
SafaRi:Adaptive Sequence Transformer for
Weakly Supervised Referring Expression

Segmentation
(Supplementary Material)

Sayan Nag1,2⋆, Koustava Goswami2, and Srikrishna Karanam2

1 University of Toronto
sayan.nag@mail.utoronto.ca

2 Adobe Research
{koustavag,skaranam}@adobe.com

A Additional Related Work

Unsupervised Referring Expression Comprehension (REC). Referring
Expression Comprehension (REC) is a grounding task which involves localizing
an object present in an image with respect to a textual description of that object
[9, 12, 17, 23, 24, 42, 47]. With the introduction of Vision-Language Pretrained
(VLP) models [5,8,15,26], it has been possible to develop Unsupervised or Zero-
Shot REC (ZS-REC) methods [11, 31, 33, 43]. CPT [43] colors region proposal
boxes and utilizes a captioning model for predicting the colored proposals that
are linked to the textual expressions. RedCircle [31] employs visual prompting by
drawing circular contours outside the detected object proposals and subsequently
ranking them based on the obtained CLIP scores. However, it majorly lacks the
understanding of the spatial relationships among the detected proposals.
Referring Video Object Segmentation. Referring Video Object Segmenta-
tion (R-VOS) is a cross-modal task with the objective to segment the target ob-
ject in all video frames, referred by a linguistic description. Existing approaches
comprises of (i) bottom-up methods where RES algorithms are applied inde-
pendently at the frame-level [30, 44], (ii) top-down methods where a language
grounding model selects the best object tracklet from a candidate set of track-
lets initially constructed by propagating the detected object masks from key
frames [16], and (iii) query-based method which introduce a small set of object
queries that are conditioned on the referring expression for the target object [38].
However, most of these methods are trained in a fully-supervised manner on the
benchmark R-VOS datasets. Conversely, in this work we consider a Zero Shot
R-VOS (ZS-R-VOS) task where we apply our model (trained on RES task) in a
zero-shot manner.
Sequence-to-Sequence (seq2seq) Modeling in Vision Tasks. Seq2seq mod-
eling has displayed immense success in Natural Language Processing (NLP)
⋆ Work done during internship at Adobe Research.
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tasks [1, 7, 27, 28, 35, 36]. Taking inspiration from such studies, recent progress
have been made to model vision tasks in a seq2seq manner [3,4,19,20,37,41,46].
One of the foremost studies in this domain is Pix2Seq [3] that proposes object
detection as a seq2seq modeling task conditioned on the observed pixel inputs.
Pix2Seqv2 [4] is an extension of Pix2Seq with an inclusion of instance segmen-
tation and captioning tasks unified into a single shared interface. UniTAB [41]
employs a unified seq2seq learning framework which is able to jointly output
open-ended text and box representations, facilitating alignment between words
and boxes. Obj2Seq [6] takes objects as inputs and outputs human pose esti-
mation into sequence-generated form. Finally, SeqTR [46] proposes to combine
visual grounding tasks under a unified framework. Taking inspiration from these
studies, we implement RES with a contour prediction approach, however, in a
weakly-supervised setting.

B Additional Method Details

B.1 Revisiting SeqTR

SeqTR [46] conceptualized Referring Expression Segmentation (RES) as an auto-
regressive point-prediction problem instead of independent pixel classification
tasks as employed in [2,12,40]. Unlike [12,45], it further unified Visual Grounding
tasks resulting in a simple and efficient multi-task training. In the case of RES,
the segmentation mask is serialized into a sequence of N discrete co-ordinate
object-contour points given as {xi, yi} ∀ i ∈ {1, ..., N}. During inference, SeqTR
predicts the target tokens in an auto-regressive manner ending it with a special
[EOS] token. Furthermore, SeqTR involves the use of simple cross-entropy loss
for RES task instead of iou or dice losses as used in [2, 12]. Moreover, SeqTR
has shown to perform exceedingly well as compared to MDETR [12] in the case
of limited annotations [25]. Therefore, taking the above inspiration we develop
SafaRi, which outperforms existing baselines in both the fully supervised and
weakly supervised scenarios by substantial margins.

B.2 Construction of Contour Points

We followed [25, 46] to construct the sequence of contour points for the RES
task. This is done by uniformly sampling P points clockwise along the contour
of the mask and subsequently quantizing them into M quantization bins scaled
by image height (H) and width (W ), using:

xi = round (Mxi

W
) ; yi = round (Myi

H
) (1)

B.3 Additional details on Collapse Reduction term of AMCR Loss

For the collapse reduction term, we first compute the total number of non-zero
elements in A given by n(A). This is achieved by computing the sum of the
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Algorithm 1 Weak-Supervision with γ-Scheduling

Require: GT data DGT ∶ {I, T,M}; Remaining Unlabelled data DGT
rem ∶ {Irem, Trem}

Mask Validity Filtering: MVF; Total Scheduling Steps: S; Schedule factor: γ0 = 0.9
SafaRi Encoder: F0

θ

Ltotal ← F0
θ (I, T,M)) ▷ Step 1

while s ≤ S do
M̂ ← MVF(Fs

θ (Irem, Trem)) ▷ Step 2
{I ′, T ′

,M
′} ← {I, T,M} + {Î , T̂ , M̂}

LSafaRi ← Fs
θ (I ′, T ′

,M
′) ▷ Step 3

γs+1 ← γs + 0.1/S
s ← s + 1

end while

ratio A
A+ϵ

where ϵ = 0.0001. Next, we compute the ratio of n(A) to the sum
of the mask M pixel values which gives the total number of non-zero values of
the mask for any image b in the batch of size N . We collect the ratios for all
the images in the batch generating a distribution QN which in an ideal scenario
should entirely overlap with an uniform distribution (target distribution) given
by UN . Therefore, we aim to minimize the Kullback-Liebler (KL) divergence
loss between the two distributions.

B.4 Algorithm for Weak-Supervision with γ-Scheduling

The algorithm for Weak-Supervision with γ-Scheduling is given in Algorithm 1.

B.5 SpARC

B.5.1 ZS-REC with SpARC. In our Mask Validity Filtering stage, unlike
Partial-RES [25] we do not use 100% ground truth box annotations.
This is because we consider a more challenging and realistic weakly-supervised
problem setting for RES. Therefore, we propose SpARC, which incorporates red-
box visual prompting and spatial awareness components in a pretrained Vision-
Language Model (VLM), such as CLIP. SpARC is a zero-shot technique for
finding the box corresponding to the object being referred to in the associated
linguistic expression. As shown in Figure 1, CLIP takes in the images with
objects surrounded by red borders and respective backgrounds being blurred and
generates proposal (proposals are detected using an object detector pretrained
on a different dataset, see main text) scores based on the text for each of these
visual prompts (’A’, ’B’, ’C’). However, as shown (Figure 1) instead of ’A’, it
gives highest score for ’C’ indicating that spatial understanding is missing in
CLIP. The Spatial Reasoning (SR) component in SpARC takes in the bounding
boxes and the relation (e.g., in this case: "left"). Based on the bounding box
information, it generates probability scores (e.g., in this case: 1 for ’A’, 0 for
both ’B’ and ’C’) which are then multiplied with the CLIP scores to generate
the final combined scores (e.g., as correctly identified, ’A’ has the highest score
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Fig. 1: Example of Zero-Shot Referring Expression Comprehension with
SpARC module used for identifying the boundaries (boxes) of the objects of interest
used in the Mask Validity Filtering stage. VLM: Vision-Language Model. SR: Spatial
Reasoning.

in this case). More details regarding the spatial relations are discussed next.
Results on RefCOCO/+/g val and test datasets are also provided in Table 1
demonstrating SpARC significantly outperforms baseline methods on the ZS-
REC task.
B.5.2 Spatial Reasoning component in SpARC. In the Spatial Reasoning
module of SpARC, we use a rule-based assignment procedure depending on the
spatial relationships among different object proposals in the image, as can be
identified by their positions, orientations and associations with other objects
within the image. We broadly categorize these relationships as:
1. Position: We specifically consider the relative position of one object with

respect to another object, e.g. "left," "above," etc.
2. Distance: We compute the distance between proposals to assess if an object

is "near"/"closer" or "far" from the other object.
3. Size: We compare the sizes by computing the area of the proposals to de-

termine if an object is "larger" or "smaller" than another object.
4. Containment/Intersection: Utilizing IoUs we compute the degree of in-

tersection and assess if one object is fully/partially "inside", or completely
"outside". Furthermore, we also check using the location of proposal’s cen-
troid if an object lies in "between" two other objects.

5. Special Relations: We also analyze some special relations such as "with"
by finding close associations using distance metric between two proposals’
centroids. Moreover, for cases containing information such as "n o’clock"
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Fig. 2: Examples of Spatial Relations between different objects in images and
respective rule-based assignment protocols.

where n refers to a natural number between 1 and 12, we calculate the angle
of the proposal’s centroid with respect to the center of the image.

We provide such examples of relationships along with their respective rule
assignments in Figure 2. Incorporating such information leads to improved per-
formances of SpARC in the MVF stage used for filtering of pseudo-labels.

B.6 Additional Dataset Details

B.6.1 RES. RefCOCO contains 142,209 annotated expressions for 50,000 ob-
jects in 19,994 images, and RefCOCO+ comprises of 141,564 expressions for
49,856 objects in 19,992 images. In contrast to RefCOCO, RefCOCO+, does
not contain the location words in the referring expressions therefore making it
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Method Eval. RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

DTWREG [34] FT 39.2 41.1 37.7 39.2 40.1 38.1 – –
Pseudo-Q [11] FT 56.0 58.3 54.1 38.9 45.1 32.1 46.3 47.4

CPT-Blk [43] ZS 26.9 27.5 27.4 25.4 25.0 27.0 32.1 32.3
CPT-Seg [43] ZS 32.2 36.1 30.3 31.9 35.2 28.8 36.7 36.5
Red Circle [31] ZS 49.8 58.6 39.9 55.3 63.9 45.4 59.4 58.9
SpARC (Ours) ZS 53.5 59.0 55.6 55.8 65.1 52.8 68.8 67.5

∆SpARC - RedCircle ZS 3.7 ↑ 0.4 ↑ 15.7 ↑ 0.5 ↑ 1.2 ↑ 7.4 ↑ 9.4 ↑ 8.6 ↑

Table 1: Comparison of SOTA methods on ZS-REC task. SpARC outperforms
SOTA baselines by significant margins across all the datasets.

Method RefCOCO@val RefCOCO+@val RefCOCOg@val
Strudel et al. (2022) [32] 25.95 22.62 23.41
Kim et al. (2023) [13] 34.76 28.48 28.87
Lee et al. (2023) [14] 31.06 31.28 32.88
Liu et al. (2023) [18] 31.17 30.90 36.19
SafaRi-10 (Ours) 64.02 52.98 52.91

Table 2: SafaRi versus other text-based WSRES methods.

Method RefCOCO@val RefCOCO+@val RefCOCOg@val
CLIP-DIY [39] 22.15 20.88 20.65
SafaRi-10 (Ours) 64.02 52.98 52.91

Table 3: Comparison of SafaRiwith CLIP-DIY.

Method RefCOCO@val RefCOCO+@val RefCOCOg@val
Grounded-SAM [29] 75.98 70.43 69.17
SafaRi(Ours) 77.21 70.78 70.48

Table 4: SafaRi vs Grounded-SAM on fully-supervised RES.

Mask Validity Filtering RefCOCO@val

✗ 62.68
✓ 67.04

Table 5: Effect of Mask Valid-
ity Filtering (MVF) on the fi-
nal performance of SafaRi on
RefCOCO@val dataset for 30%
mask annotations. Without MVF,
the pseudo-masks are not validated
and performance drops significantly.

Cross-Attention Parameter (β) RefCOCO@val

β = 0.25 63.59
β = 0.50 64.42
β = 0.75 62.11

Learnable β 67.04

Table 6: Ablation on the gated
cross-attention parameter (β) on Ref-
COCO@val dataset for 30% mask an-
notations. Learnable gating performs as
compared to a fixed value.

more challenging as a dataset. RefCOCOg has 85,474 referring expressions for
54,822 objects in 26,711 images. Here, the expressions are florid, descriptive and
complex with an average of 8.4 words per text (as compared to 3.5 words of
RefCOCO and RefCOCO+). Following [25, 46], we resort to using the UMD
split [21] for RefCOCOg.
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DSC thresholding RefCOCO
parameter (τ) val

τ = 1.0 62.68
τ = 0.5 63.31
τ = 0.05 64.55
τ = 0.1 67.04

Table 7: Effect of DSC
threshold parameter
(τ) on the final perfor-
mance of SafaRi on
RefCOCO@val dataset for
30% mask annotations.
With τ = 0.1 we get the best
performance. Increasing τ
degrades performance.

Table 8: Extended qualitative examples of
cross-attention maps and corresponding pre-
dictions showing strong cross-modal alignment
learned by SafaRi.

Fig. 3: Extended examples of masks with increasing WSRES bootstrap-
ping runs (steps) for 10% annotations. We observe significant improvements in
grounding capabilities of SafaRi with an increase in semi-supervised retraining steps
depicting the importance of the retraining stage.

B.6.2 ZS-R-VOS. Ref-DAVIS17 has been built upon DAVIS17 dataset [22] by
incorporating an associated referring expression for a particular object present
in each video frame. Specifically, there are 90 videos with 1,544 referring expres-
sions for 205 objects present in this dataset. Training and validation sets contain
60 and 30 videos respectively. JHMDB-Sentences is created by adding language
annotations on the original JHMDB dataset [10]. In total, JHMDB-Sentences
has 928 videos each associated with a referring expression.

B.7 Additional Implementation Details

Following [25, 46], we resized images to 640 × 640, and set maximum token
length to 15 for RefCOCO/RefCOCO+ and 20 for RefCOCOg. We uniformly
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Fig. 4: Extended examples of predicted masks with varying label-rates. It is
evident that with increasing mask annotation percentage (%), the quality of predicted
masks improves.

sampled contour points from the ground truth masks generating 18 points for
RefCOCO/RefCOCO+, and 15 for RefCOCOg.

C Additional Results

C.1 ZS-REC based MVF using SpARC. MVF stage is responsible for fil-
tering pseudo-masks to be used in the semi-supervised retraining stage. Thus, we
evaluate the performance of SpARC module in ZS-REC task on RefCOCO/+/g
val and test sets in Table 1. We notice significant improvements across all
datasets surpassing existing SOTA methods, displaying tremendous generaliza-
tion capabilities.
C.2 Comparison with Text-only WSRES methods. Notably, SafaRi
substantially outperforms text-only weakly-supervised (WS) RES methods (Tab
2) indicating the benefit of training with text plus few mask/box annotations
(e.g., 10 %) rather than solely relying on text. However, a drawback is the use
of these expensive grounding information in training (albeit few).
C.3 Comparison with CLIP-DIY. We report results with CLIP-DIY in
Tab 3 where SafaRi with just 10% annotations significantly outperforms CLIP-
DIY. A possible reason is that RES tasks require spatial reasoning capabilities
which is a limitation in CLIP models. Moreover, CLIP text encoder has been
trained with simple captions like “A photo of an <object>” and encoding complex
referring texts (as in RefCOCO) is challenging. Therefore, it is important to
have a weakly-supervised training paradigm (with as low as 10% annotations)
to obtain a substantial performance on challenging RES tasks.
C.4 Comparison with Grounded-SAM on fully-supervised RES. Grounded-
SAM (G-SAM) uses box outputs from G-DINO as prompts for SAM to predict
segmentation masks [29]. Notably, as the reviewer acknowledges, a direct com-
parison is infeasible due to differences in tasks (our focus is weakly-supervised
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Fig. 5: Extended examples of predicted masks on RefDAVIS17 and JHMDB
datasets in a zero-shot setting with SafaRi trained with 30% annations.

RES). Also, unlike ours, these models are extensively pretrained on large-scale
datasets. Since G-SAM did not report results on fully supervised RES, we reim-
plement it (Tab 4).
D Additional Ablations

D.1 Impact of Mask Validity Filtering (MVF). We assess the effect of
Mask Validity Filtering approach in our WSRES pipeline in Table 5. We observe
that in the absence of the MVF stage, the generated pseudo-labels are not vali-
dated which hurts the overall prediction performance of the model. Conversely,
in the presence of MVF, the mIoU values on RefCOCO@val set are found to
improve by 4.36 mIoU, displaying the effectiveness of the MVF stage.
D.2 Impact of Gated Cross-Attention parameter (β). We investigate
the importance of gated cross-attention modules with learnable gating scalar
parameter (β) on the final performance of SafaRi on RefCOCO@val set with
30% mask annotations in Table 6. We notice that a fixed value of β leads to a
significant drop in mIoU value as compared to when it is being kept learnable.



10 S. Nag et al.

Fig. 6: Comparison of Partial-RES and SafaRi on the WSRES task on
RefCOCO/+/g validation sets when trained using 30% mask annotations.
SafaRi possesses excellent grounding capabilities under challenging scenarios with
complex linguistic expressions. Partial-RES is found to fail in such cases.

Fig. 7: Limitations of our method. Tiny and vastly hindered objects, especially
under low-light and blurry conditions are not distinctly localized by SafaRi.

D.3 Impact of DSC thresholding parameter (τ). We study the effect of
DSC thresholding patrameter (τ) on the model performance on RefCOCO@val
set with 30% mask annotations in Table 7. Results indicate that τ = 0.10 is an
optimal threshold value.

E Additional Qualitative Assessment

In Figures 8, 3, 4, and 5, we provide extended examples of the ones analyzed
in Section 4.4. We further provided qualitative comparisons between Partial-
RES [25] and SafaRi and also display failure cases of SafaRi. Additionally,
we demonstrate qualitative examples for the ZS-REC task using our SpARC
approach as compared to RedCircle [31].
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Fig. 8: Qualitative examples of detected bounding boxes using our pro-
posed SpARC as compared to RedCircle on the ZS-REC task with Re-
fCOCO/+/g validation sets. The spatial reasoning module paired with CLIP aids
in detecting the correct bounding boxes which is not possible with just a CLIP based
approach such as RedCircle which does not encode the spatial relationships among
objects in the image.

E.1 Comparisons of SafaRi with Partial-RES. The novel components of
our framework, such as the cross-modal attention based fused feature extractors,
the AMCR loss and the bootstrapping with MVF module not only makes our
approach unique but also equips SafaRi with excellent grounding capabilities,
especially in challenging cases with complex referring expressions as shown in
Figure 6. It is worth noting that although (unlike our approach) Partial-RES [25]
uses 100% box annotations, it fails to focus on the referred objects in these com-
plex situations as depicted in Figure 6. This once again highlights the importance
of having cross-attention based feature fusion along with AMCR in the X-FACt
module in our framework.

E.2 Limitations of SafaRi. Harnessing the power of cross-modal fusion,
SafaRi learns impressive cross-modal representation which assists in generat-
ing excellent high-quality segmentation masks. However, there exists some cases
where SafaRi fails to identify tiny and hindered objects, especially in cluttered
environments, under low-light and blurry conditions. We show such examples in
Figure 7. For example, in the two cases of ’a man holding a tv remote control’
and ’girl with green hair tie’, the respective referred objects ‘tv remote control’
and ‘hair tie’ are extremely tiny and barely visible. Therefore, SafaRi is un-
able learn the correct linguistic associations and thereby fails to ground them.
In the second example, ’a man with a white shirt behind a table’ is immensely
hindered and therefore hard to focus on. In the third example, sunlight falling
on the ’sliced bananas’ makes it extremely hard to recognize, even in human
eyes. Finally, the ’person in raincoat’ is also not clearly distinguishable because
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of low-light conditions and transparent nature of the raincoat which can only
be identified upon zooming in by few magnitudes. However, higher-resolution
images may be more helpful in addressing such intricate scenarios, which can be
considered as a potential future work.
E.3 ZS-REC visualizations with SpARC vs RedCircle. In Figure 8 we
demonstrate qualitative comparisons between RedCircle [31] and our proposed
SpARC approach on the ZS-REC task. It is evident that spatial reasoning mod-
ule in conjunction with CLIP leads to identification of correct bounding boxes
in cases where RedCircle fails. It is worth noting that RedCircle [31] is a visual
prompting approach based on CLIP which does not possess spatial reasoning
capabilities.
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