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Abstract. Diffusion models have recently been investigated as powerful
generative solvers for image dehazing, owing to their remarkable capabil-
ity to model the data distribution. However, the massive computational
burden imposed by the retraining of diffusion models, coupled with the
extensive sampling steps during the inference, limit the broader appli-
cation of diffusion models in image dehazing. To address these issues,
we explore the properties of hazy images in the semantic latent space
of frozen pre-trained diffusion models, and propose a Diffusion Latent
Inspired network for Image Dehazing, dubbed DiffLI2D. Specifically, we
first reveal that the semantic latent space of pre-trained diffusion models
can represent the content and haze characteristics of hazy images, as the
diffusion time-step changes. Building upon this insight, we integrate the
diffusion latent representations at different time-steps into a delicately
designed dehazing network to provide instructions for image dehazing.
Our DiffLI2D avoids re-training diffusion models and iterative sampling
process by effectively utilizing the informative representations derived
from the pre-trained diffusion models, which also offers a novel perspec-
tive for introducing diffusion models to image dehazing. Extensive ex-
periments on multiple datasets demonstrate that the proposed method
achieves superior performance to existing image dehazing methods.
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1 Introduction

Image dehazing aims to recover a clean image from its hazy counterpart, which
is critical to high-level vision tasks such as image classification [19, 26, 45] and
object detection [17,32,40]. It is challenging and ill-posed due to the infinite pos-
sible solutions for a given hazy image. Conventional methods utilize the physical
scattering model [35] to estimate the clean images. With the development of
deep learning, convolution neural network (CNN) and Transformer-based meth-
ods have achieved great success in image dehazing [7,31,52,62,64,66]. Recently,
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diffusion models [22, 48] exhibit great impressive performance in image gener-
ation, and achieve unprecedented success in downstream tasks, such as image
editing [4, 20] and personalization [14, 33, 42]. Meanwhile, the diffusion models
also significantly broaden the scope of possibilities for image dehazing.

The prevailing approach to applying diffusion models for image dehazing
is to re-train a diffusion model that is conditioned on the hazy image from
scratch [34, 63]. These methods utilize the hazy image as the condition, and
concatenate it with the noise map, which aims to implicitly guide the diffusion
models to predict the corresponding clean image during the reverse process.
Such paradigm requires re-training the entire diffusion models, which typically
costs massive time and computation resources. On the other hand, the potential
time-consuming sampling in the reverse process also limits their application.

To address the above issues, we try to investigate the potential of diffusion
models for image dehazing from a new perspective: “Can we directly leverage the
rich knowledge contained in pre-trained diffusion models, instead of re-training
diffusion models from scratch?” To this end, we investigate the properties of hazy
images within the semantic latent space of frozen pre-trained diffusion models.
Previous works [23,28,37] have discovered that the semantic latent space (named
h-space) has nice properties for high-level semantic manipulation. It is essential
to investigate whether the h-space also exhibits properties necessary for low-
level image dehazing. Specifically, we discover that, as the diffusion time-step
changes, the h-space representations of hazy images undergo a gradual transfor-
mation, transitioning from primarily encoding the underlying image contents to
increasingly capturing the haze characteristics. Fig. 1 describes the properties
and Sec. 4.1 provides detailed analysis. Note that our exploration of h-space for
image dehazing is different from previous works that focus on the intermediate
outputs during the diffusion process. To the best of our knowledge, it is the
first attempt to explore the potential of the semantic latent space in pre-trained
diffusion models towards image dehazing.

The aforementioned observation promotes us to leverage the informative h-
space representations to facilitate image dehazing. To this end, we propose a
new framework, called the Diffusion Latent Inspired network for Image Dehaz-
ing (DiffLI2D), which aims to integrate the h-space representations for effective
image dehazing. The DiffLI2D adopts a hierarchical architecture similar to U-
Net [41], enabling it to learn multi-scale features for image dehazing [52,57,64].
Specifically, to facilitate the content recovery of hazy images, we design a content
integration module (CIM), which assists the DiffLI2D in restoring image contents
by utilizing the content representations derived from h-space. Furthermore, for
better haze removal, a haze-aware enhancement (HAE) module is developed. It
leverages the haze representations obtained from h-space as guidance, enabling
DiffLI2D to remove the haze from the input hazy images effectively.

Moreover, the proposed DiffLI2D does not require re-training any diffusion
models, and circumvents the time-consuming reverse sampling process. Com-
pared with existing diffusion model-based methods [57, 61], our DiffLI2D costs
less computation resources.
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Fig. 1: Distributions of hazy images and their corresponding clean images in h-space
and image space at different time-step t during the diffusion process. When the time-
step t is small (i.e., t = t1), the h-space features with the same underlying image
content are tightly clustered together, while those with different image contents are
separated. When t is large (i.e., t = t2), the h-space features of hazy and clean images
are distinguished. Note that when t becomes too large (i.e., t = T ), the distribution
of hazy and clean h-space features becomes chaotic and irregular. The t-SNE maps in
image space are also presented for comparison. Please zoom in for better view.

We summarize our main contributions as follows:

– To the best of our knowledge, this is the first attempt to explore the h-
space of diffusion models for image dehazing. Additionally, we propose the
DiffLI2D framework for image dehazing through leveraging the informative
representations derived from h-space.

– Our findings reveal a transition in the h-space representations of hazy images,
shifting from encoding the image contents to capturing haze characteristics,
as the diffusion time-step changes.

– Considering the properties of h-space representations, we develop two mod-
ules, namely CIM and HAE, to facilitate the content recovery and haze
removal in DiffLI2D by leveraging the features derived from h-space.

– Extensive experiments demonstrate the superiority of our method. Moreover,
the DiffLI2D requires less computation resources, since it avoids re-training
diffusion models and time-consuming reverse sampling process.

2 Related Work

2.1 Image Dehazing

Image dehazing aims to recover a clean image from its hazy version. Conven-
tional approaches use physical scattering model [35], and try to regularize the
solution space with various image priors [3,12,18]. However, these hand-crafted
image priors may not be reliable. Recently, deep learning-based methods have
dominated the image dehazing algorithms [7, 38, 59, 60, 62, 66, 68]. For example,
AOD-Net [29] tries to recover the clean images by reformulating the physical
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scattering model. AECR-Net [55] introduces contrastive regularization to image
dehazing. FSDGN [62] attempts to recover clean images through both spatial
and frequency domains. Recently, transformer [49] is also introduced to image
dehazing task and has achieved great success [6, 31,39,52,64].

2.2 Diffusion Models

Diffusion model [22, 46], as a newly emerged generative model, has achieved re-
markable progress in image generation [10] and various downstream tasks, like
image editing [4,20] and personalization [14,27,33,42]. Taking the DDPM [22] as
an example, it constructs a Markov chain, and trains a denoising network, which
aims to accurately fit target distributions. Current diffusion models-based image
restoration methods can be divided into two categories. The first one is to re-train
a diffusion model from scratch [34,44,61,63], which often demands massive com-
putation resources and time. The second one is to guide the pre-trained diffusion
models to generate target images by constraining the reverse sampling [9, 47],
avoiding re-training diffusion models. However, the time-consuming reverse sam-
pling and the need for accurate degradation process limit their applications. The
work [28] explores the properties of the semantic latent space in pre-trained diffu-
sion models (i.e., h-space) for high-level semantic manipulation. Despite this, the
characteristics of h-space for low-level image restoration are yet to be explored.

3 Preliminary: Diffusion Models

In this paper, we follow the DDPM [22], and briefly introduce the key points
in diffusion models. Concretely, it consists of a T -steps forward process that
gradually adds Gaussian noise to the input image x0, and a reverse process that
learns to generate images by progressively denoising.

In the forward process, for any t ∈ [0, T ], we can get the current state xt:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where xt is the noisy image at time-step t, βt is the variance schedule [22], and I
is the identity matrix. Through the reparameterization, we can get xt given x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)), (2)

where αt = 1− βt, and ᾱt =
∏t

s=0 αs.
During the reverse process, the diffusion models aim to estimate the previ-

ous state xt−1 from the current state xt. We can get the posterior distribution
p(xt−1|xt, x0) through the Bayes’ theorem:

p(xt−1|xt, x0) = N (xt−1;µt(xt, x0), σ
2
t I), (3)

where the mean µt(xt, x0) =
1√
αt
(xt− 1−αt√

1−ᾱt
ϵ), and the variance σ2

t = 1−ᾱt−1

1−ᾱt
βt.

DDPM leverages a neural network ϵθ to estimate the noise ϵ in µt(xt, x0). For
any time-step t ∈ [0, T ], we can get the loss function defined in [22]:
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L(θ) = ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ)∥22. (4)

In the reverse process, the DDPM utilizes the iterative sampling from the
posterior distribution to get the xt−1. This allows the DDPM to generate a
sample x0 ∼ q(x0) from a pure Gaussian noise xT ∼ N (0, I), where q(x0) denotes
the data distribution of the training dataset.

4 Method

In this section, we provide a detailed introduction to our method. We first inves-
tigate the properties of h-space representation at different time-step in Sec. 4.1.
And then, we introduce the delicately designed DiffLI2D in Sec. 4.2.

4.1 H-Space Investigation for Image Dehazing

The denoising neural network ϵθ in Eq. 4 is commonly implemented as U-Net in
diffusion models. The bottleneck of the frozen pre-trained U-Net, also known as
the h-space, has been demonstrated to be rich in semantics and can be utilized
for high-level semantic manipulation [28]. This inspires us to investigate the
potential of h-space representation for low-level image dehazing.

To simplify expression, let’s define some variables first. Given a hazy image x
and its corresponding clean (ground-truth) counterpart y, we can get their noisy
version at time-step t through the Eq. 2, denoted as xt and yt, respectively,
where t ∈ [0, T ]. Following [10], the T is set to 1000. Note that x = x0, and
y = y0. By feeding the xt and yt into the frozen pre-trained diffusion models ϵθ,
we can further obtain the corresponding h-space features, represented as hhaz

t

and hcle
t , respectively.

Investigating H-Space. To explore the relation between hazy and clean
images in h-space, we propose a decoder to map the h-space features back to
images, as shown in Fig. 2. Specifically, for each time-step t, we train a corre-
sponding decoder Dt, which aims to map the hcle

t to the noise-free clean image
y. It can be formulated by:

Lt = ∥Dt(h
cle
t )− y∥1 (5)

where ∥ · ∥1 denotes the L1 regularization. Note that we only use the h-space
features hcle

t corresponding to the clean images yt to train Dt, while the hazy
images and their h-space features do not participate in training Dt.

After that, we feed the hhaz
t to the trained Dt, and obtain the corresponding

reconstruction results, which is rhazt = Dt(h
haz
t ). The hcle

t is also sent to the
Dt for comparison, which is rclet = Dt(h

cle
t ). Interestingly, we find that the rhazt

represents different characteristics of the original hazy image x, as t changes. As
shown in Fig. 2, when t is small (e.g ., t = t1), rhazt1 focuses on representing the
contents of the original image, making it very similar to rclet1 . As t progressively
increases (e.g ., when t = t2), rhazt2 shifts from primarily representing the image
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Fig. 2: Illustration of our investigation of the h-space. (a) Decoder training: for each
time-step t, we train a decoder Dt to reconstruct the noise-free clean image y from
the h-space feature hcle

t . Note that the decoders are trained with clean noisy images yt
only. (b) Decoder testing: we send both hazy and clean h-space features hhaz

t and hcle
t

to the trained Dt, and obtain rhazt and rclet , respectively. (c) Illustration of rhazt and
rclet at different t. As the time-step t changes, the rhazt represents different components
of the original hazy image xhaz, which further indicates the different representation of
h-space features at different t.

content to reflecting the haze characteristics in x, which makes it significantly
different from rclet2 . Based on the above observations, we can deduce the con-
clusion: when the time-step t is small, the h-space feature of the hazy image
primarily represents the content of the image; as t increases, the h-space fea-
tures shift its emphasis towards representing the haze characteristics of the hazy
image. We provide more analysis and implementation details in Appendix.

To further verify our conclusion, we present the t-SNE maps illustrating the
h-space features of hazy-clean image pairs at different t, as shown in Fig 1.
We also show their t-SNE maps in image space for comparison. We can see
that, when t is small, the hhaz

t and its corresponding clean counterpart hcle
t

are tightly clustered together, while the (hhaz
t , hcle

t ) pairs with different content
are separated individually, which indicates that both hhaz

t and hcle
t represent

the image content. In contrast, when t is large, the h-space features of hazy
images are clustered together, and those of clean images are clustered together
separately, showing that the hhaz

t represents the haze characteristics in images.
As a comparison, in the image space, the xt and yt are distributed irregularly
at all time-step t. It is noteworthy that when t is too large (e.g ., t = T ), both
the h-space and the image space exhibit irregular patterns. This is because the
sufficiently large noise removes both content and haze in the original hazy image.

Discussion. Many works [8, 50] have proven that diffusion models generate
images in a coarse-to-fine manner during the reverse process, and we attribute
the properties exhibited by h-space to this. At the early steps of the diffusion
process (i.e., t is small), the diffusion models focus on fine-grained details, which
enables the h-space features to fully perceive the background content of the
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Fig. 3: Architecture of the proposed DiffLI2D. (a) Given a hazy image x, we first get
the noisy versions xt1 and xt2 through Eq. 2, and then obtain the h-space features
hhaz
t1 and hhaz

t2 by sending xt1 and xt2 into the frozen pre-trained diffusion model. (b)
Architecture of the dehazing network, which comprises multiple blocks arranged in the
U-Net structure. Each block consists of a Content Integration Module (CIM) and a
Haze-Aware Enhancement (HAE) module, where the former is designed to leverage
the hhaz

t1 to facilitate the content recovery, while the latter utilizes the hhaz
t2 as guidance

for effective haze removal.

image. In contrast, at the late steps of the diffusion process (i.e., t is large),
the diffusion models concentrate more on the coarse attributes, which allows the
h-space features to represent the foreground haze of the image. More discussion
is provided in Appendix.

4.2 Architecture of the DiffLI2D

The observations in Sec. 4.1 promote us to utilize the h-space features to facilitate
image dehazing. For all h-space features hhaz

t (t ∈ [0, T ]), the hhaz
t1 (i.e., t = t1)

and hhaz
t2 (i.e., t = t2) are the most representative, where the former captures

the underlying content of x, while the latter characterizes the haze attributes, as
discussed in Sec. 4.1. The selection of t1 and t2 will be described in Sec. 5.3. Based
on this, we propose a Diffusion Latent Inspired network for Image Dehazing
(DiffLI2D). As shown in Fig. 3, the DiffLI2D comprises multiple DiffLI2D blocks
arranged in the U-Net structure. Each block consists of a Content Integration
Module (CIM) that leverages hhaz

t1 for image content recovery, and a Haze-Aware
Enhancement (HAE) module which utilizes hhaz

t2 for haze removal.
Content Integration Module. To effectively leverage the h-space feature

hhaz
t1 for content recovery, we propose the Content Integration Module (CIM), as

illustrated in Fig. 3(c). Specifically, given the intermediate feature F ∈ RĤ×Ŵ×Ĉ
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and the h-space feature hhaz
t1 ∈ RH′×W ′×C′

, we can get hhaz′

t1 = Wch
haz
t1 , where

hhaz′

t1 ∈ RH′×W ′×Ĉ , and Wc is a 1× 1 convolution kernel. Then, F is projected
into query Q = WQF , and hhaz′

t1 is projected into key K = WKhhaz′

t1 and value
V = WV h

haz′

t1 . WQ, WK , and WV are all implemented by 1 × 1 convolution
kernel. After that, we reshape Q ∈ RĤŴ×Ĉ , and K,V ∈ RH′W ′×Ĉ , and obtain
final output F ′ formulated by:

F ′ = WO · Softmax(
QKT√

Ĉ
) · V + F, (6)

where WO is implemented by 1 × 1 convolution kernel. Similar with trans-
former [49], the multi-head mechanism is introduced to the CIM. Through the
interaction, the CIM encourages the DiffLI2D to fully explore the correspondence
between F and hhaz

t1 , and further enables the DiffLI2D to dynamically capture
the informative content representations in hhaz

t1 for effective content recovery.
Haze-Aware Enhancement. We further design a Haze-Aware Enhance-

ment (HAE) module to utilize hhaz
t2 as guidance for haze removal, as shown in

Fig. 3(d). Given the h-space feature hhaz
t2 , we first use it as the guidance to

dynamically enhance the input feature F ′ in a SFT [51] manner, which is:

F ′
m = Wγh

haz
t2 · F ′ +Wβh

haz
t2 . (7)

After that, we further modulate the integrated feature F ′
m from channel

dimension, which is:

Fo = σ(WL · AvgPool(F ′
m)) · F ′

m + F ′, (8)

where σ denotes the Sigmoid function, WL is a linear layer, and AvgPool means
the average pooling operation. Through this, the HAE adapts DiffLI2D to the
haze characteristics within hhaz

t2 , which dynamically modulates the input features
under the guidance of hhaz

t2 for haze removal and further enhancement.
The optimization objective for training DiffLI2D is defined as:

L = ∥yr − y∥1 (9)

where yr denotes the restored image. Note that the pre-trained diffusion model
ϵθ is frozen, and do not participate in the optimization.

Note that our DiffLI2D avoids re-training diffusion models [24, 63] and the
time-consuming reverse sampling process [9, 47]. Instead, by leveraging the h-
space features hhaz

t1 and hhaz
t2 as guidance, the DiffLI2D can effectively recover

clean images. More detailed comparisons are discussed in Appendix.

5 Experiments

In this section, we conduct comprehensive experiments to verify the effectiveness
of the proposed DiffLI2D. More experimental results and details can be found
in Appendix for further reference.
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Table 1: Performance comparisons with state-of-the-art dehazing methods across syn-
thetic (i.e., SOTS) and real-world (i.e. Dense-Haze and NH-HAZE) dehazing datasets.
The superscript ∗ means diffusion model-based method for image dehazing. The best
results are marked as bold and the second ones are masked by underline.

Method
SOTS Dense-Haze NH-HAZE

#Params
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DCP [18] 15.09 0.765 0.069 10.03 0.386 0.605 10.57 0.520 0.399 -
DehazeNet [5] 20.64 0.800 0.242 13.84 0.425 0.637 16.62 0.524 0.529 0.01M
AOD-Net [29] 19.82 0.818 0.099 13.14 0.414 0.599 15.40 0.569 0.495 0.002M
FFA-Net [38] 36.39 0.989 0.005 14.39 0.452 0.498 19.87 0.692 0.365 4.68M
MSBDN [11] 33.79 0.984 0.029 15.37 0.486 0.536 19.23 0.706 0.292 31.35M
SwinIR [31] 24.93 0.932 0.049 12.20 0.510 0.639 16.15 0.623 0.479 0.91M

AECR-Net [55] 37.17 0.990 0.007 15.80 0.466 0.537 19.88 0.707 0.278 2.61M
MPRNet [65] 32.14 0.983 0.011 13.82 0.519 0.620 17.88 0.631 0.368 15.74M
Restormer [64] 38.43 0.989 0.009 15.17 0.557 0.629 18.32 0.635 0.355 26.13M
Dehamer [15] 36.63 0.988 0.005 16.62 0.560 0.480 20.66 0.684 0.230 132.50M
IR-SDE∗ [34] 33.82 0.984 0.014 12.03 0.508 0.485 12.59 0.520 0.361 537.21M
ResShift∗ [63] 29.06 0.950 0.017 13.67 0.517 0.576 16.26 0.625 0.327 114.65M

DiffLI2D∗ (Ours) 40.33 0.992 0.004 16.97 0.584 0.406 20.29 0.738 0.217 8.63M

5.1 Implementation Details

Datasets. We evaluate our method on both synthetic and real-world datasets.
For synthetic scene, the RESIDE [30] is utilized for training and testing. Specif-
ically, the subset Indoor Training Set (ITS) of RESIDE is used for training. It
consists of 13,990 hazy images, which are generated from 1,399 clean images.
The subset Synthetic Objective Testing Set (SOTS) of RESIDE includes 500
indoor and 500 outdoor hazy images. We choose the indoor part for testing.
For real-world scene, the Dense-Haze [1] and NH-HAZE [2] are adopted. Both
datasets have 55 hazy-clean image pairs, 50 of which are utilized for training
and 5 of which are utilized for testing.

Training Details. The proposed DiffLI2D is trained by Adam optimizer,
where β1 and β2 are set to 0.9 and 0.999, respectively. The total training epoch
is set to 1200. The initial learning rate is set to 2 × 10−4, and decreases with
a factor of 0.5 every 300 epochs. The mini-batch is set to 40, and the images
are resized, cropped to 128 × 128 with being flipped horizontally randomly. In
our experiments, we choose the unconditional DDPM model pre-trained on Im-
ageNet [10] as the ϵθ. The whole model is trained with one 3090Ti GPU using
PyTorch framework. More implementation details are provided in Appendix.

Evaluation Metrics. To assess the performance, we adopt three different
metrics, including PSNR, SSIM [53] and LPIPS [67]. PSNR and SSIM are em-
ployed to quantify the fidelity of the restored images – the higher their values,
the better the restoration quality. LPIPS is utilized to measure the perceptual
difference and visual quality, with lower values indicating better performance.
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2
D (Ours) GT

Hazy

DehazeNet SwinIR MPRNet Restormer
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2
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Fig. 4: Qualitative results of different methods for dehazing on SOTS dataset. Our
method is shown in bold.

5.2 Evaluation on Image Dehazing

Experiment Results on Synthetic Dataset. Tab. 1 shows the comparison re-
sults between the DiffLI2D and existing dehazing methods on SOTS dataset. We
can see that DiffLI2D outperforms Restormer and Dehamer with less parameters.
Additional, the lower LPIPS scores indicate that the image restored by DiffLI2D
are better aligned with human visual system. It is noteworthy that, compared
with existing diffusion model-based methods (e.g ., IR-SDE), our method not
only achieves superior results but also avoids the re-training diffusion models.
Moreover, our method circumvents the potential time-consuming sampling dur-
ing the inference. We also shows the qualitative comparison in Fig. 4. As we can
see, our method can recover image details and remove haze more effectively.

Experiment Results on Real-World Datasets. We further evaluate the
proposed DiffLI2D on Dense-Haze [1] and NH-HAZE [2] dataset. Tab. 1 shows
that the DiffLI2D outperforms or achieves at least comparable performance to
compared image dehazing methods across two datasets. Fig. 5 and Fig. 6 illus-
trate the qualitative results on Dense-Haze and NH-HAZE, respectively. It can
be seen that our method can recover haze-free images with better visual effects.

5.3 Ablation Study

In this section, we perform comprehensive ablation studies to demonstrate the
effectiveness of our designs in the proposed DiffLI2D. More results of ablation
studies are provided in Appendix.



Abbreviated paper title 11
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Fig. 5: Qualitative results of different methods for dehazing on Dense-Haze dataset.

AOD-NetDCP MSBDN
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2
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Fig. 6: Qualitative results of different methods for dehazing on NH-HAZE dataset.

Choice of t1 and t2 for image dehazing. As discussed in Sec. 4.1, the
h-space features exhibit different characteristics at different time-step t. In fact,
as t increases, the h-space features undergo a gradual and continuous transforma-
tion, transitioning from primarily representing the contents to mainly reflecting
the haze properties. We show this transformation in Fig. 7. This implies that,
compared with other time-steps, the h-space feature hhaz

0 corresponding to t = 0
is the most representative of the underlying image content. So in our experi-
ments, t1 is set to 0. As illustrated in Fig. 8(a), t1 = 0 is the best choice.

We further investigate the influence of the choice of t2 for image dehazing.
We find that the DiffLI2D achieve optimal results for image dehazing when t2
is around 500. As described in Fig. 8(b), t2 = 500 outperforms t2 = 100 by
1.99dB in terms of PSNR, which also surpasses t2 = 600 by 2.07dB in PSNR.
This is consistent with the observation in Fig. 7. When t2 is relatively small
(e.g ., t2 = 300), the h-space features hhaz

t2 are still intertwined with hcle
t2 , and

cannot effectively represent the haze characteristics. When t2 is around 500, the
hhaz
t2 are clustered together, which can capture and represent the haze attributes

effectively. Note that whether for t1 or t2, when they are too large (e.g ., t1 =
1000 or t2 = 1000), the image dehazing performance of DiffLI2D experiences a
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t=0 t=100 t=200 t=300 t=400 t=500

Diffusion Forward Process

Fig. 7: Transformations of the h-space feature distributions of hazy-clean image pairs,
as the time-step t changes.
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Fig. 8: Performance (PSNR) comparison of different choice of t1 and t2 for image
dehazing on SOTS dataset.

significant decline. This can be attributed to the excessive noise that erases a
considerable amount of information from the original hazy image x, making the
h-space feature less effective in guiding the dehazing process.

Effectiveness of the CIM and HAE. Our DiffLI2D consists of two key
modules, the content integration module (CIM) and the haze-aware enhancement
(HAE) module. The former is designed to facilitate the image content recovery
with hhaz

t1 , while the latter aims to enhance haze removal using hhaz
t2 . To evaluate

the benefits of them, we design several variants as shown in Tab. 2. Among them,
the “DiffLI2D w/o CIM” represents that we replace the CIM in each DiffLI2D
block with self-attention module that has similar number of parameter as CIM.
We do a similar operation for the “DiffLI2D w/o HAE”. The “Baseline” means
that both CIM and HAE are replaced.

As we can see, “DiffLI2D w/o CIM” and “DiffLI2D w/o HAE” outperform
“Baseline” by 1.56dB, 1.72dB, 0.53dB and 1.79dB, 1.83dB, 1.05dB in terms of
PSNR on SOTS, Dense-Haze, NH-HAZE dataset, respectively. With both two
modules, the “DiffLI2D” achieves 40.33dB, 16.97dB, 20.29dB on SOTS, Dense-
Haze, NH-HAZE dataset, which demonstrates that the CIM and HAE are com-
plementary and both vital to the DiffLI2D, jointly resulting in a superior per-
formance in image dehazing.

Effectiveness of the H-Space features. To further evaluate the effective-
ness of the h-space for image dehazing, we compare it with other feature spaces.
Specifically, we compare h-space with feature spaces of different layers in the
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Table 2: Ablation results of several variants of DiffLI2D for image dehazing on SOTS,
Dense-Haze, and NH-HAZE dataset. The PSNR is utilized for evaluation.

Model CIM HAE SOTS Dense-Haze NH-HAZE
Baseline × × 36.65 14.32 18.11

DiffLI2D w/o CIM ×
√

38.21 16.04 18.64
DiffLI2D w/o HAE

√
× 38.44 16.15 19.16

DiffLI2D
√ √

40.33 16.97 20.29

Table 3: Performance (PSNR) comparisons between H-Space and other feature spaces
for image dehazing on SOTS, Dense-Haze, and NH-HAZE datasets.

Method Layer Comparison Network Comparison
Layer-E Layer-D H-Space VGG16 ResNet50 H-Space

SOTS 36.52 39.10 40.33 27.83 25.49 40.33
Dense-Haze 13.86 16.44 16.97 12.87 12.52 16.97
NH-HAZE 17.53 19.88 20.29 16.23 15.62 20.29

same diffusion model, and we also compare h-space with feature spaces of other
networks. Tab. 3 shows the comparison results. For different layers, “Layer-E”
and “Layer-D” means that we replace the h-space representations hhaz

t1 and hhaz
t2

with those features extracted from the encoder and decoder of the same pre-
trained diffusion model. As we can see, compared with features extracted from
the encoder and decoder, the h-space features achieves 3.81dB, 3.11dB, 2.76dB
and 1.23dB, 0.53dB, 0.41dB improvement in terms of PSNR on SOTS, Dense-
Haze, and NH-HAZE dataset, respectively. For different networks, we choose the
commonly-used VGG16 [45] and ResNet50 [19] as comparison. Note that, for
fair comparison, both VGG16 and ResNet50 are pre-trained on ImageNet [43],
which is the same dataset used to pre-train the diffusion model ϵθ employed
in our study. The “VGG16” and “ResNet50” in Tab. 3 denote that we replace
the h-space features hhaz

t1 and hhaz
t2 with corresponding features extracted from

the feature spaces of VGG16 and ResNet50, respectively. As we can see, h-space
features drive from pre-trained diffusion model can facilitate the image dehazing
more effectively than those extracted from other pre-trained models.

5.4 The Generalization Capabilities

To evaluate the generalization capabilities of our method, we further evaluate the
effectiveness of our method on more low-level image restoration tasks. Specifi-
cally, we further test our method on low-light image enhancement on LOL-v1 [54]
and LOL-v2 dataset [58]. We show the comparison results about low-light image
enhancement on Tab. 4. FID [21] metric is introduced for further evaluation.
We also show the qualitative results in Fig. 9. As we can see, the proposed
DiffLI2D can also achieve superior performance when handling other low-level
image restoration tasks, which demonstrates that the capabilities of DiffLI2D are
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Table 4: Performance comparisons with state-of-the-art low-light image enhancement
methods on LOL-v1 and LOL-v2 Real dataset. The superscript ∗ denotes the diffusion
model-based image restoration method. The best results are marked as bold and the
second ones are masked by underline.

Method
LOLv1 LOLv2-Real

PSNR SSIM LPIPS FID PSNR SSIM LPIPS FID
RetinexNet [54] 16.77 0.462 0.417 126.27 17.72 0.652 0.436 133.91
Zero-DCE [16] 14.86 0.562 0.372 87.24 18.06 0.580 0.352 80.45

EnlightenGAN [25] 17.61 0.653 0.372 94.70 18.68 0.678 0.364 84.04
URetinex-Net [56] 19.97 0.828 0.267 62.38 21.13 0.827 0.208 49.84

Uformer [52] 19.00 0.741 0.354 109.35 18.44 0.759 0.347 98.14
Restormer [64] 20.61 0.792 0.288 73.00 21.36 0.835 0.314 63.69

WeatherDiff∗ [36] 16.30 0.786 0.277 65.61 15.87 0.801 0.272 65.82
ResShift∗ [63] 19.23 0.735 0.225 61.21 20.41 0.704 0.218 60.72
IR-SDE∗ [34] 12.90 0.557 0.486 175.33 12.53 0.511 0.453 157.08
GDP∗ [13] 13.93 0.630 0.445 95.16 13.15 0.527 0.421 97.54

DiffLI2D∗ (Ours) 23.30 0.849 0.136 55.88 22.35 0.874 0.186 42.49

Low-Light URetinex-Net Restormer IR-SDE DiffLI
2
D (Ours) Ground Truth

Fig. 9: Qualitative results of different methods for low-light image enhancement.

not limited to image dehazing. More discussion, analysis, visual results and com-
parison results about other image restoration tasks are provided in Appendix.

6 Conclusion

In this paper, we investigate the semantic latent space of frozen pre-trained dif-
fusion models for image dehazing, and reveal that the features in the semantic
latent space can effectively represent the content and haze characteristics of hazy
images, as the time-step changes. We also propose a Diffusion Latent Inspired
network for Image Dehazing (DiffLI2D), which uses the semantic latent features
of frozen pre-trained diffusion models for effective image dehazing. Extensive
experiments on multiple datasets demonstrate the effectiveness of our method.
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Science Foundation under Grant 2108085UD12. We acknowledge the support of
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tion, USTC.
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