within the source video, as well as
bridging the gap between standard generative processes and outpaint-
ing. The subsequent phase, pattern-aware outpainting, is dedicated to
the generalization of these learned patterns to generate outpainting out-
comes. Additional strategies are proposed to better leverage the diffusion
model’s generative prior and the acquired video patterns from source
videos for inference. Extensive evaluations underscore MOTIA’s superi-
ority, outperforming existing state-of-the-art methods in widely recog-
nized benchmarks. Notably, these advancements are achieved without
necessitating extensive, task-specific tuning. More details are available
at https://be-your-outpainter.github.io/.

1 Introduction

Video outpainting aims to expand the visual content out of the spatial boundaries
of videos, which has important real-world applications [3, 5, 6]. For instance, in
practice, videos are usually recorded with a fixed aspect ratio, such as in movies
or short clips. This becomes an issue when viewing these videos on smartphones,
which often have varying aspect ratios, resulting in unsightly black bars on the
screen that detract from the viewing experience. Proper ways for video outpaint-
ing are crucial in solving this issue. By expanding the visual content beyond the
original frame, it adapts the video to fit various screen sizes seamlessly. This
process ensures that the audience enjoys a full-screen experience without any
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Source videos Outpainting results by MOTIA

Fig. 1: MOTIA is a high-quality flexible video outpainting pipeline, leveraging the
intrinsic data-specific patterns of source videos and image/video generative prior for
state-of-the-art performance. Quantitative metric improvement of MOTIA is signifi-
cant (Table 1).

compromise in visual integrity. However, the challenges associated with video
outpainting are significant. It requires not just the expansion of each frame’s
content but also the preservation of temporal (inter-frame) and spatial (intra-
frame) consistency across the video.

Currently, there are two primary approaches to video outpainting. The first
employs optical flows and specialized warping techniques to extend video frames,
involving complex computations and carefully tailored hyperparameters to en-
sure the added content remains consistent [5, 7]. However, their results are far
from satisfactory, suffering from blurred content. The other type of approach in
video outpainting revolves around training specialized models tailored for video
inpainting and outpainting with extensive datasets [6, 35]. However, they have
two notable limitations: 1) An obvious drawback of these models is their depen-
dency on the types of masks and the resolutions of videos they can handle, which
significantly constrains their versatility and effectiveness in real-world applica-
tions, as they may not be adequately equipped to deal with the diverse range
of video formats and resolutions commonly encountered in practical scenarios.
2) The other drawback is their inability to out-domain video outpainting, even
intensively trained on massive video data. Fig. 5 shows a failure example of most
advanced previous work [6] that the model faces complete outpainting failure,
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with only blurred corners. We show that a crucial reason behind this is that
the model fails at capturing the intrinsic data-specific patterns from out-domain
source (input) videos.

In this work, we propose MOTIA: Mastering Video Outpainting Through
Input-Specific Adaptation, a diffusion-based method for open-domain video out-
painting with arbitrary types of mask, arbitrary video resolutions and lengths,
and arbitrary styles. At the heart of MOTIA is treating the source video itself
as a rich source of information [18, 22], which contains key motion and content
patterns (intrinsic data-specific patterns) necessary for effective outpainting. We
demonstrate that the patterns learned from the source video, combined with
the generative capabilities of diffusion models, can achieve surprisingly great
outpainting performance.

Fig. 2 illustrates the workflow of MOTIA. MOTIA consists of two stages:
input-specific adaptation and pattern-aware outpainting. During the input-specific
adaptation stage, we conduct pseudo video outpainting learning on the source
video (videos to be outpainted) itself. Specifically, at each iteration, we heuris-
tically add random masks to the source video and prompt the base diffusion
model to recover the masked regions by learning to denoise the video corrupted
by white noise, relying on the extracted information from unmasked regions.
This process not only allows the model to capture essential data-specific patterns
from the source video but also narrows the gap between standard generation and
outpainting. We insert trainable lightweight adapters into the diffusion model
for tuning to keep the efficiency and stability. In the pattern-aware outpainting
stage, we combine the learned patterns from the source video and the generation
prior of the diffusion model for effective outpainting. To better leverage the gen-
eration ability of the pretrained diffusion model and the learned pattern from
the source video, we propose spatial-aware insertion (SA-Insertion) of the tuned
adapters for outpainting. Specifically, the insertion weights of adapters gradually
decay as the spatial position of features away from the known regions. In this
way, the outpainting of pixels near the known regions is more influenced by the
learned patterns, while the outpainting of pixels far from the known regions re-
lies more on the original generative prior of diffusion model. To further mitigate
potential denoising conflicts and enhance the knowledge transfer between known
regions and unknown regions, we incorporate noise regret that we add noise and
denoise periodically at early inference steps, which works for more harmonious
outpainting results.

Extensively quantitative and qualitative experiments verify the effectiveness
of our proposed method. MOTIA overcomes many limitations of previous meth-
ods and outperforms the state-of-the-art intensively trained outpainting method
in standard widely used benchmarks. In summary, our contribution is three-fold:
1) We show that the data-specific patterns of source videos are crucial for ef-
fective outpainting, which is neglected by previous work. 2) We introduce an
adaptation strategy to effectively capture the data-specific patterns and then
propose novel strategies to better leverage the captured patterns and pretrained
image/video generative prior for better results. 3) Vast experiments verify that
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Fig. 2: Workflow of MOTIA. Blue lines represent the workflow of input-specific
adaptation, and green lines represent the workflow of pattern-aware outpainting.

our performance in video outpainting is great, significantly outperforming pre-
vious state-of-the-art methods in both quantitative metrics and user studies.

2 Related Works

In this section, we discuss related diffusion models and outpainting methods.
Diffusion models. Diffusion models (a.k.a., score-based models) [9,10,17,20,26]
have gained increasing attention due to its amazing ability to generate highly-
detailed images. Current video diffusion models [4, 9, 15, 16, 24, 25, 28, 30] are
generally built upon the extension of image diffusion models through inserting
temporal layers. They are either trained with image-video joint tuning [12, 25]
or trained with spatial weights frozen [4] to mitigate the negative influence of
the poor captions and visual quality of video data.
Ooutpainting methods. Video outpainting is largely built upon the advance-
ments in image outpainting, where techniques ranged from patch-based methods
(e.g ., PatchMatch [3]) to more recent deep learning approaches like GANs [1,34].
Diffusion models [2,14], benefiting from the learned priors on synthesis tasks and
the process of iterative refinement, achieve state-of-the-art performance on image
outpainting tasks. The research focusing on video outpainting is comparatively
few. Previous works typically apply optical flow for outpainting, which warps
content from adjacent frames to the outside corners, but their results are far
from satisfactory. Recently, M3DDM [6] trained a large 3D diffusion models with
specially designed architecture for outpainting on massive video data, achieving
much better results compared to previous methods, showcasing the huge po-
tential of diffusion models on video outpainting. However, as we claimed, they
have two main limitations: 1) The inflexibility for mask types and video res-
olutions. They can only outpaint video with resolution 256 × 256 with square
type of masking. 2) Inability for out-domain video outpainting. As shown in
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Fig. 5, they encounter outpainting failure when processing out-domain videos
even intensively trained on massive video data.

3 Preliminaries

Diffusion models [10] add noise to data through a Markov chain process. Given
initial data x0 ∼ q(x0), this process is formulated as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt|
√
αtxt−1, βtI), (1)

where βt is the noise schedule and αt = 1−βt. The data reconstruction, or denois-
ing process, is accomplished by the reverse transition modeled by pθ(xt−1|xt):

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (2)

with µ̃t(xt,x0) =
1√
αt
xt − 1−αt√

1−ᾱt
√
αt
ϵ, ᾱt =

∏t
s=1 αs, β̃t =

1−ᾱt−1

1−ᾱt
βt, and ϵ is

the noise added to x0 to obtain xt.
Diffusion-based outpainting aims to predict missing pixels at the corners of
the masked region with the pre-trained diffusion models. We denote the ground
truth as x, mask as m, known region as (1 − m) ⊙ x, and unknown region
as m ⊙ x. At each reverse step in the denoising process, we modify the known
regions by incorporating the intermediate noisy state of the source data from
the corresponding timestep in the forward diffusion process (which adds noise),
provided that this maintains the correct distribution of correspondences. Specif-
ically, each reverse step can be denoted as the following formulas:

xknown
t−1 ∼ N

(√
ᾱtx0, (1− ᾱt) I

)
, xunknown

t−1 ∼ N (µθ (xt, t) , Σθ (xt, t)) , (3)

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 , (4)

where the xknown
t−1 is padded to the target resolution before the masked merging.

4 Methodology

This section presents MOTIA, a method demonstrating exceptional performance
in video outpainting tasks. We begin by defining the concept of video outpainting
and describing the foundational model in Section 4.1. and Section 4.2. Subse-
quently, we delve into the specifics of input-specific adaptation and pattern-aware
outpainting in Sections 4.3 and 4.4, respectively. Moreover, we show that our ap-
proach has great promise in extending its application to long video outpainting,
which will be explored in Section 4.5.
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Fig. 3: Sample results of quantitative experiments. All videos are outpainted
with a horizontal mask ratio of 0.66. Contents outside the yellow lines are outpainted
by MOTIA.

4.1 Problem Formulation

For a video represented as v ∈ Rt×h×w×d, where t denotes the number of frames,
h denotes frame height, w denotes frame width, and d denotes channel depth.
Video outpainting model f(v) is designed to generate a spatially expanded video
v′ ∈ Rt×h′×w′×d. This process not only increases the spatial dimensions (h′ > h,
w′ > w), but also requires to ensure continuity and harmony between the newly
expanded regions and the known regions. The transformation maintains the
known regions unchanged, with f(v) acting as an identity in these regions.

4.2 Network Expansion

Network inflation. MOTIA leverages the pre-trained text-to-image (T2I) model,
Stable Diffusion. In line with previous video editing techniques [32], we transform
2D convolutions into pseudo 3D convolutions and adapt 2D group normaliza-
tions into 3D group normalizations to process video latent features. Specifically,
the 3 × 3 kernels in convolutions are replaced by 1 × 3 × 3 kernels, maintain-
ing identical weights. Group normalizations are executed across both temporal
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and spatial dimensions, meaning that all 3D features within the same group are
normalized simultaneously, followed by scaling and shifting.
Masked video as conditional input. Additionally, we incorporate a Con-
trolNet [36], initially trained for image inpainting, to manage additional mask
inputs. Apart from noise input, ControlNet can also process masked videos to
extract effective information for more controllable denoising. In these masked
videos, known regions have pixel values ranging from 0 to 1, while values of
masked regions are set to −1.
Temporal consistency prior. To infuse the model with temporal consistency
priors, we integrate temporal modules pre-trained on text-to-video (T2V) tasks.
Note that although MOTIA relies on pre-trained video diffusion modules, ap-
plying these pre-trained temporal modules directly for video outpainting yields
rather bad results, significantly inferior to all baseline methods (Table. 2). How-
ever, when equipped with our proposed MOTIA, the model demonstrates supe-
rior performance even in comparison to models specifically designed and trained
for video outpainting, underscoring the efficacy of MOTIA.

4.3 Input-Specific Adaptation

The input-specific adaptation phase is crucial in our video outpainting method,
aiming to tailor the model for the specific challenges of outpainting. This phase
involves training on the source video with a pseudo-outpainting task, impor-
tantly, enabling the model to learn intrinsic content and motion patterns (data-
specific patterns) within the source video as well as narrowing the gap between
the standard generation process and outpainting.
Video augmentation. Initially, we augment the source video. Transformations
like identity transformation, random flipping, cropping, and resizing can be em-
ployed. This step can potentially help the model better learn and adapt to diverse
changes in video content. For longer video outpainting, as we will discuss later,
instead of taking it as a whole, we randomly sample short video clips from it to
reduce the cost of the adaptation phase.
Video masking. We then add random masks to the video. We adopt a heuristic
approach that uniformly samples edge boundaries of 4 sides within given limits.
The area enclosed by these boundaries is considered the known region, while the
rest is the unknown region. This masked video serves as the conditional input
for the ControlNet, simulating the distribution of known and unknown areas in
actual outpainting scenarios.
Video noising. Additionally, we apply noise to the video following the DDPM [10]
by randomly selecting diffusion timesteps. This noisy video serves as an input
for both the ControlNet and the Stable Diffusion model.
Optimization. Finally, we optimize the model. To ensure efficiency, low-rank
adapters are inserted into the layers of the diffusion model. We optimize only
the parameters of these adapters while keeping the other parameters frozen. The
loss function is

L =
∥∥ϵ− ϵ̂θ̄l,θ̄c,θa

(vnoisy,vmasked, t)
∥∥
2
, (5)
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Fig. 5: Failure example of previous methods.
Many previous methods including the intensively
trained models on video outpainting still might
suffer from generation failure, that the model sim-
ply generates blurred corners. MOTIA never en-
counters this failure.

where t represents the timestep in the process, ϵ is the added noise, vnoisy refers to
the video perturbed by ϵ, and vmasked denotes the masked video. The parameters
θl, θc, and θa correspond to the Diffusion Model, ControlNet, and adapters,
respectively. The bar over these parameters indicates they are frozen during the
optimization. This optimization process, including the steps of augmentation,
masking, and noising, is repeated to update the lightweight adapters to capture
the data-specific patterns from the source video.

4.4 Pattern-Aware Outpainting

Following the initial phase of input-specific adaptation, our model shows promis-
ing results in video outpainting using basic pipelines as outlined in Eq. 3 and
Eq. 4, achieving commendable quality. However, we here introduce additional
inference strategies that can be combined to better leverage the learned data-
specific patterns from the input-specific adaptation phase for better outpaint-
ing results. We call the outpainting process that incorporates these strategies
pattern-aware outpainting.
Spatial-aware insertion. It is important to acknowledge that in the input-
specific adaptation phase, the model is fine-tuned through learning outpainting
within the source video. However, at the outpainting phase, the model is expected
to treat the entire source video as known regions and then fill the unknown re-
gions at edges (i.e., generating a video with a larger viewport and resolution).
This specificity may lead to a noticeable training-inference gap during outpaint-
ing, potentially affecting the outpainting quality. To balance the fine-tuned pat-
terns with the diffusion model’s inherent generative prior, we introduce the con-
cept of spatial-aware insertion (SA-Insertion) of adapters as shown in Fig. 4. The
adaptation involves adjusting the insertion weight of tuned low-rank adapters
based on the feature’s spatial position. We increase insertion weight near known
areas to utilize the learned patterns while decreasing it in farther regions to rely
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more on the original generative capacity of the diffusion model. To be specific,

W⊤
adaptedxp = W⊤xp + α(p) (WupWdown)

⊤
xp. (6)

Here, p signifies the spatial position of x, W ∈ Rdin×dout denotes the linear
transformation in layers of diffusion model, Wdown ∈ Rdin×r and Wup ∈ Rr×dout

are the linear components of the adapter with rank r ≪ min(din, dout). The
function α(p) is defined as:

α(p) = exp(− K∥p− pc∥
maxp̄ ∥p̄− pc∥

), (7)

where K is a constant for controlling decay speed, and pc represents the nearest
side of the known region to p.
Noise regret. In the context of Eq. 3, merging noisy states from known and un-
known regions in video outpainting tasks is similar to sampling from two different
vectors, which can potentially disrupt the denoising direction. Given the signifi-
cant impact of early steps on the generation’s structure, later denoising may not
rectify these initial discrepancies. Inspired by DDPM-based image inpainting
methods [14,21], we propose to re-propagate the noisy state into a noisier state
by adding noise when denoising and then provide the model a second chance
for re-denoising. This helps integrate known region data more effectively and re-
duces denoising direction conflicts. In detail, after obtaining vt during denoising,
we conduct

vt+L =
√

Πt+L
i=t+1αivt +

√
1−Πt+L

i=t+1αiϵ, , (8)

where αi = 1 − βi and ϵ ∼ N (0, I). Then we restart the denoising process. We
repeat this progress for M times. We only conduct it in the early denoising steps.

4.5 Extension to Long Video Outpainting

We show that our method can be easily extended for long video outpainting.
Specifically, for the stage of input-specific adaptation, instead of taking the long
video as a whole for adaptation (Direct adaptation on long videos is costly and
does not align with the video generation prior of the pretrained modules), we
randomly sample short video clips from the long video for tuning to learn global
patterns without requiring more GPU memory cost. For the stage of pattern-
aware outpainting, we split the long video into short video clips with temporal
overlapping (i.e., some frames are shared by different short video clips), and then
conduct temporal co-denoising following Gen-L [29]. Specifically, the denoising
result for jth frame of the long video at timestep t is approximated by the
weighted sum of all the corresponding frames in short video clips that contain
it,

vt−1,j =

∑
i∈Ij

(
(Wi,j∗)

2 ⊗ vi
t−1,j∗

)
∑

i∈Ij

(
W 2

i,j∗

)2 , (9)
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Fig. 6: Qualitative comparison. Other methods outpainting the source video with
a mask ratio of 0.6. MOTIA outpainting the source video with a larger mask ratio of
0.66 while achieving obviously better outpainting results.

where ⊗ denotes element-wise multiplication,vt−1,j denotes the noisy state of
the jth frame at timestep t, vi

t−1,j∗ is the noisy state of jth frame predicted with
only information from the ith video clip at timestep t, Wi,j∗ is the per-pixel
weight, which is as 1 as default.

5 Experiments

5.1 Experimental Setup

Benchmarks. To verify the effectiveness of MOTIA, we conduct evaluations on
DAVIS [19] and YouTube-VOS [33], which are widely used benchmarks for video
outpainting. Following M3DDM [6], we compare the results of different methods
in the horizontal direction, using mask ratios of 0.25 and 0.66.
Evaluation metrics. Our evaluation approach utilizes four well-established
metrics: Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM) [31], Learned Perceptual Image Patch Similarity (LPIPS) [37], and
Frechet Video Distance (FVD) [27]. For assessing PSNR, SSIM, and FVD, the
generated videos are converted into frames within a normalized value range of
[0, 1]. LPIPS is evaluated over a range of [−1, 1]. About the FVD metric, we
adopt a uniform frame sampling, with 16 frames per video for evaluation follow-
ing M3DDM.
Implementation details. Our method is built upon Stable Diffusion v1-5. We
add the ControlNet pretrained on image inpainting to enable the model to accept
additional masked image inputs. The temporal modules are initialized with the
weights from pretrained motion modules [8] to obtain additional motion priors.
The motion modules are naive transformer blocks trained with solely text-to-
video tasks on WebVid. For the input-specific adaptation, the low-rank adapters
are trained using the Adam optimizer. We set the learning rate to 10−4, and
set the weight decay to 10−2. The LoRA rank and αlora are set to 16 and,
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Table 1: Quantitative comparison of video outpainting methods on DAVIS and
YouTube-VOS datasets. ↑ means ‘better when higher’, and ↓ indicates ‘better when
lower’.

Method DAVIS YouTube-VOS
PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

VideoOutpainting [5] 17.96 0.6272 0.2331 363.1 18.25 0.7195 0.2278 149.7
SDM [6] 20.02 0.7078 0.2165 334.6 19.91 0.7277 0.2001 94.81
M3DDM [6] 20.26 0.7082 0.2026 300.0 20.20 0.7312 0.1854 66.62
MOTIA 20.36 0.7578 0.1595 286.3 20.25 0.7636 0.1727 58.99

8, respectively. The number of training steps is set to 1000. We do not apply
augmentation for simplicity. For both mask ratios of 0.66 and 0.25, we simply
apply the same random mask strategy, which uniformly crops a square in the
middle as the known regions. For the pattern-aware outpainting, the diffusion
steps are set to 25 and the classifier-free guidance (CFG) [11, 23] scale is set to
7.5 and we only apply CFG at the first 15 inference steps. When adding noise
regret to further improve the results, we set jump length L = 3, and repeat
time M = 4. We only apply noise regret in the first half inference steps. Note
that our method is built upon LDM, which requires text-conditional inputs. For
a fair comparison and to remove the influence of the choice of text prompt, we
apply Blip [13] to select the prompt automatically. We observe dozens of prompt
mistakes but do not modify them to avoid man-made influence.

5.2 Qualitative Comparison

Fig. 6 showcases a qualitative comparison of MOTIA against other methods.
Outpainting a narrow video into a square format. MOTIA employs a mask ratio
of 0.66, surpassing the 0.6 ratio utilized by other methods, and demonstrates
superior performance even with this higher mask ratio. The SDM method only
manages to blur the extremities of the video’s background, egregiously overlook-
ing the primary subject and resulting in the outpainting failure as previously
highlighted in Fig. 5. Dehan’s approach effectively outpaints the background
but utterly fails to address the foreground, leading to notable distortions. In
contrast, the M3DDM method adeptly handles both subject and background
integration but is marred by considerable deviations in subject characteristics,
such as incorrect brown coloration in the dog’s fur across several frames. Our
method stands out by achieving optimal results, ensuring a harmonious and
consistent outpainting of both the foreground and background.

5.3 Quantitative Comparison

Table 1 summarizes the evaluation metrics of our method compared to other ap-
proaches. Our method achieves comparable results to the best method in PSNR.
It shows significant improvements in video quality (SSIM), perceptual met-
ric (LPIPS), and distribution similarity (FVD). Specifically, our SSIM, LPIPS,
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Fig. 7: Visual examples of ablation study on the proposed input-specific adaptation.
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Fig. 8: Visual examples of ablation study on pattern-aware outpainting.

and FVD metrics show improvements of 7.00%, 21.27%, and 4.57% respectively
on the DAVIS dataset, and 4.43%, 6.85%, and 11.45% on the YouTube-VOS
dataset compared to the best-performing method.

5.4 Ablation Study

Ablation study on input-specific adaptation. We conducted the ablation
study on input-specific adaptation with the DAVIS dataset to verify its effective-
ness, as shown in Fig. 7 and Table 2. “SD+T” represents the result of directly
combining the temporal module with Stable Diffusion, which led to a complete
outpainting failure. “SD+T+C” indicates the additional use of ControlNet, re-
sulting in similarly poor outcomes. “Direct-tune” refers to the approach of di-
rectly fitting the original video without outpainting training; in this case, we
observed a very noticeable color discrepancy between the outpainted and known
areas. In contrast, our method achieved the best results, ensuring consistency in
both the visual and temporal aspects. The metrics shown in Table 2 also support
this observation, with MOTIA significantly outperforming the other baselines.
Ablation study on pattern-aware outpainting. Table 3 summarizes our
ablation experiments for the pattern-aware outpainting part. We conducted ex-
tensive validation on the YouTube-VOS dataset. “Direct” refers to performing
outpainting according to Eq. 3 directly after input-specific adaptation. “SA”
denotes spatially-aware insertion, and “SA+NR” indicates the combined use of
spatially-aware insertion and noise regret. The experimental results demonstrate
that each of our components effectively enhances performance. Specifically, Com-
bining both SA-Insertion and Noise regret, the PSNR, SSIM, LPIPS, and FVD
metrics show improvements of 2.69%, 0.90%, 3.95%, and 11.32% respectively
than directly applying Eq. 3. Fig. 8 presents the visual examples of ablation
study on our proposed pattern-aware outpainting part. When removing NR, it
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Table 2: Ablation study on input-
specific adaptation.

Component PSNR↑ SSIM↑ LPIPS↓ FVD ↓

SD+T 15.59 0.6640 0.2979 672.7
SD+T+C 16.81 0.6961 0.2338 515.4
Direct-tune 19.42 0.7375 0.1784 312.1
MOTIA 20.36 0.7578 0.1595 286.3

Table 3: Ablation study on the pro-
posed pattern-aware outpainting.

Component PSNR↑ SSIM↑ LPIPS↓ FVD ↓

Direct 19.72 0.7568 0.1798 66.52
SA 19.97 0.7608 0.1752 58.40
SA+NR 20.25 0.7636 0.1727 58.99

might fail to align the texture colors or produce unreasonable details (e.g ., arms
in the middle of Fig. 8). When further removing SA, it could potentially generate
unrealistic results caused by the overfitting to the target video (e.g ., the white
collar on the left of Fig. 8). Note that even though the FVD degrades in a very
slight manner, all the other metrics increase and we qualitatively find it to be
helpful for improving results.

5.5 Discussions

Model and computation complexity. Model Complexity: The original model
has 1.79 billion (including the auto-encoder and text encoder) parameters in to-
tal, while the added adapters contain 7.49 million parameters, leading to an
increase of 0.42% in memory usage. Computation Complexity: We report the
peak GPU VRAM and the time required for outpainting a target video from
512×512 to 512×1024 with 16 frames at two stages in Table 4. For longer videos,
as described in Section 4.5, instead of processing the long video as a whole, we
adapt only to short video clips sampled from the long video. This approach does
not require additional time or GPU VRAM during the input-specific adaptation
phase. Additionally, with temporal co-denoising [29], the GPU VRAM usage
remains the same as that for short video during the pattern-aware outpainting
phase, while the required time increases linearly with the video length.
User study. We conducted a user study between MOTIA and M3DDM, uti-
lizing the DAVIS dataset with a horizontal mask of 0.66 as source videos. Pref-
erences were collected from 10 volunteers, each evaluating 50 randomly selected
sets of results based on visual quality (such as clarity, color fidelity, and texture
detail) and realism (including motion consistency, object continuity, and integra-
tion with the background). Table 2 demonstrates that the outputs from MOTIA
are preferred over those from M3DDM in both visual quality and realism.
Why MOTIA outperforms (Why previous methods fail). 1) Flexibil-
ity. Current video diffusion models are mostly trained with fixed resolution and
length, lacking the ability to tackle videos with various aspect ratios and lengths.
In contrast, the adaptation phase of MOTIA allows the model to better capture
the size, length, and style distribution of the source video, greatly narrowing the
gap between pretrained weights and the source video. 2) Ability for capturing
intrinsic patterns from source video. A crucial point for successful outpaint-
ing is the predicted score of diffusion models should be well-compatible with the
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Table 4: Computation complexity.

Phase VRAM↓ Time↓

Adaptation 12.70 GB 309 Seconds
Outpainting 5.80 GB 58 Seconds

MOTIA (In total) 12.70 GB 367 Seconds

Table 5: User study comparison be-
tween M3DDM and MOTIA.

Method Visual-Quality Realism

M3DDM 27.4% 42.8%

MOTIA 72.6% 57.2%

original known regions of the source video. To achieve this, the model should
effectively extract useful information from the source video for denoising. For
instance, M3DDM concatenates local frames of source video at the input layers
and incorporates the global frames through the cross-attention mechanism after
passing light encoders. However, the information might not be properly handled
especially for out-domain inputs, thus leading to outpainting failure. Instead, by
conducting input-specific adaptation on the source video, the model can effec-
tively capture the data-specific patterns in the source videos through gradient.
Through this, MOTIA better leverage the data-specific patterns of the source
video and image/video generative prior for outpainting. We hope this work in-
spires following research to exploit more from the source video itself instead of
purely relying on the generative prior from intensive training on videos.

6 Conclusion

We present MOTIA, relying on a combination of input-specific adaptation for
capturing inner video patterns and pattern-aware outpainting to generalize these
patterns for effective outpainting. Extensive experiments validate the effective-
ness.
Limitations: MOTIA requires learning necessary patterns from the source
video, it faces limitation for outpainting videos with limited information. We
provide an example of failure case. In Fig. 9, the original source video just con-
tains grass and a woman with a blue shirt. We find our method produces a woman
with very similar appearance when outpainting, which might be regarded as a
“copy” phenomenon.

Fig. 9: Example of failure case. Contents outside the red lines are outpainted.
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