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In this Appendix, we provide in-depth analysis and additional insights to com-
plement the main text of our study on Model Stock, our novel approach to
fine-tuning and weight merging. The contents are summarized as follows:

– We examine the angle norm consistency of fine-tuned weights across various
settings in §A, extending the observations discussed in §2.1.

– We provide detailed proofs of geometric properties of fine-tuned weights in
§B.

– We study the importance of reducing variance for performance in out-of-
distribution scenarios in §C, showcasing the test error landscape across var-
ious datasets and elaborating on the explanations in §2.2.

– We provide detailed proofs in §D for the optimal interpolation ratio in our
method §3.

– We discuss prior studies through the lens of our findings in §E.
– We provide an additional analysis of the interpolation ratio in §F.
– We present experimental settings of §4 in §G.
– We present additional experiments of Model Stock in §H

Each section aims to offer a comprehensive understanding of our method’s un-
derlying principles and its broad applicability in machine learning.

A Angle and Norm Consistency

We argue that, as discussed in §2.1, angles and norms of fine-tuned weights would
remain consistent across fine-tuned models, independent of various factors. These
factors include architecture type (ViTs [4], ResNet [7], ConvNeXt [14]), optimiz-
ers (SGD, AdamW [15]), augmentations (RRC [20], RandAug [3]), datasets (CI-
FAR [9], ImageNet [19]), or the initialization of the classifier (zero-shot, LP as in
LP-FT [10]). We depict the layer-wise angle and norm of 5 fine-tuned weights for
each category based on different random seeds. We give detailed illustrations for
each setting at the end of the Appendix to enhance readability (refer to Fig. H–
O). Across all these settings, the angle and norm of weights exhibit a surprising
level of consistency.
⋆ Work done during an internship at NAVER AI Lab.
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A.1 Analysis on layer-wise tendency

The layer-wise angle and norm across various settings are shown in Fig. H–
L. We visualize with every weight of attentions/convolutions (Attention/Conv),
multi-layer perceptrons (MLP), normalizations (LayerNorm and BatchNorm),
a classifier (Classifier), individual bias (Bias), and the remaining layers (i.e.,
the patchification layer, positional embedding, class embedding, and projection
layer). We further display All in each figure, which denotes the concatenation of
the weights of entire layers.

The layer-wise analysis reveals an interesting trend: Bias and classifier layers
demonstrate smaller angles than attention and MLP layers. In other words, bias
and classifier layers exhibit lower randomness and more reliable updates than
attention and MLP layers. It is important to note that as the angle decreases,
the pre-trained model is less utilized for merging (refer to Eq. (2)). This indicates
that bias and classifier layers focus more on fine-tuned models and rely less on
the pre-trained model, whereas attention and MLP layers depend less on the fine-
tuned model (i.e., tbias, tclf > tattn, tmlp). This observation extends the findings of
previous works such as BitFit [26] and LP-FT [10]. In the case of BitFit and LP
(i.e., the first step of LP-FT), bias and classifier layers fully utilize fine-tuning,
while other layers (attention and MLP) rely on pre-trained models.

These traits could offer new insights into parameter-efficient transfer learning
(PETL) [6,8,13,26] and layer-wise fine-tuning [10,11,21,22]. Maintaining weights
with high randomness (higher angles) while updating on biases and classifier
weights with lower randomness and fewer parameters would be an efficient fine-
tuning strategy. PETL has been exploring this direction but has not yet provided
solid reasons why certain layers are more effective than others. Our analysis
suggests that one reason could be the lower randomness (or variance) of these
layers, as indicated by the angle trend per layer.

A.2 Maintaining consistency during training

We further argue that the consistency we observed is maintained while training
progresses, as illustrated by multiple thin shells in Fig. 5. To demonstrate that
the angle and norm of fine-tuned models remain consistent during the entire
training process, we plot their relationship across weights for every epoch in
Fig. M. Please note that the angle is consistent across differently seeded models
at the same timestamp (i.e., w1|t=t1 and w2|t=t1), not across models at different
timestamps (i.e., w1|t=t1 and w1|t=t2). The observed trend is as follows: as
training progresses, the angle between weights steadily decreases. This analysis
uses the CLIP ViT-B/32 model fine-tuned on ImageNet-1K with five random
seeds.

A.3 Filter-wise analysis of weights

Li et al . [12] showed that when evaluating the robustness of a neural network by
adding random noise to certain weights, performance analysis based on adding
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filter-wise noise (i.e., adding noise for each row in all weight matrices) aligns
more closely with the generalization performance than adding layer-wise noise
does. Inspired by this observation, we investigate the possibility that the weight
distribution may follow a filter-wise Gaussian distribution and adapt this concept
to our method (see the performance analysis in §H.5). Fig. N illustrates the
angle distribution filter-wise. The angle exhibits much larger standard deviations
than the layer-wise distribution. This could be attributed to the reduction in
dimensionality. As the number of dimensions decreases, it becomes challenging
to approximate the norm as a constant value.

A.4 Analysis on non-CLIP models

To verify if this key observation also applies to non-CLIP models, we analyze
the geometric patterns of fine-tuned weights trained using the DeiT [23] method
(i.e., pre-trained on ImageNet-21K). Fig. O displays the angle and norm of 10
DeiT-base models first pre-trained on ImageNet-21K [19] and then fine-tuned on
ImageNet-1K. We find that weights pre-trained with ImageNet-21K also exhibit
consistent angle and norm, indicating that our observation may be valid beyond
CLIP fine-tuning scenarios as well.

B Detailed Proof for Geometric Properties of Fine-tuned
Weights

For all indices i, j within the set [1, N ], where N denotes the sufficiently large
number of fine-tuned weights, we derive one lemma and three propositions based
on the foundational observation described in Eq. (1):
Lemma: wi · µ = µ · µ = l2 cos θ.
Proof:

wi · µ = lim
N→∞

1

N
wi ·

N∑
k=1

wk = lim
N→∞

1

N
(l2 + (N − 1) ∗ l2 cos θ)

= l2 cos θ.

Similarly,

µ · µ = lim
N→∞

1

N2

N∑
k=1

wk ·
N∑
l=1

wl = lim
N→∞

1

N2
(N ∗ l2 +N(N − 1) ∗ l2 cos θ)

= l2 cos θ. ⊓⊔

Proposition 1: ∥wi − µ∥ = constant.
Proof:

∥wi − µ∥2 = (wi − µ) · (wi − µ)

= wi ·wi − 2wi · µ+ µ · µ
= l2 − 2l2 cos θ + l2 cos θ (by Lemma)

= l2(1− cos θ) (constant) ⊓⊔
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Fig.A: Test error landscape on OOD datasets. We depict the test error landscape
on ImageNet-V2, -Sketch, ObjectNet, ImageNet-R, and -A (from left to right, from top
to bottom, respectively) on the plane containing pre-trained model (w0), fine-tuned
model (w1), and the pseudo-center of fine-tuned weights (w(50)

avr ). The local optima for

the OOD datasets always lie on the line segment w0w
(50)
avr .

Proposition 2: (w0 − µ) ⊥ (wi − µ).
Proof:

(w0 − µ) · (wi − µ) = −µ · (wi − µ)

= 0 (by Lemma) ⊓⊔

Proposition 3: (wi − µ) ⊥ (wj − µ).
Proof:

(wi − µ) · (wj − µ) = wi ·wj −wi · µ−wj · µ+ µ · µ
= 0 (by Eq. (1) & Lemma) ⊓⊔

C Importance of Reducing Weight Variance on
Performance under Distribution Shifts

In demonstrating the significance of variance reduction for robustness in out-of-
distribution (OOD) scenarios, we analyze the test error landscape as in §2.2. As
shown in Fig. A, we examine the error landscape across various OOD datasets, in-
cluding ImageNet-V2, ImageNet-Sketch, ObjectNet, ImageNet-R, and ImageNet-
A (from top to bottom). This landscape is plotted on a plane defined by the
weights of a pre-trained model (w0), a fine-tuned model (w1), and the center
of the fine-tuned weights, which is approximated by averaging 50 fine-tuned
weights (w(50)

avr ). A notable pattern emerges where the local optima for these
datasets consistently align with the line segment connecting w0 and w

(50)
avr .

Though the exact location of local minima differs depending on the dataset
type, it has a common point that the minima are aligned on the line between the
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Fig. B: ID vs. OOD accuracy along WiSE-FT [25] curves for averaged mod-
els. As the number of weights used for averaging increases, the corresponding WiSE-FT
curves demonstrate improvements in the ID-OOD trade-off.

weight center and pre-trained model rather than the line between the fine-tuned
weight and pre-trained model. Consequently, not only does the averaged weight
exhibit higher performance on distribution shifts compared to the fine-tuned
model, but the WiSE-FT [25] curves corresponding to the averaged weights also
demonstrate better ID/OOD trade-off than the WiSE-FT curve of the fine-tuned
model, as illustrated in Fig. B. This indicates the importance of getting closer
to the weight center, even for OOD datasets.

Another interesting point is that depending on the traits of datasets, the
position of local minima differs. ImageNet-V2 has a similar dataset distribution
to ImageNet since it shares the same data collection and categorization policy,
and its local optima lies close to that of ImageNet. On the other hand, on
the datasets with harsh variations (e.g ., ImageNet-A), the local minima are
positioned much closer to the pre-trained model than the original ImageNet or
ImageNet-V2. This loss landscape gives an intuitive insight into the similarity
between OOD datasets and ImageNet.

In conclusion, there is no universal interpolation ratio optimal for every dis-
tribution shift. However, all the local minima lie on the line between the weight
center and the pre-trained model. This implies the importance of proximity to
the weight center in achieving a better WiSE-FT line.

D Detailed Proof of Model Stock

Here, we present detailed proof of Model Stock introduced in §3. We first show
the case with two fine-tuned models and extend our proof toward N fune-tuned
models.
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Fig. C: Model Stock with two fine-tuned models. We reference the illustration
in Fig. 6 to more understandably substantiate merging two fine-tuned models.

On two fine-tuned models. We will prove step-by-step how the optimal interpo-
lation ratio t in Eq. (2) in the main paper is derived. Using the same notation
as in §3, we denote the magnitude and the angle between the fine-tuned weights
as l and θ, respectively. Starting from the fact that △µw1w2 is a right isosceles
triangle, we can derive the following relations from Fig. C:

w12w1 = w12w2 = w12µ

=

√
1− cos θ

2
· l (from △w0w1w2 and △µw1w2) (1)

⇒ w12w0 =
√

w1w0
2 −w12w1

2

=

√
12 − 1− cos θ

2
· l

=

√
1 + cos θ

2
· l (from △w0w1w12 and Eq. (1)) (2)

⇒ w0µ =

√
w12w0

2 −w12µ
2

=

√
1 + cos θ

2
− 1− cos θ

2
· l

=
√
cos θ · l (from △w0µw12, Eq. (1) and Eq. (2)) (3)

⇒ t :=
wHw0

w12w0
=

wHw0

w0µ
· w0µ

w12w0

=

(
w0µ

w12w0

)2

(from △w0µw12 ∼ △w0wHµ)

=
2 cos θ

1 + cos θ
(from Eq. (2) and Eq. (3)) (4)
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(a) Model Stock with N fine-tuned models.
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(b) Variation of the interpolation ratio t.

Fig.D: Model Stock with N fine-tuned models and Interpolation Ratio Vari-
ation. (a) We visualize a special case of N = 3 (tetrahedron) for better understand-
ing. (b) The trend towards t = 1 with increasing N illustrates that w

(N)
H on the

N -dimensional simplex approaches w(N)
avr , reflecting a growing dependence on the num-

ber of fine-tuned models.

⊓⊔
Interestingly, wH is located at an orthocenter of the triangle △w0w1w2 with

the given optimal ratio t.

On N fine-tuned models. Similarly, we can derive a more generalized interpo-
lation ratio for N ≥ 2. Our goal is to find the weight w

(N)
avr that is on the

hyper-plane spanned by w0,w1, . . . ,wN and closest to the weight center µ, as
described in Fig. Da. Again, for simplicity, we treat w0 as the origin O.

Based on the observation, we presume that the following two conditions hold:

{
w

(N)
H = t ·w(N)

avr

(w
(N)
avr −w

(N)
H ) · (µ−w

(N)
H ) = 0.

(5)

The first condition comes from the symmetry of an N -simplex structure, and the
second condition holds since the orthogonal projection is the minimal distance
from µ. Then, we can derive t as follows:

By substituting the first condition into the second condition from Eq. (5),

(w(N)
avr −w

(N)
H ) · (µ−w

(N)
H ) = 0

⇒ w(N)
avr · µ− t · ∥w(N)

avr ∥2 = 0

⇒ t =
µ ·w(N)

avr

∥w(N)
avr ∥2

. (6)
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Fig. E: Ensembling impact disappears when interpolating between two av-
eraged weights. We plot the ImageNet performance of interpolated weights between
two selected fine-tuned models in Model Soup [24] (left) and between their correspond-
ing weight centers (right).

Note that the norm of the N -averaged fine-tuned weights can be derived as
follows:

∥w(N)
avr ∥2 =

1

N2
(w1 + . . .+wN ) · (w1 + . . .+wN )

=
1

N2
(l2 + l2 cos θ · (N − 1)) ·N

=
l2

N
(1 + cos θ · (N − 1)), (7)

while the term µ ·w(N)
avr can be simplified as

µ ·w(N)
avr =

1

N

N∑
i=1

(µ ·wi) = l2 cos θ (from Lemma). (8)

By substituting Eq. (7) and Eq. (8) into Eq. (6), we can finally derive the
optimal interpolation ratio t as follows:

t =
N cos θ

1 + (N − 1) cos θ
⊓⊔ (9)

Fig. Db displays how the optimal interpolation ratio t varies as a function of
θ with different numbers of fine-tuned models. As N increases, t trends towards
1, indicating that w

(N)
H on the N -dimensional simplex gets closer to w

(N)
avr . This

shows increasing dependence on fine-tuned models as their number grows.

E Discussion — Rethinking Pivotal Prior Studies

In this section, we extend our findings to reinterpret the underlying mechanics in
prior studies, WiSE-FT [25] and Model Soups [24], through a consistent rationale
to illuminate their effectiveness.
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WiSE-FT [25] is a state-of-the-art robust fine-tuning method for CLIP-based
models. It demonstrates that linearly combining weights of the pre-trained and
fine-tuned models achieves significant accuracy gain on distribution shifts. We
argue that the WiSE-FT model’s superiority over a fine-tuned model can be
interpreted by its weights being closer to the center of the corresponding weight
distribution. Fig. 3 already showed fine-tuned models typically lie on the periph-
ery of flat minima. Given that the angle ∠w0w

(50)
avr w1 is nearly a right angle,

along the line w0w1, multiple weight points are closer to the center than a single
fine-tuned model, thereby enhancing performance. Note that wH is the closest
to the center among the line w0w1. More discussions on performance boosts
observed in distribution shifts are provided in the Appendix C.

Model Soup [24] merges various fine-tuned models’ weights trained from varied
hyper-parameters. It has been credited with delivering enhanced performance
across ImageNet and distribution shifts. Here, we interpret the performance
improvements of Model Soup as the result of the proximity to the center of
weight distribution. Consider two weight vectors, wA and wB , fine-tuned with
different hyper-parameters and following Gaussian distribution N (µA, ΣA) and
N (µB, ΣB) respectively. Then, the interpolated weight vector wAB = t ·wA +
(1 − t) · wB also follows a Gaussian distribution N (µAB, ΣAB). The expected
squared distance from the interpolated weight vector to its mean µAB is min-
imized to trace(ΣA)trace(ΣB)

trace(ΣA)+trace(ΣB) when t is chosen to trace(ΣB)
trace(ΣA)+trace(ΣB) , indicating

the reduction of variance through weight interpolation (i.e., the distance be-
tween wAB and µAB might be closer than each weight’s distance). For example,
if trace(ΣB) is equal to trace(ΣA), this minimum squared distance is exactly
half of the sum of the individual traces when t = 0.5. This insight suggests that
the performance gains realized by Model Soup could be due to reduced variance
resulting from merging numerous weights.

We set up a toy experiment to evaluate the effect of variance reduction in
the Model Soup scenario by comparing the interpolation of fine-tuned weights
with the interpolation of their corresponding weight centers, when N = 2. In the
former case, variance reduction exists along with the effect of merging diverse
hyper-parameters, while in the latter case, performance gain would only come
from hyper-parameter diversity. If the diversity of hyper-parameters is a major
factor, the performance gain from interpolation of central weights should remain
the same. To test this, we assessed the ImageNet performance of interpolated
weights between pairs of fine-tuned models within Greedy Model Soup1 [24] and
compared it to interpolations between their central weights, calculated as the
average of 20 differently seeded models. Fig. E shows that, unlike interpolations
between individual models, using the centers does not significantly improve per-
formance. This suggests that proximity to the center of the weight distribution
may play a more critical role than hyper-parameter diversity in weight ensemble
methods in this case.
1 We opt for Greedy Model Soup to show that even the interpolation of models from

the best merging combination does not benefit from the impact of weight diversity.
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Fig. F: Trend of interpolation ratio t during Model Stock training.

It is also worth noting that µAB always surpasses the performance of wAB

for the same interpolation ratio t, indicating that the importance of proximity
to the center remains consistent for interpolated weights. With extensive future
research, this understanding could provide valuable insights for developing more
generalizable and effective weight-merging techniques.

F Analysis of the interpolation ratio t

We analyze the interpolation ratio t = 2 cos θ
1+cos θ in a layer-wise manner. During

a Model Stock experiment on CLIP ViT-B/32 with 16 epoch training, we log
the layer-wise merge ratios at every merging period. Figure F visualizes the
averaged interpolation ratio during Model Stock training. We plot two trends
of the interpolation ratio for the layer depth and training step. Our overall
observation indicates the bias layers have high merge ratios t (≃ 1) with small
angles θ (≃ 0), implying that the bias layers do not need to enjoy the pre-trained
model, similar to our discussion in §2 and §3. Focusing on the weight layers,
Figure Fa shows a U-shape tendency as the layer depth increases, implying the
weights of intermediate layers can be more diverse (i.e., larger angle θ) than those
of early and later layers. Our intuition here is that since the early and later layers
are directly connected to input data and output labels, respectively, they may
not demand the advantage of the pre-trained weight. Figure Fb presents that the
models at the early training stage are more diverse and they enjoy the pre-trained
weights more than those of the later training stage. As the model approaches
convergence, the diversity of fine-tuning models decreases (i.e., smaller angle θ).

G Experimental setup

Here, we present detailed setups for the experiments in §4. We utilize AdamW
optimizer [15] with a weight decay of 0.1. We employ two training setups for
Model Stock. The first is training Model Stock with a learning rate of 3× 10−5

in 10 epochs with minimal data augmentation. The minimal data augmentation
utilizes random resize crop augmentation with a minimum crop ratio of 0.9,
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Fig.G: Results on LP initialization. We plot in-distribution ImageNet accuracy
(x-axis) and distribution shift results (y-axis) with individual fine-tuned models (gray
circles) and Model Soups [24]. Note that Model Stock has much smaller (35× smaller)
computational costs than Model Soups, leveraging 71 various fine-tuned models as in
the original paper.

mixup [27] augmentation with β=0.5, following Model Soup’s “standard grid
search” setting. The other is training Model Stock with a learning rate of 2×10−5

in 16 epochs with strong data augmentation. The strong data augmentation
utilizes random resize crop augmentation with a minimum crop ratio of 0.08 and
random augmentation [3] (N = 2, M = 10) following Model Soup’s “random
search” setting. When experimenting with the ViT-B/16 and ViT-L/14 models,
we adjusted the learning rate and batch size to accommodate the GPU memory
constraints.

H Additional Experiments

We present additional experimental studies to verify the effectiveness and appli-
cability of Model Stock.

H.1 Experiments with LP initialization

We conduct Model Stock with LP initialization and compare it with Model Soups
that are initialized from LP. The results are in Fig. G. In this experiment, we use
the 16-epoch training setup with strong data augmentation for training Model
Stock. As shown in Fig. G, Model Stock outperforms the individual fine-tuned
models2 (gray dots) on ImageNet accuracy. Model Stock also demonstrates com-
petitive performance against Model Soups considering WiSE-FT curves. Note
that Model Stock is much more efficient (35×) than Model Soups, which utilize
71 models in this experiment.
2 All the individual model checkpoints are from the official Model Soup repository.
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Table A: Complete results of Table 3 with ObjectNet [1] and ImageNet-ReaL [2].

Method In-distribution Distribution shifts

ImageNet IN-ReaL IN-V2 IN-R IN-A IN-Sketch ObjectNet

Zero-shot 68.3 75.1 62.0 77.7 49.9 48.3 54.2
Vanilla FT 82.8 87.8 72.9 66.4 43.7 48.0 51.8
Vanilla FT∗ 83.7 87.8 73.5 67.6 40.0 48.6 50.1
LP [10] 79.7 - 71.5 52.4 27.8 40.5 -
LP-FT [10] 81.7 - 71.6 72.9 49.1 48.4 -
CAR-FT [16] 83.2 - 73.0 71.3 43.7 49.5 -
FTP [22] 84.2 - 74.6 47.2 26.5 50.2 -
FLYP [5] 82.6 - 73.0 71.4 48.1 49.6 58.7
Lipsum-FT [17] 83.3 - 73.6 75.9 49.9 51.4 54.4
CaRot [18] 83.1 - 74.1 77.7 51.6 52.7 56.6
Model Stock 84.1 88.8 74.8 71.8 51.2 51.8 55.0
Model Stock⋆ 85.2 89.1 75.3 68.7 45.0 51.3 52.3

Table B: Comparison against Model Soups [24] on CLIP ViT-B/16. Model
Stock shows comparable performance with Model Soups.

Method ImageNet Avg. shifts

CLIP zero-shot Init. 68.3 58.4
Vanilla FT 82.8 56.6
Vanilla FT⋆ 83.7 55.9
Uniform Model Soup 84.4 62.7
Greedy Model Soup 84.3 60.4

Model Stock 84.1 61.0
Model Stock⋆ 85.2 58.5

H.2 Complete comparison results on CLIP ViT-B/16

In the main paper, we omit the results of ObjectNet [1] on CLIP ViT-B/16
experiments since the comparison methods such as LP-FT [10], FTP [22] have
not evaluated on ObjectNet benchmark. We here show the results with Object-
Net [1] and ImageNet-ReaL [2] of CLIP ViT-B/16 in Table A. We addition-
ally compare Model Stock with recent fine-tuning methods including FLYP [5],
Lipsum-FT [17], and CaRot [18] Model Stock consistently demonstrates its ef-
fectiveness with ObjectNet and ImageNet-ReaL as well.

H.3 Model Stock vs. Model Soups on CLIP ViT-B/16

Table B shows the performance of Model Stock on the pretrained CLIP ViT-B/16
model. Since the original Model Soups paper [24] only provides CLIP ViT-B/32
models, we replicate Model Soups experiments on CLIP ViT-B/16. We fine-
tuned 48 models from CLIP ViT-B/16 initialization following the standard grid
hyper-parameter sweep (i.e., zero-shot initialization setting). Model Stock shows
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Table C: Model Stock with different hyper-parameters on CLIP ViT-B/32.

Method ImageNet Avg. shifts

Model Stock 79.89 50.99
Model Stock w/ different hyper-parameters 79.75±0.45 50.40±0.84

Table D: Performance comparison of merging units in Model Stock. This
table presents the overall performance of Model Stock using different merging units:
entire weight merging, entire weight merging based on transformer block angle, layer-
wise merging, and filter-wise merging. It highlights the effectiveness of each strategy
in approaching the weight center and their impact on the model’s performance.

Merging Unit Target Avg.
ShiftsIN IN-ReaL

Entire weights 79.69 85.39 46.40
Entire weights (rep. blocks only) 79.64 85.38 48.28
Layer-wise (ours) 80.12 85.65 48.84
Filter-wise 80.10 85.67 48.72

comparable performance against Model soups. Note that Model Soups requires
24× more training cost than Model Stock.

H.4 Model Stock with different hyper-parameters

To verify the validity of Model Stock beyond the setup of the main paper (i.e.,
different random seeds with the same hyper-parameters), we conduct Model
Stock with different hyper-parameters. In detail, when we fine-tune two models
for Model Stock, we choose different hyper-parameter for each model (e.g ., learn-
ing rate, data augmentation.). To ensure the basic assumption of Model Stock,
we use the same batch size and training epochs. C shows the experimental re-
sults on CLIP ViT-B/32. We repeat 5 runs and report accuracy with standard
deviation. Model Stock with different hyper-parameters shows comparable per-
formance to the original one.

H.5 Ablation study on merging unit

We investigate the efficacy of different merging units within our method, Model
Stock. Our default approach employs layer-wise merging, but alternatives include
merging based on the angle between 1) entire weights, 2) weights of the entire
repetitive transformer blocks following [24], or 3) using a filter-wise approach
as discussed in §A.3. The results of these ablations are summarized in Table D,
where we assess the overall performance based on the chosen merging unit.

Our analysis reveals that the accuracy of noise distribution estimation is
critical in approaching the weight center. When assuming weight noise across the
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entire model, our method does not approximate the weight center as effectively
as it does with layer-wise merging, leading to suboptimal overall performance.
Similarly, the merging performance based on the angle of transformer blocks was
insufficient. Conversely, while filter-wise noise demonstrates a larger standard
deviation in angle, as depicted in Fig. N, this increased variance results in a
more significant error in Gaussian distribution approximation. Consequently,
the overall performance under filter-wise merging is slightly inferior to layer-
wise one.

These findings underscore the importance of accurately modeling noise distri-
bution in enhancing the performance of Model Stock. As our understanding and
ability to model this noise distribution improve, we anticipate further increases
in the efficacy and robustness of our approach.
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(a) CLIP ViT-L/14
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(b) CLIP ResNet50
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(c) OpenCLIP ConvNeXt

Fig.H: Layer-wise angle and norm across different model architectures. The
angle and norm for CLIP ViT-L/14, CLIP ResNet50, and OpenCLIP ConvNeXt are
displayed from top to bottom. These metrics demonstrate consistency regardless of the
model type from left (first layer) to right (last layer). It is important to note that we
also depict the error bars for each layer in all figures, but they are not visible in most
layers due to the small standard deviation.
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(a) SGD optimizer
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(b) SGD optimizer with momentum

Fig. I: Layer-wise angle and norm across different optimizers. Displayed from
top to bottom are the angle and norm for models trained with SGD and SGD with
momentum, respectively. These metrics demonstrate consistency regardless of the op-
timization strategy from left (first layer) to right (last layer).
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(a) Vanilla model (10 epochs + no augmentation)
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(b) + longer epochs (16 epochs)
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(c) + RRC

Fig. J: Layer-wise angle and norm across different augmentations. Displayed
from top to bottom are the angle and norm for the vanilla model (10 epochs + no
augmentation), +longer epochs (16 epochs), and +RRC. Each augmentation is applied
incrementally. These metrics demonstrate consistency regardless of the augmentations
from left (first layer) to right (last layer).
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Fig.K: Layer-wise angle and norm across different datasets. The angle and
norm for models trained on different datasets, including CIFAR [9] are displayed from
top to bottom. These metrics demonstrate consistency regardless of the dataset type
from left (first layer) to right (last layer).
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Fig. L: Layer-wise angle and norm across different classifier initializations.
The angle and norm for models trained with differently initialized networks following
the LP-FT [10] method are displayed from top to bottom. These metrics demonstrate
consistency regardless of the initialization method from left (first layer) to right (last
layer).

Fig.M: Layer-wise angle during training. Displayed are the overlapped angles
across models trained with different random seeds at each timestamp. Even during
training, the angle remains highly consistent, decreasing as training progresses.
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(a) Filter-wise angle between attention weights in the first transformer block of ViT-B/32

(b) Filter-wise angle between MLP weights in the first transformer block of ViT-B/32

(c) Filter-wise angle between attention weights in the second transformer block of ViT-B/32

Fig.N: Filter-wise angle for attention and MLP layers in ViT-B/32. We
display filter-wise angles for each layer. Each bar represents each row (i.e., filter) in
the given layer. Interestingly, the angles between the filters of the fine-tuned weights
exhibit similar values, while the standard deviation between each filter is notably larger
than that of the angle between each layer. Due to the large number of layers, only
representative layers are selected for display.
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Fig.O: Layer-wise angle and norm for DeiT. The angle and norm for DeiT-
base models are displayed, each trained with different random seeds. These models are
initially pre-trained on ImageNet-21K [19] and then fine-tuned on ImageNet-1K. The
consistency observed in the metrics is maintained even in the DeiT training setting.
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