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In this supplementary document, we present extended results, additional implemen-
tation and background details for the proposed method, details of different training
configurations, dataset details, abbreviations, and additional qualitative analyses.

1 Extended Results

Here, we provide additional results for different preprocessing and training configura-
tions of the baseline methods and our proposed method.

Upgraded Baselines: In Tab. 4, we present an extended version of state-of-the-art com-
parisons (Tab. 1 of the main paper).

In block A, we include results for the authors’ provided ResNet-101 based CosPlace
model with 2048 dimensional descriptors, which is their best performing model as re-
ported in their supplementary [4]. We also retrained CosPlace using its default GeM as
well as our proposed VLAD-BuFF aggregation. It can be observed that our proposed
aggregation on top of CosPlace’s pipeline improves recall for most of the datasets.

In blocks B and C, we include the respective authors’ trained models for CosPlace,
EigenPlaces, and MixVPR – they all differ in terms of dataset-loss-backbone
but provide a reference to compare against their other variants in Tab. 4.

We further include ‘backbone-enhanced’ versions of they key baselines. CosPlace
and EigenPlaces used ResNet-101 and ResNet-50 backbones with GeM pooling and
SFXL training dataset using their respective proposed loss functions. In block D, we
include a newly trained model for EigenPlaces where we only replace its ResNet back-
bone with DINOv2. It can be observed that this replacement improves EigenPlaces’
performance (compared to block B) but does not achieve state-of-the-art results. In
block F, we use GSV-MS-DINOv2 training configuration (as used by SALAD and
our method). To compare different aggregation methods, we include newly trained
GSV-MS-DINOv2-GeM and GSV-MS-DINOv2-MixVPRmodels. Table 4 shows that
GSV-MS-DINOv2-GeM leads to an improved recall for MSLS, SPED, Tokyo247,
and Baidu datasets, in comparison to SFXL-Clas-R101/R50 based CosPlace and
SFXL-Clas-R50 based EigenPlaces. For GSV-MS-DINOv2-MixVPR, performance
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Table 4: Recall@K comparison of our VLAD-BuFF against state-of-the-art VPR techniques on
challenging benchmark datasets with the best recall bolded and second-best underlined.

Method
MSLS NordLand P250k-t SPED SFSM Tokyo247 StLucia AmsterTime Baidu

Dim R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

A) SFXL-Clas-R101:
CosPlace (CP)† [4] 2048 90.4 94.2 49.7 66.0 91.8 95.6 76.4 85.5 81.9 86.6 86.7 95.6 99.9 99.9 51.9 72.0 42.5 55.8
CP w. GeM 2048 86.2 91.9 47.1 63.1 92.0 97.6 76.3 88.6 80.2 85.9 89.2 94.9 99.2 99.9 51.7 72.1 41.7 54.2
CP w. VLAD-BuFF 2048 86.0 92.2 57.7 73.6 92.7 98.0 78.6 90.0 80.3 86.3 89.2 96.2 99.5 99.9 52.9 72.6 40.8 54.8

B) SFXL-Clas-R50:
CosPlace† [4] 512 79.5 87.2 51.3 66.8 89.7 96.4 79.6 90.4 78.1 84.8 87.0 94.9 99.0 99.9 47.7 69.8 41.6 55.0
EigenPlaces† [6] 2048 87.4 93.0 64.4 79.6 92.8 97.4 82.2 93.7 84.6 87.9 87.9 94.9 99.5 99.9 49.8 72.4 61.5 76.4

C) GSV-MS-R50:
MixVPR† [1] 4096 88.2 93.1 55.0 70.4 94.3 98.2 84.7 92.3 76.5 83.7 86.0 91.7 99.6 100 40.2 59.1 64.4 80.3

D) SFXL-Clas-DINOv2:
EigenPlaces 512 91.1 95.4 66.8 82.4 95.8 99.1 86.2 95.1 86.5 89.9 92.7 97.1 99.7 99.9 51.6 72.6 62.7 77.7

DINOv2-Pretrained:
E) AnyLoc [11] 49K 59.2 76.6 9.6 16.3 88.1 95.5 76.6 90.0 70.4 79.9 85.7 94.3 79.0 90.4 41.3 61.8 75.2 87.6

F) GSV-MS-DINOv2:
GeM 2048 88.9 94.7 54.2 72.0 93.4 97.9 85.2 92.6 81.0 85.4 90.5 95.2 99.8 100 45.7 67.7 63.7 79.5
MixVPR 4096 88.8 94.6 52.7 70.7 92.6 97.6 88.3 92.6 78.3 85.5 89.8 94.9 99.7 100 46.6 69.6 51.7 70.7
SALAD† 8448 92.2 96.2 76.1 89.2 95.1 98.5 92.1 96.2 85.4 88.5 95.2 97.1 99.9 100 58.7 79.2 68.5 81.7
SALAD† + PCAW 8192 90.3 95.3 74.5 87.5 94.8 98.3 91.3 95.6 83.9 87.4 93.3 97.5 99.9 100 52.2 71.3 67.2 80.9
SALAD 8448 91.9 95.8 70.8 85.4 94.9 98.7 90.1 95.9 86.0 88.9 95.2 97.8 100 100 59.8 79.2 69.1 82.5
SALAD + PCAW 8192 90.3 95.3 69.0 83.6 94.7 98.6 89.6 95.1 83.8 87.1 95.6 97.8 99.9 99.9 52.2 70.0 70.7 84.0
NetVLAD + PCAW 8192 91.8 96.2 76.2 89.2 95.7 98.6 91.3 96.2 88.2 90.4 97.1 98.1 99.9 100 61.8 82.1 76.4 86.7
VLAD-BuFF (Ours):
w. PCAW 8192 92.4 95.8 78.0 90.4 95.6 98.7 92.8 96.2 88.3 91.0 96.5 98.1 100 100 61.4 81.9 77.5 87.9
w. PrePool + PCAW 4096 91.9 95.9 71.4 86.3 95.0 98.2 90.9 96.0 87.3 90.1 97.5 98.4 99.9 100 59.4 78.7 74.3 86.6
†Using the original authors’ provided model.

marginally improved for MSLS, SPED, SFSM, Tokyo247, and AmsterTime but de-
creased for Baidu, Nordland, and Pitts250k. Nevertheless, all these aforementioned up-
graded baselines still perform inferior to our proposed method VLAD-BuFF across all
the datasets5.

SALAD Variants: In our main paper, we reported results for SALAD [9] model that
we trained to ensure a fully fair comparison with our proposed method. In Table 4, we
include results using the checkpoint provided by the authors (†). It can be observed
that VLAD-BuFF still remains the state-of-the-art method across the majority of the
datasets. It can be further observed that using WPCA on SALAD consistently reduces
recall, which significantly limits its potential for efficient retrieval based on low dimen-
sional global descriptors [4, 5, 18].

Upgraded NetVLAD: We include an upgraded version of NetVLAD [2] (based on
GSV-MS-DINOv2 training configuration) as another strong state-of-the-art baseline,
which only differs from VLAD-BuFF in terms of aggregation and is referred to as
NetVLAD + PCAW in Tab. 4. It can be observed that VLAD aggregation, common in
both NetVLAD and VLAD-BuFF, is generally superior to all other baselines. VLAD-
BuFF improves this with the proposed burstiness weighting, achieving higher recall on

5 Note that models trained with DINOv2 as a backbone use 224×224 resolution for training
and 322×322 for evaluation. The only exception is MixVPR, which requires a fixed image
resolution due to its specific pooling method, thus we use 224×224 resolution for both training
and evaluation of MixVPR.
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the majority of datasets. Furthermore, our pre-pool projection based on PCA initializa-
tion retains superior performance with significantly reduced descriptor dimensions and
aggregation compute time.

2 Implementation Details

Here, we provide background details for vanilla NetVLAD’s soft assignment, followed
by the description of parameter settings for our training configurations.

2.1 Vanilla NetVLAD Soft Assignment

Our proposed method VLAD-BuFF uses a burstiness weighting (wi) based on feature-
to-feature similarities. This is applied on top of feature-to-cluster assignment (αik) to
obtain intra-cluster burstiness weighting. Here, we provide the background details for
αik, originally proposed in NetVLAD [2]. The authors implemented it as a convolu-
tional layer with 1×1 spatial support and |C| weight filters/kernels, followed by a soft-
max across the spatial dimensions of the input local feature tensor. The convolutional
filters are the learnable parameters of the NetVLAD aggregation layer, where each filter
is initialized with the cluster center Ck. Furthermore, the authors used a multiplication
factor for these weight filters during initialization to mimic the sparse assignment of
conventional VLAD, as described in the supplementary material of NetVLAD [2] and
detailed in their official implementation6 which also notes the preference of ‘vlad’ over
‘vladv2’ for L2-normalized features.

2.2 Training and Evaluation Configurations

GSV-DINOv2 For training and testing of GSV-DINOv2 pipeline, we used the offi-
cial code7 of the recent state-of-the-art method SALAD [9]. We substitute the SALAD
aggregation layer with our VLAD-BuFF aggregation (or other baseline aggregation
methods such as MixVPR and GeM). We exactly follow SALAD’s training parame-
ters setting, including the Multi-Similarity loss, AdamW optimizer, learning rate 6e−5,
and batch size 60 (each comprising 4 images per place). Each training iteration is com-
pleted in approx. 45 minutes on an NVIDIA A100, spanning 4 epochs, which saves
the best 3 models according to Recall@1 on Pitts30k-val set. The number of clusters
is set to 64 for both VLAD-BuFF and SALAD. While we employed image sizes of
224×224 and 322×322 for training and evaluation across most methods utilizing GSV-
DINOv2 pipeline, MixVPR uniquely required 224×224 dimensions for both due to its
strict architecture needs.

For our benchmarking, we used the evaluation codebases provided by [5, 6, 9]8 to
access the official model checkpoints. For the datasets, we used dataset downloader pro-
vided by [5]9 for AmsterTime; SPED and Nordland were sourced from VPR-Bench [18];
Tokyo247 and StLucia from DVGL [5]; and Baidu from AnyLoc [11].

6 https://github.com/Relja/netvlad/blob/master/README_more.md
7 https://github.com/serizba/salad
8 https://github.com/gmberton/VPR-methods-evaluation
9 https://github.com/gmberton/VPR-datasets-downloader
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Deep Visual Geolocalization (DVGL) Benchmark We used the official code10 for
the recent deep visual geolocalization benchmark [5] to train and test NetVLAD and
VLAD-BuFF. This corresponds to the P30K-Trip-R18 (and P30K-Trip-DINOv2)
configuration. Here, we provide details of the key train/test parameter settings which
strictly follow the official code. For training, batch size is 4 where each sample is com-
posed of 12 images: one query (anchor), one positive and ten negatives mined through
a ‘partial’ strategy [5]. Triplet margin loss [3] is used with Euclidean distances and 0.1
margin, and optimized using Adam with a learning rate of 0.00001. The backbone net-
work is ResNet18 which is clipped beyond conv4 and its pretrained ImageNet weights
frozen, keeping only conv4 as trainable. We neither use PCA nor any supervised lin-
ear projection (fully connected layer) after feature aggregation. All local features are
L2-normalized before aggregation. No data augmentation is used for training. Images
are resized to 640×480 for both training and evaluation. An early stopping criterion
is defined to track improvement in Recall@5 over 3 epochs, with maximum training
epochs set to 15. The number of clusters for NetVLAD and VLAD-BuFF are set to 64.
For P30K-Trip-DINOv2, everything remains the same except that the backbone is
used in the same way as that for GSV-DINOv2 training described earlier.

2.3 Burstiness Exponent p

For the burstiness weighting layer in VLAD-BuFF, we used p as an exponent for the
soft count. This was initialized as 1.0. We observed that its final trained value converged
between 0.7 and 0.8 for different training configuration models. This is in line with the
findings of [10] where their best performing value was 0.5 (as opposed to 1.0), which
our method converges towards.

3 Datasets Details

Pittsburgh: The Pittsburgh dataset [15] consists 250k images collected using Google
Street View. The dataset is divided into a number of places, with 24 images captured
per place from different viewing directions (two pitch and twelve yaw directions). The
reference and query images are captured at different times of the day and several years
apart. In this work, we use the full dataset (Pitts250k) for testing and use its 30K image
subset (Pitts30K) [2] for training and validation. The Pitts250k-test set contains 8280
and 83952 images in query and reference traverses.
Tokyo 24/7: The Tokyo 24/7 dataset [14] contains a large database (75984 images)
collected from Google Street View and a small set of query images collected using
smartphones. The query traverse (315 images) are captured at 125 different locations
with different viewing directions at different times of the day (including night time).
Mapillary Street Level Sequences (MSLS): The MSLS dataset [16] consists of ap-
proximately 1.6 million images collected from 30 different cities across the world over
seven years. The dataset is split into training, validation and test sets, with ground truth
released for the training and validation sets. In this work, we evaluate our method on the

10 https://github.com/gmberton/deep-visual-geo-localization-benchmark
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validation set (740 and 18871 images for query and reference traverses), as per recent
works [5, 8].
St Lucia: The St Lucia dataset [12] was collected by a car driving around a fixed route
of a suburb (St Lucia) in Brisbane, at different times of day. We utilize the subset of this
dataset used in the deep visual geolocalization benchmark [5], which uses the tempo-
rally first and last drives along this route. The query and reference traverses consist of
1464 and 1549 images respectively.
Nordland: The Nordland dataset [13] is recorded by a train traveling through Norway
during four different seasons for 728km. We used the subset of the dataset as used in
VPR-Bench [18], where the winter route is used as the database (27K images) and the
summer route is the query set (2.7K images).
Baidu: The Baidu dataset [11] captured in a mall, includes images with varied camera
poses and provides both the ground truth location and 3D pose for each image. It is suit-
able for 6-Degrees of Freedom (DoF) Localization and VPR testing, comprising 2292
query images and 689 reference images. The dataset is particularly challenging due to
perceptual aliasing, dynamic objects (e.g., people), and semantically rich elements like
billboards and signs, offering a comprehensive environment for VPR evaluation.
AmsterTime: The AmsterTime dataset [17] captures Amsterdam’s urban/historic scenery
at different times across decades, offering a unique challenge of recognizing the same
location from different viewpoints and colorscale (RGB vs grey). The query and refer-
ence traverses consist of 1231 and 1231 images [6].
San Francisco SMall: The San Francisco Small (SF-SMall) dataset [4], a subset of a
larger collection SF-XL, focuses on the San Francisco area, providing a dense urban
environment for VPR evaluation. The query and reference traverse consists of 1K and
27191 images.
SPED: The SPED dataset [7] is renowned for its diverse environmental conditions,
showcasing substantial seasonal and illumination changes, with winter scenes as queries
(607 images) and summer scenes as references (607 images). This variability, including
moderate viewpoint shifts, makes SPED a challenging dataset for VPR.

4 Abbreviations

In Tab. 5, we provide a list of abbreviations used in the main paper.

Table 5: List of abbreviations used in this paper.

Abbreviation Description

GAP Global Average Pooling
GeM Generalized Mean Pooling
GPO Generalized Pooling Operator
MAC Maximum Activations of Convolution
PCA Principal Component Analysis
ViT Vision Transformer

VLAD Vector of Locally Aggregated Descriptors
VPR Visual Place Recognition
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5 Qualitative Analysis

Here, we provide additional qualitative examples that compare the weighting patterns
between vanilla NetVLAD’s soft assignment and VLAD-BuFF’s burstiness, see Fig. 4-
Fig. 7 with detailed captions. In Fig. 6 and Fig. 7, we show soft assignment weighting
for both NetVLAD and VLAD-BuFF to highlight the impact of burstiness weighting
on learning backend local features, resulting in noticeable variations in their cluster
assignment. In Fig. 7, we present a failure case of our method. We used the P30K-R18
trained models for these qualitative analyses; in the subsequent section, we describe our
procedure to select the clusters for the visualization purpose.

5.1 Procedure

We select the triplet (query, positive and negative) using ground truth by obtaining query
indices where VLAD-BuFF performed better than vanilla NetVLAD based weighting.
For each image, we compute its C ×D VLAD representation which is L2-normalized
(first cluster-wise and then over the flattened vector [2]). For each normalized D-dimensional
aggregated residual vector per cluster Ck, we compute a triplet margin mk as the dif-
ference between query-negative and query-positive Euclidean distances:

mk = ||qk − nk|| − ||qk − pk|| (1)

For a cluster, a larger margin indicates its ability to better separate a negative from
the query-positive pair. We use these margins to obtain the ranking of clusters for both
the soft-assignment NetVLAD baseline and VLAD-BuFF models, referred to as rNV

k

and rV B
k respectively. We then compute cluster rank difference between the two models

to obtain the cluster index which maximally changed the triplet margin, as below:

k̄ = argmax(rNV
k − rV B

k ) (2)

Intuitively, k̄ will be selected as the cluster index which led to low margin in NV
and high margin in VB, thus being crucial in match selection for the query.
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Fig. 4: In this example from the Nordland dataset, both the vanilla soft assignment (2nd row)
and our proposed method (3rd row) select image regions lying just beneath the tree canopies
(first column). In the positive image (third column), both the methods select some features on the
railway tracks (highlighted in yellow). However, our method downweights these features relative
to those below the tree canopies (more yellow than tracks), thus improving the query-positive
matching.
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Fig. 5: In this example from the St Lucia dataset, vanilla soft assignment results in several highly-
weighted features, including those on trees’ shadows (query and negative) and vehicles (positive).
However, our proposed weighting (3rd row) downweights all the features found on shadows and
vehicles, and instead selects a signboard with a consistent weighting pattern between the query-
positive pair.
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Fig. 6: In this example from the Pitts30k dataset, we highlight the improved behavior of local
features, learnt through VLAD-BuFF with burstiness weighting. Thus, we show the soft assign-
ment weighting using both the vanilla NetVLAD model as well as the proposed VLAD-BuFF
model. The weighting patterns for the negative and the positive remain similar across the rows.
However, in the query image, it can be observed that VLAD-BuFF’s soft assignment selects the
overlapping region between the tree and the building at the bottom center of the image, whereas
NetVLAD’s soft assigment selects the trees at the bottom right. The former is more consistent
with the feature selection in the positive, thus improving the query-positive matching. Note that
the burstiness weighting (4th row) had only a slight impact on top of the soft assignment weight-
ing (3rd row), thus the variation in the weighting pattern between NetVLAD and VLAD-BuFF is
attributed more to feature-to-centroid distances than feature-to-feature distances in this case.
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Fig. 7: In this example from the St Lucia dataset, we show a failure case of VLAD-BuFF. Note
that the middle column is the positive, correctly selected by the vanilla NetVLAD, and the
third column is the negative, incorrectly selected by VLAD-BuFF. Here, the soft assignment
of VLAD-BuFF model (3rd row) selects certain features on the car, consistently across the query
(1st column) and the negative (3rd column), which leads to incorrect matching. On the other
hand, NetVLAD’s soft assignment (2nd row) selects features along the lane markings for both
the query and the positive.
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