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Abstract. Referring Expression Segmentation (RES) aims to provide
a segmentation mask of the target object in an image referred to by
the text (i.e., referring expression). Existing methods require large-scale
mask annotations. Moreover, such approaches do not generalize well to
unseen/zero-shot scenarios. To address the aforementioned issues, we
propose a weakly-supervised bootstrapping architecture for RES with
several new algorithmic innovations. To the best of our knowledge, ours
is the first approach that considers only a fraction of both mask and
box annotations (shown in Figure 1 and Table 1) for training. To enable
principled training of models in such low-annotation settings, improve
image-text region-level alignment, and further enhance spatial localiza-
tion of the target object in the image, we propose Cross-modal Fusion
with Attention Consistency module. For automatic pseudo-labeling of
unlabeled samples, we introduce a novel Mask Validity Filtering routine
based on a spatially aware zero-shot proposal scoring approach. Exten-
sive experiments show that with just 30% annotations, our model Sa-
faRi achieves 59.31 and 48.26 mIoUs as compared to 58.93 and 48.19
mIoUs obtained by the fully-supervised SOTA method SeqTR respec-
tively on RefCOCO+@testA and RefCOCO+testB datasets. SafaRi
also outperforms SeqTR by 11.7% (on RefCOCO+testA) and 19.6% (on
RefCOCO+testB) in a fully-supervised setting and demonstrates strong
generalization capabilities in unseen/zero-shot tasks. Our project page
can be found at https://sayannag.github.io/safari_eccv2024/.

Keywords: Weakly-Supervised Referring Expression Segmentation · At-
tention Consistency · Mask Validity Filtering

1 Introduction

We consider the problem of referring expression segmentation (RES) [3,7,14,26,
28,30,38,45,50,53,54,58] where given an image and a text sentence, the goal is to
segment out parts of the image the text is referring to. Naturally, much existing
⋆ Work done during internship at Adobe Research.
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Fig. 1: SafaRi achieves state-of-the-art performance in both weakly- and fully-
supervised RES tasks. Although unlike Partial-RES, SafaRi is not pretrained on fully-
supervised REC task, with just 30% annotations, SafaRi achieves 59.31 mIoU whereas
Partial-RES and fully-supervised SeqTR obtains 58.16 and 58.93 mIoUs (see mIoU vs
Label-Rate plot). In the weak-supervision setting, the inclusion of X-FACt (with
cross-modal fusion and AMCR components) and SpARC modules aids SafaRi to
demonstrate excellent grounding capabilities under challenging scenarios where Partial-
RES fails (see qualitative examples). Quantitative results are provided in Tables 2-3.

work in RES blends vision-language understanding [5,9,27,35,36,42,52,57] and
instance segmentation [1,4,6,12,31], allowing for object segmentation using free-
form textual expressions rather than predefined categories [7,10,13,15,16,21,48,
51]. Existing RES methods are predominantly fully-supervised in nature [3,7,7,
10,13,15,28,30,45,50,53,58]. Hence, they necessarily require expensive-to-obtain
and extensive manually-annotated segmentation Ground-Truth (GT) masks for
training and typically do not generalize well to unseen/zero-shot scenarios.

As noted above, obtaining large-scale GT masks is very expensive and tedious
which makes it challenging to scale up such methods. To address this, a recent
work (Partial-RES) [41] propose a partially (weakly) supervised solution for RES
task. However, they consider abundant (100%) bounding box annotations to
begin with (Figure 1 and Table 1) and pretrain the model with these boxes on the
Referring Expression Comprehension (REC) task (text referred box prediction)
in a fully-supervised manner. Moreover, they use these 100% box annotations for
filtering pseudo-labels. Their limitations are: (i) in a more pragmatic and realistic
weakly-supervised setting the percentage of boxes should equal the percentage of
masks, (ii) in their pretraining stage the model is already aware of the grounding
information of the same dataset used in the weak-supervision stage, (iii) their
approach does not account for the cross-modal region-level interaction between
the image and language features which is crucial for localization tasks [24,56].

On the contrary, we investigate a more realistic, challenging and unexplored
problem of Weakly-Supervised Referring Expression Segmentation (WSRES)
with limited human-annotated mask and box annotations, specifically where
box % equals mask % (Figure 1, see Table 1 for comparisons). To tackle our
proposed novel WSRES task, we present SafaRi, an auto-regressive contour-
prediction-based RES method capable of demonstrating excellent performance
under challenging scenarios with few available mask and box annotations. We
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specifically choose segmentation as an auto-regressive point prediction task along
the object’s contour instead of an independent pixel prediction approach. This
is because the latter does not account for relationships between neighbouring
pixels and therefore lacks structural information of the object being segmented,
resulting in poor performances in the absence of abundant mask annotations [41].

In SafaRi, firstly, we introduce a novel Cross-modal (X-) Fusion with Atte-
ntion Consistency (X-FACt) module for facilitating excellent inter-domain
alignment. Since we have only few annotated data, we make the cross-fusion
component in X-FACt to be flexible and parameter efficient. Further, in X-
FACt we actively leverage the cross-attention heatmaps by formulating a reg-
ularization technique that encourages these heatmaps to be consistent with the
referred object in the image. This is enabled by confining the attended regions
within the object contour, enhancing the fidelity of predicted masks. This is
particularly beneficial for the limited annotation scenarios (in WSRES) where it
explicitly helps features improving visual grounding, without relying on lots of
data. Secondly, we systematically devise a novel bootstrapping strategy (Figure
2) which uses a handful of labeled masks (e.g., 10%) and iteratively trains the
model by utilizing pseudo-masks obtained from a pseudo-labeling procedure. Fi-
nally, in contrast with conventional pseudo-labeling pipelines which directly use
the model predictions as pseudo-labels, we design a new Mask Validity Filtering
(MVF ) routine that is responsible for selection of pseudo-masks (for unannotated
data) by validating whether they spatially align with the boundaries (boxes) of
the referred objects or not. Since we do not possess 100% bounding boxes, we
propose SpARC, a novel REC technique with spatial reasoning capabilities for
obtaining these boxes in an entirely zero-shot manner (Figure 3). Equipped with
the above modules, unlike Partial-RES, our system learns meaningful, transfer-
able and generalizable representations with rich semantic understanding, em-
powering it to reason and make accurate predictions on unseen data (Table 3).

We summarize our main contributions as: (i) To the best of our knowledge,
ours is the first to consider an accurate representation of Weakly-Supervised Re-
ferring Expression (WS-RES) task by considering a novel, more practical and
challenging scenario with limited box and mask annotations where box % equals
mask %. (ii) The novel X-FACt module fosters prediction of high quality masks
by improving cross-modal alignment quality, especially where abundant ground-
truth annotations are not present. (iii) Utilizing SpARC, a novel zero-shot
REC technique, the mask validity filtering stage together with the bootstrap-
ping pipeline improve system’s self-labeling capabilities. (iv) Extensive experi-
ments demonstrate the efficacy of SafaRi as it significantly outperforms baseline
models on RES benchmarks. SafaRi also demonstrates strong generalization
capabilities when evaluated on an unseen referring video object segmentation
task in a zero-shot manner. Notably, with just 30% mask-annotated data, Sa-
faRi achieves 59.31 and 55.83 mIoUs versus 58.93 and 55.64 mIoUs obtained
by the fully-supervised SOTA method SeqTR [58] on RefCOCO+@testA and
RefCOCOg@test sets (Table 2 and Figure 1).
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Fig. 2: Overview of weakly-supervised
bootstrapping setup. It includes an ini-
tial training stage, followed by inference
and pseudo-labeling steps. Filtered pseudo-
masks are added to the initial dataset and
model is retrained in an iterative manner.

Method
100% GT Labels Fully-supervised Filtering with

Mask? BBox? REC Pretraining? 100% GT BBox?

Partial-RES [41] ✗ ✓ ✓ ✓

SafaRi (Ours) ✗ ✗ ✗ ✗

Table 1: Comparison of Sa-
faRi with Partial-RES [41]. Unlike
Partial-RES, SafaRi does not use
100% bounding boxes and consid-
ers mask % = box % and it does not
involve fully-supervised REC pretrain-
ing. Furthermore, as opposed to Partial-
RES, for the filtering step, SafaRi in-
volves a zero-shot approach to gener-
ate boxes instead of using 100% Ground
Truth (GT) boxes. All ✗ evinces more
challenging and realistic WSRES prob-
lem setting.

2 Related Work

Fully-supervised RES. These methods chiefly focus on enhancing the quality
of multi-modal fusion of extracted vision-language features [13, 28]. Recent ef-
forts have been made to develop powerful multi-modal transformer-based meth-
ods [8,21,25,30,48,58] showing significant improvements over previous baselines.
Weakly Supervised RES. Weakly supervised RES methods have been primar-
ily restricted to text-based weak supervision [20,22,29,47]. Since they solely rely
on text, they under-perform in the RES benchmarks. Also, they do not fall in
our direct line of comparison. However, there exists one recent study (Partial-
RES) (that is more closely related to ours) adopting partial or weak-supervision
[41]. They specifically showed that employing a unified multi-modal transformer
model, e.g., SeqTR [58] is more beneficial (as compared to MDETR [18]) in
the presence of limited annotations. In their weakly supervised RES setting,
Partial-RES [41] considered abundant bounding box annotations albeit limited
mask annotations. They utilized a fully-supervised REC pretrained model to
train on limited mask-annotations (Table 1). Furthermore, for filtering pseudo-
masks, they again used the fully available (100%) bounding box annotations.
However, since this involved 100% box annotations, our proposed setup is much
more challenging and realistically weakly supervised since we consider both box
and mask annotations to be limited. In their pseudo-labeling step on the data
without masks (but with boxes), the model has already seen the boxes in the
REC pretraining stage and thus the grounding information is already present.

3 SafaRi

We present SafaRi, an adaptive multi-modal sequence transformer with our
novel components: (i) Cross-modal (X-) Fusion with Attention Consistency (X-
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Fig. 3: Architectural components of SafaRi. (i) We introduce X-FACt, com-
posed of normalized gated cross-attention based Fused Feature Extractors and Atten-
tion Consistency Mask Regularization (AMCR) for enhancing cross-modal synergy and
spatial localization of target objects. The fused output is subsequently fed to Sequence
Transformer for prediction of contour points.(ii) We design Mask Validity Filtering
(MVF) strategy for choosing valid pseudo-masks using SpARC module which is a
Zero-Shot REC approach with spatial reasoning capabilities.

FACt) module, (ii) bootstrapped Weak-Supervision with γ-Scheduling (WSGS),
and (iii) Mask Validity Filtering (MVF) with SpARC.

3.1 X-FACt.

X-FACt consists of Fused Feature Extractors (with cross-modal fusion) and At-
tention Mask Consistency Regularization (AMCR) as discussed below:
3.1.1 Fused Feature Extractors. We use Swin transformer [33] and RoBERTa
[32] as our image and text feature extractors. A simple concatenation-based en-
coding strategy fails to capture cross-modal interactions, leading to poor fine-
grained multi-modal representations. To address this, previous Vision-Language
studies employed cross-modal fusion modules [9,23,24] in their respective frame-
works. However, such strategies introduce extra trainable fusion-specific lay-
ers. For instance, the early fusion scheme adopted in GLIP [24], used 6 vision-
language fusion layers and 6 additional BERT layers for feature enhancement.
However, such a scheme is not suitable in the presence of limited annotations.
Therefore, as shown in Figure 3, we introduce a simple and lightweight fusion
mechanism through normalized gated cross-attention into the layers of uni-modal
feature extractors to learn high-quality language aware visual representations:

xk = xk + (1− β) · S-MHA(xk−1) + β · C-MHA(S-MHA(xk−1), yk) (1)
xk = xk + FFN(xk)
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where xk−1 is the output from the (k−1)th layer, S-MHA and C-MHA represent
Self- and Cross-Multi-Head Attention, FFN denotes cross-feed-forward network,
and β is a learnable weighted gating parameter initialized from 0. The fused
feature then goes into a sequence transformer for decoding the object contour
points as outputs. It is worth noting that unlike previous works [9,23] our gated
methodology preserves the uni-modal embeddings (i.e., self-attention features),
ensuring to learn the weighted representations during training. It also ensures
to map linguistic semantic features to the localized parts of the images, making
the system capable of understanding fine-grained visual features of the objects.
3.1.2 Attention Mask Consistency Regularization. Feature fusion through
cross-attention strategy is highly effective in attending those parts of the image
which the texts are referring to. However, in Figure 4, we observe that the
attended regions are scattered across the objects including some background
pixels (more pronounced in WSRES task). The lack of fidelity in being able to
attend fine-grained information may be attributed to the lack of training data
(in WSRES). It has also been found in [43] that vision transformers tend to
demonstrate more uniform representations across all layers, enabled by early
aggregation of global information and propagation of features from lower to
higher layers. Moreover, in the absence of abundant masks (and boxes), the
localization capability of the model needs to be further enhanced, especially, to
yield superior pseudo-masks for the bootstrapping stage. Therefore, to address
such issues, we formulate Attention Mask Consistency Regularization (AMCR)
Loss to localize fine-grained cross-attention within the target object:

LAMCR =

N∑
b=1

(
1−

∑
i,j Ai,jMi,j∑

i,j Ai,j

)
︸ ︷︷ ︸

Localization

+ψKL (UN ||QN )︸ ︷︷ ︸
Collapse-Reduction

(2)

QN =

{(
n(A)∑
i,j Mi,j

)
b

∀ b ∈ N

}
where Ai,j and Mi,j represent the Cross-Attention map from the last layer
and Mask, respectively, (i, j) represents pixel location, n(A) is the number of
non-zero elements in A, KL denotes KL divergence loss, UN (0, 1) denotes uni-
form distribution of minimum value 0 and maximum value 1, QN represents
computed normalized frequency distribution over batch with a size N . ψ is the
loss-balancing term which we empirically set to 0.001. LAMCR consists of two
terms: a Localization term and a Collapse-Reduction term. The localization term
guarantees accurate localization and alignment of the generated cross-attention
map within the mask of the object. The collapse-reduction term prevents col-
lapsing of the cross-attention map within the mask. LAMCR gets added to the
Cross-Entropy (CE) loss and the total loss becomes:

Ltotal = LCE + λ · LAMCR (3)

where λ is responsible for weighting the LAMCR loss term. We provide more
details regarding the formulation of LAMCR in the Supplementary.
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Fig. 4: Qualitative differences between cross-attention maps and predicted
masks in the presence and absence of AMCR. Without AMCR, some regions
outside the object boundary are attended which affects the quality of predicted masks.

3.2 Weak-Supervision with γ-Scheduling.

It is worth reiterating that unlike Partial-RES [41], we do not have box anno-
tations for the full dataset. Therefore, we do not pretrain our model on any
box-prediction tasks such as Referring Expression Comprehension (REC) unlike
Partial-RES. Our goal is to best adapt our architecture to the target RES task
given limited mask annotations. Particularly, in a dataset consisting of N train-
ing image-referring expression pairs, we consider mask (and box) annotations
for x% data. These x% = {10%, 20%, 30%} samples are selected randomly from
the original training set. Our overall pipeline (Figure 2) is as follows:
• Step 1: Initial RES Training. In this initial step, we train SafaRi using
using Equation 3 with x% labeled mask data on the RES task. Subsequently, we
obtain a trained pseudo-labeler with updated model parameters.
• Step 2: Pseudo-labeling. We infer masks by running inference on the re-
maining unlabeled (100 − x)% training samples using model trained from Step
1. Inferred masks are subsequently passed through the proposed Mask Validity
Filtering (MVF) (Section 3.3) to verify the validity of these generated masks in
a zero-shot fashion. Contour points are next sampled from the valid masks and
added to the corresponding image-text pairs as pseudo-masks.
• Step 3: Retraining with γ-Scheduling. We retrain SafaRi (initialized
from previous training) with the updated training dataset containing both the
x% Ground Truth (GT) Masks (M) and Pseudo-Masks (M̂) and minimize the
final loss LSafaRi using a Pseudo-Mask Loss weighting hyperparameter γ:

LSafaRi = LGT
total︸ ︷︷ ︸

Loss with GT Masks

+γ · LPseudo
total︸ ︷︷ ︸

Loss with Pseduo-Masks

(4)

The role of γ is to balance the amount of GT masks against that of pseudo-
masks during the retraining step. We introduce a γ-scheduling strategy to sys-
tematically change the value of γ over a set of iterations with the starting (mini-
mum) value of γ being γ0 = 0.9 (found empirically through ablation studies) and
maximum value being 1.0. The intuition is to provide more weighting to pseudo-
masks as the model becomes more confident of the predictions as the training
steps progress. We outline the detailed steps in Algorithm 1 in Supplementary.
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3.3 Mask Validity Filtering with SpARC.

Mask Validity Filtering (MVF) is the process of identifying which predicted (in-
ferred) masks actually localize the object (present in the image) being referred to
in the text (referring expression) [41]. Partial-RES [41] achieves this task by using
ground-truth bounding-box annotations. However, as noted in Section 1, unlike
Partial-RES, we consider a more realistic weakly-supervised scenario where the
number of bounding box and mask annotations are equal. Therefore, to address
this gap in the literature, we propose a zero-shot approach to obtain these boxes
to be used in the MVF stage. This can also be formulated as a Zero-Shot Refer-
ring Expression Comprehension (ZS-REC) task. Our proposed MVF approach
is composed of two parts - (i) obtaining bounding boxes using ZS-REC, and (ii)
validating the inferred masks using the obtained bounding boxes.
3.3.1 ZS-REC with SpARC module. We introduce Spatially Aware Red-
Box Clip (SpARC), a ZS-REC module, comprising two components: a proposal
scoring approach with visual prompts (red-box), and a spatial reasoning compo-
nent accounting for spatial understanding of proposals in a rule-based manner.
Proposal scoring with red-box prompting: Our ZS framework considers an input
image and the referring expression along with NB box proposals as generated by
a pretrained object detector [44]. ZS-REC task can be conveniently converted
to a ZS-retrieval task using an ensemble of image (visual) prompts with a single
text as described below. Each of these visual prompts (images) must correspond
to a single isolated proposal from the original image generating NB such images
(visual prompts). Each proposal object region is isolated by employing a Gaus-
sian blur on the background and by adding a red box (red border) of uniform
thickness surrounding the object proposal. These image prompts along with the
referring expression is passed through CLIP to obtain the CLIP score. Notably,
using a red border acts as a positive visual prompt highlighting the target area,
whereas blurring the background reduces the impact of weakly related informa-
tion. However, these CLIP scores do not consider the spatial understanding of
the objects in the different bounding boxes. Therefore, injecting spatial under-
standing is important which we discuss next.
Spatial Reasoning component: A major limitation of CLIP for the ZS-REC task
is the lack of fine-grained spatial understanding. In Figure 3, the text "black dog"
refers to the two black dogs in the picture. CLIP will generate high scores for
both these proposal regions since both fall under the class "black dog". Further-
more, although addition of visual prompt improves detection performance [46],
it neither incorporates nor enhances spatial understanding capabilities of the
model. To mitigate this, we introduce a simple rule-based approach. We divide
the referring expression into two constituents - noun chunks and their relations.
In the previous example, it refers to the "black dog" in the picture which is
the subject. The phrases connecting these noun chunks form the relationships
(e.g., right/east, left/west, smaller/tinier/further, bigger/larger/closer, between,
within/inside, above/north/top, below/under/south, back/behind, and front). In
the presence of two boxes referring to the black dog, the probability of the pro-
posal on the left will be the most (as decided based on the location of the
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centroid of the box computed using the obtained box coordinates). To provide
more clarity on this, we consider the example: "black dog on the left of a white
dog", relation R between two nouns black dog (X) and white dog (Y ) is "left".
Coordinates of proposals X and Y , and relation R are the inputs of Spatial
Reasoning component. If center point of box X is to the "left" of that of box
Y , the output probability Pr[R(X,Y )] = 1, otherwise 0. These probabilities are
multiplied with the CLIP scores of the respective proposals. Note that in rare
occasions where the referring texts in the RefCOCO datasets do not have any
spatial relations, we resort to using only CLIP scores for scoring the proposals.
More examples, with those of complex relations are given in Supplementary.
3.3.2 Validation of Inferred Masks with SpARC. In the Pseudo-labeling
step, SafaRi predicts contour points which are connected to generate binary
masks. We generate a bounding box from the outermost (top-most, bottom-
most, right-most, left-most) points of each mask and compute Dice Similarity
Coefficient (DSC) [39] between the generated box and the box obtained using the
ZS-REC step using SpARC. We reject the noisy pseudo-masks with DSC value
less than τ = 0.1 (ablation in Supplementary). Contour points are resampled
from the filtered pseudo-masks and added to the training set (Figure 2).

4 Experiments and Results

4.1 Datasets, Implementation Details and Metrics

4.1.1 Dataset. For RES, we conduct our experiments on the three major RES
datasets: RefCOCO [55], RefCOCO+ [55], and RefCOCOg [37, 40]. For Zero-
shot Transfer to Referring Video Object Segmentation (ZS-R-VOS ), we conduct
zero-shot (ZS) evaluations on two popular R-VOS datasets: RefDAVIS17 [19]
and JHMDB-Sentences [11].
4.1.2 Implementation. We use AdamW optimizer [34] with a batch size of 128.
We use an initial learning rate (LR) of 5e-4 with (β1, β2) = (0.9, 0.98), ϵ = 10−9,
and Multi-Step LR Warmup of 5 epochs, decay steps of 75, and a decay ratio of
0.1. We use A100 40GB GPUs for all experiments.
4.1.3 Metrics. For RES, we report mean Intersection-over-Union (mIoU) val-
ues. For ZS-R-VOS, we report mean of region similarity (J ) and contour ac-
curacy (F) denoted as J&F on RefDAVIS17, and mIoU scores on JHMDB-
Sentences. Additional dataset and implementation details are provided in Sup-
plementary.

4.2 Main Results

4.2.1 Referring Expression Segmentation (RES). We compare SafaRi
with the state-of-the-art methods on the RefCOCO/+/g validation and test
sets and report the mean IoU (mIoU) in the Table 2 under different label-rates.
Full Supervision : SafaRi outperforms existing benchmark methods on each
split of the three datasets by a significant margin (Table 2). For a fair compari-
son with PolyFormer [30], we additionally train SafaRi on a combined dataset



10 S. Nag et al.

Label-Rate Method Vis. Backbone RefCOCO RefCOCO+ RefCOCOg
Mask BBox val testA testB val testA testB val-g val-u test-u

Fully Supervised Models

100%

LTS [17] DN53 65.43 67.76 63.08 54.21 58.32 48.02 - 54.40 54.25
VLT [7] DN56 65.65 68.29 62.73 55.50 59.20 49.36 49.76 52.99 56.65
ResTR [21] ViT-B 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - -
SeqTR [58] DN53 67.26 69.79 64.12 54.14 58.93 48.19 - 55.67 55.64
SafaRi (Ours) Swin-B 73.35 75.02 70.71 63.03 65.81 57.64 - 62.42 62.74
∆Ours - SeqTR - 6.09 ↑ 5.23 ↑ 6.59 ↑ 8.89 ↑ 6.88 ↑ 9.45 ↑ - 6.75 ↑ 7.10 ↑
PolyFormer [53]† Swin-B 75.96 77.09 73.22 70.65 74.51 64.64 - 69.36 69.88
SafaRi† (Ours) Swin-B 77.21 77.83 75.72 70.78 74.53 64.88 - 70.48 71.06
∆Ours - PolyFormer† - 1.25 ↑ 0.74 ↑ 2.50 ↑ 0.13 ↑ 0.02 ↑ 0.24 ↑ - 1.12 ↑ 1.18 ↑

Weakly Supervised Models

30%
100% Partial-RES [41]♠ Swin-B 66.24 68.39 63.57 54.37 58.16 47.92 - 54.69 54.81
30% SafaRi (Ours) Swin-B 67.04 69.17 64.23 54.98 59.31 48.26 - 55.72 55.83

∆Ours - Partial-RES♠ - 0.80 ↑ 0.78 ↑ 0.66 ↑ 0.61 ↑ 1.15 ↑ 0.34 ↑ - 1.03 ↑ 1.02 ↑

20%
100% Partial-RES [41]♠ Swin-B 65.20 67.43 62.85 53.78 57.52 47.39 - 53.94 54.02
20% SafaRi (Ours) Swin-B 65.88 67.96 63.24 54.23 58.07 47.67 - 54.45 54.61

∆Ours - Partial-RES♠ - 0.68 ↑ 0.53 ↑ 0.39 ↑ 0.45 ↑ 0.55 ↑ 0.28 ↑ - 0.51 ↑ 0.59 ↑

10%
100% Partial-RES [41]♠ Swin-B 64.01 65.89 61.68 52.85 56.01 46.27 - 52.73 52.68
10% SafaRi (Ours) Swin-B 64.02 65.91 61.76 52.98 56.24 46.48 - 52.91 52.94

∆Ours - Partial-RES♠ - 0.01 ↑ 0.02 ↑ 0.08 ↑ 0.13 ↑ 0.23 ↑ 0.21 ↑ - 0.18 ↑ 0.26 ↑

Table 2: Comparison with the state-of-the-arts on the RES task. SafaRi sub-
stantially outperforms SOTA SeqTR [58] in the fully-supervised benchmark. SafaRi
also yields significant gains over baseline Partial-RES [41] even without using 100% box
annotations in the WSRES task. † means trained on extra data combining RefCOCO
datasets [30]. ♠ indicates our reimplementation of Partial-RES with Swin-B backbone
where we get better mIoUs than their reported values [41]. Differences shown in blue.

after removing all data from validation and test sets [30]. Unlike PolyFormer,
SafaRi is not pretrained on the REC task. However, SafaRi still outperforms
PolyFormer on all three datasets. Note that we report fully-supervised results
to show an upper-bound on the performance of the weakly-supervised models.
Weak Supervision : We consider label rates of 10%, 20%, and 30% for the
WSRES task (Table 2). Despite methods such as Partial-RES using 100% box
annotations, SafaRi shows substantial improvements over Partial-RES (note
that Partial-RES originally used DN-53 backbone and we re-implemented with
Swin-B backbone for fair comparisons) for all three label-rates. With just 30%
labeled data and without any REC pretraining, SafaRi often surpasses the
fully-supervised performance of SeqTR on RefCOCO/+g validation sets (e.g.,
59.31 vs 58.93 on RefCOCO+@testA, 55.83 vs 55.64 on RefCOCOg@test sets).
Weakly-supervised SafaRi significantly outperforms other fully-supervised base-
lines (e.g., VLT [7] and LTS [17]). These results bespeak the role of our proposed
X-FACt (containing cross-modal fusion together with AMCR) and SpARC
modules in obtaining state-of-the-art results in the limited annotation scenarios.
4.2.2 Zero-shot Referring Video Object Segmentation (ZS-R-VOS).
We conduct evaluation on the R-VOS datasets (RefDAVIS17 and JHMDB) as a
ZS transfer task. We consider the video frames as a sequence of images without
involving any temporal information while predicting masks. As shown in Ta-
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Method Vis. Backbone Eval. RefDAVIS17 JHMDB
J&F mIoU

Fully Supervised Models (Label-Rate = 100%)

ReferFormer [49] Swin-L FT 60.5 -
MTTR [2] Vid-Swin-T FT - 36.6
ReferFormer [49] Vid-Swin-B FT 61.1 43.7

PolyFormer [30] Swin-B ZS 60.9 42.4
SeqTR [58] DN-53 ZS 53.5 34.9
SafaRi-100 (Ours) Swin-B ZS 61.3 43.2
∆Ours - SeqTR - ZS 7.8 ↑ 8.3↑

Weakly Supervised Models

Partial-RES-30 [41] Swin-B ZS 52.3 34.8
SafaRi-30 (Ours) Swin-B ZS 55.3 38.1
∆Ours - Partial-RES-30 - ZS 3.0 ↑ 3.3↑

Partial-RES-10 [41] Swin-B ZS 51.5 34.3
SafaRi-10 (Ours) Swin-B ZS 53.1 36.4
∆Ours - Partial-RES-10 - ZS 1.6 ↑ 2.1↑

Table 3: Evaluation performance of Sa-
faRi on RefDAVIS17 and JHMDB val-
idation datasets. SafaRi achieves signif-
icant gains in zero-shot settings for both
datasets. FT and ZS indicate Fine-Tuned and
Zero-Shot, respectively. Differences in blue.

Label-Rate Cross-Attn. AMCR
RefCOCO

val testA testB

100
✗ ✗ 68.84 70.59 65.85
✓ ✗ 72.41 74.65 69.96
✓ ✓ 73.35 75.02 70.71

30
✗ ✗ 60.91 64.06 57.73
✓ ✗ 64.72 67.55 60.91
✓ ✓ 67.04 69.17 64.23

20
✗ ✗ 58.84 61.79 57.02
✓ ✗ 61.25 64.68 59.47
✓ ✓ 65.88 67.96 63.24

10
✗ ✗ 54.06 55.64 52.61
✓ ✗ 60.11 62.18 57.95
✓ ✓ 64.02 65.91 61.76

Table 4: Impact of Cross-Attention
and AMCR (in the X-FACt mod-
ule) on SafaRi’s performance eval-
uated on RefCOCO val, testA, and testB
sets for 100%, 30%, 20%, and 10% label-
rates. Best results are highlighted.

ble 3, SafaRi achieves state-of-the-art results with just the spatial information,
displaying strong generalization capabilities.

We also conduct evaluations on the ZS-REC task with our proposed SpARC
module which significantly outperforms SOTA RedCircle [46] achieving 39.3%
and 16.2% gains on RefCOCO@testB and RefCOCO+@testB sets respectively
(see Supplementary). More comparisons are provided in Supplementary.

4.3 Ablation Study

4.3.1 Impact of X-FACt. We show the impact of X-FACt containing Cross-
Attention (CA) based fusion and the AMCR components in Table 4. Inclusion
of CA is shown to improve mIoU values consistently across varying label-rates.
The impact of AMCR is more pronounced in the cases of limited annotations.
For instance, with a label-rate of 100%, addition of AMCR boosts mIoU by
0.94 points on RefCOCO@val, whereas with a label-rate of 10%, this difference
increases substantially to 3.91. Additionally, in Figure 4 we demonstrate that
incorporating AMCR qualitatively improves both the cross-attention maps and
the predicted masks, highlighting the efficacy of AMCR in our pipeline. We fur-
ther assess the importance of AMCR loss balancing factor (λ) in the Figure 5b
when evaluated on RefCOCO@val. Increasing λ improves mIoU initially and the
maximum is achieved at 0.4, beyond which the performance drops significantly.
Moreover, in Table 7 we show that despite being lightweight, our proposed fusion
scheme in X-FACt is superior in performance as compared to (conventional)
ALBEF-like fusion which contains extra fusion-specific layers.
4.3.2 Retraining with MVF using SpARC. In the presence of limited mask
(and box) annotations, retraining with γ scheduling leads to a marked improve-
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Fig. 6: Impact of γ-scheduling under dif-
ferent initial values (γ0) and AMCR bal-
ancing factor (λ) when evaluated on Ref-
COCO@val at 30% and 10% mask labels.

Red-box Spatial Blur Crop Ref@val Ref+@val Refg@val

✗ ✗ ✗ ✓ 63.11 47.48 49.43
✗ ✗ ✓ ✗ 63.78 49.66 51.48
✓ ✗ ✗ ✗ 64.35 51.16 52.87
✓ ✗ ✓ ✗ 65.29 52.51 54.22
✗ ✓ ✗ ✓ 64.12 50.19 51.80
✗ ✓ ✓ ✗ 65.94 52.83 54.13
✓ ✓ ✓ ✗ 67.04 54.98 55.72

Table 5: mIoUs with various
prompts for SpARC at 30% label-
rate. Best results are obtained when
both red-box and blurring are used
with the spatial reasoning component.

Label-Rate L2 AMCR Ref@val Ref+@val Refg@val

30 ✓ − 63.48 51.31 52.16
− ✓ 67.04 54.98 55.72

10 ✓ − 59.23 48.29 48.83
− ✓ 64.02 52.98 52.91

Table 6: Comparison of proposed AMCR
with L2 loss for 10% and 30% annotations.

Fusion Label- RefCOCOg ∆ parameter
Scheme Rate val increase (%) ↓
X-FACt 30 55.72 1.82(Ours) 100 62.42
ALBEF- 30 54.29 29.65like 100 60.17

Table 7: X-FACt vs ALBEF-like
fusion for 30% and 100% annotations.

ment in the mIoU values as depicted in Figure 5a. Here, we consider label-rates
of 30% (solid lines) and 10% (dashed lines) with two different γ0 values denoting
the starting values of the γ variable. We note that as the number of retraining
steps (runs) increases, the mIoU values (for both γ0 values) in each label-rate
increases. However, with γ0 = 0.9 we achieve slightly better performance. Ad-
ditionally, we evaluate the effectiveness of the MVF stage with SpARC in Sup-
plementary. Results indicate that without MVF, generated pseudo-labels cannot
be validated which negatively impacts model’s performance. In contrast, when
pseudo-labels are validated using MVF, the mIoU values on RefCOCO@val set
are shown to improve by 4.36 mIoU, demonstrating the importance of MVF.
4.3.3 Impact of various components of SpARC. In Table 5 we assess the
impact of individual components of SpARC. We note that red-box prompting
and blurring together boost performance. Adding spatial awareness via the rule-
based reasoning module also substantially improves mIoU on the WSRES task.
4.3.4 AMCR vs L2 loss in X-FACt. To evaluate the impact of the AMCR
component in X-FACt, we analyze SafaRi’s performance after replacing the
proposed formulation of AMCR with a L2 loss. As shown in Table 6, we observe
that using L2 (in place of AMCR) leads to substantially poor performance, as
compared to when AMCR is used in X-FACt. This corroborates the strong lo-
calization capabilities introduced in the system by the AMCR formulation which
is not achieved with a L2 loss.
4.3.5 Impact of Label Rates. We notice that as the label-rate increases from
10% to 100%, the performance of the model improves significantly across all the
datasets (see Table 2 and Figure 1). Remarkably, with just 30% annotated data,
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Fig. 7: Cross-attention Maps and cor-
responding predictions showing strong
cross-modal alignment learned by SafaRi.

Fig. 8: Predictions with varying
label-rates. With increasing mask an-
notations %, prediction quality improves.

SafaRi achieves 59.31 mIoU versus 58.93 mIoU obtained by the fully-supervised
SeqTR on RefCOCO+@testA set.

We provide additional ablations on the impacts of MVF, gated cross-attention
parameter, and DSC thresholding parameter in Supplementary.

4.4 Qualitative Assessment and Error Analysis

4.4.1 Backbone Cross-Attentions and Predicted Masks. In Figure 7, we
show how cross-modal attention maps attend to different objects in the images,
guided by the referring texts. The cross-attention scores between the image and
the associated expression are extracted and bilinearly interpolated to match the
image dimension and superimposed on the original image. Notably, strong cross-
modal interactions aid in predicting high-quality masks as displayed in Figure 7.
In Figure 10, we also provide high-quality segmentation masks generated by Sa-
faRi for the ZS-R-VOS tasks without any finetuning on the respective datasets.
4.4.2 Varying Label-Rates. In Figure 8, we display segmentation masks un-
der varying label-rates using SafaRi. We clearly notice that the quality of masks
improve substantially with an increase in the ground-truth annotations.
4.4.3 Varying Retraining Steps. In Figure 9 we show that with increasing
retraining steps (runs), SafaRi becomes more confident which results in sig-
nificant qualitative improvements in the predictions. For example, in Figure 9
although SafaRi could not recognize the magazine partially behind laptop in the
first step, it was successful in predicting the mask accurately in the final step -
this shows the efficacy of the retraining stage.
4.4.4 Comparisons with Partial-RES. We provide qualitative examples for
30% label-rate in Figure 1. It is evident from Figure 1 that SafaRi succeeds
in challenging cases requiring extensive linguistic understanding (attained with
X-FACt and SpARC modules) where Partial-RES [41] fails.

We provide extended versions of these qualitative visualizations in Supple-
mentary. Additionally, we show examples of cases in Supplementary where Sa-
faRi occasionally fails to focus on the referred objects. These cases typically
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Fig. 9: Examples of masks with increasing WSRES bootstrapping runs
(steps) for 10% annotations. We see significant improvements in localization capa-
bilities with an increase in retraining steps illustrating the efficacy our approach.

Fig. 10: Predicted masks on RefDAVIS17 and JHMDB datasets in a zero-shot
setting with SafaRi-30 (trained with 30% annotations).

consists of vastly hindered objects in cluttered environments, especially in low-
light blurry conditions and tiny objects.

5 Conclusion

We present a weakly-supervised learning framework for RES considering limited
mask (and box) annotations and employing a contour-based sequence predic-
tion approach. Unlike Partial-RES [41], we do not consider box annotations
to be fully available and therefore we do not pretrain our model on the fully-
supervised REC task. We incorporate lightweight gated cross-modal attention
in the feature backbones along with an Attention Mask Consistency Regulariza-
tion module to facilitate strong cross-modal alignment and improve the quality
of predicted masks. We introduce a bootstrapping pipeline with self-labeling ca-
pabilities where pseudo-labels are validated using our proposed Mask Validity
Filtering approach. We conduct extensive experiments to demonstrate that Sa-
faRi consistently achieves state-of-the-art performance across all RES datasets.
Finally, we demonstrate excellent generalization capabilities of SafaRi on zero-
shot referring video-object segmentation task. Extending our approach to multi-
image and video settings can be looked upon as a promising future work.
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