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Abstract. We introduce KFD-NeRF, a novel dynamic neural radiance
field integrated with an efficient and high-quality motion reconstruc-
tion framework based on Kalman filtering. Our key idea is to model the
dynamic radiance field as a dynamic system whose temporally varying
states are estimated based on two sources of knowledge: observations and
predictions. We introduce a novel plug-in Kalman filter guided deforma-
tion field that enables accurate deformation estimation from scene obser-
vations and predictions. We use a shallow Multi-Layer Perceptron (MLP)
for observations and model the motion as locally linear to calculate pre-
dictions with motion equations. To further enhance the performance of
the observation MLP, we introduce regularization in the canonical space
to facilitate the network’s ability to learn warping for different frames.
Additionally, we employ an efficient tri-plane representation for encod-
ing the canonical space, which has been experimentally demonstrated to
converge quickly with high quality. This enables us to use a shallower ob-
servation MLP, consisting of just two layers in our implementation. We
conduct experiments on synthetic and real data and compare with past
dynamic NeRF methods. Our KFD-NeRF demonstrates similar or even
superior rendering performance within comparable computational time
and achieves state-of-the-art view synthesis performance with thorough
training. Github page: https://github.com/Yifever20002/KFD-NeRF.
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1 Introduction

Neural Radiance Fields (NeRF) [30] have demonstrated outstanding success
as a versatile and accurate 3D representation of real-world scenes, which has led
to its wide adoption in daily and industrial applications in numerous domains.
One of the remaining key desiderata for NeRFs is its extension to dynamic scenes.

Existing dynamic NeRF methods can be broadly categorized into two ap-
proaches. One is to learn deformation fields for motion warping (e.g ., D-NeRF [36]
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Fig. 1: In contrast to a vanilla deformation field, our plug-in Kalman filter guided
deformation field consists of a prediction branch along with the direct observations from
input data. From noise related terms εti and εti−1 we learn Kalman gain Kti , weighting
observations yti and predictions d̂x

−
ti for more accurate deformation estimations.

and TiNeuVox [10]). Another is to disregard motion priors and directly inter-
polate time in the feature space (e.g ., DyNeRF [24] and KPlanes [12]). These
approaches, however, often overlook the characteristics of a dynamic radiance
field as a time-state sequence, missing the opportunity to fully leverage temporal
contextual information.

In this work, we draw inspirations from control theory and model the 4D
radiance field as a dynamic system with temporally-varying states. Our state
estimates of this dynamic system come from two sources of knowledge: obser-
vations based on the input data and predictions based on the system physical
dynamics. Optimal state estimates cannot be achieved with only one of these
two sources of knowledge. On the one hand, observations, as commonly used in
previous dynamic NeRF works, are inherently error-prone due to the discrete
temporal sampling of the dynamic scenes. On the other hand, predictions are
governed by the correctness of the assumed kinematic model and may struggle
to maintain accuracy for real dynamic scenes.

To maximize combined potential of both observations and predictions, we
introduce an efficient plug-and-play Kalman filter [43] module to optimize state
estimations of our dynamic system. In Fig. 1 we illustrate our plug-in Kalman
filter guided deformation field. We model the 4D radiance field as a single-state
system, with the state denoted as dxti for the current frame deformation. In
contrast to a vanilla deformation field that only considers system observations
in the current frame, our approach incorporates richer information from previous
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frames by introducing a prediction branch based on a motion equation. Given
the absence of prior trajectory regarding the scene’s motion, we employ local
linear motion.

Both observations and predictions are weighted using a learnable Kalman
gain to calculate precise deformation estimations. During the initial stages of
training, predictions primarily influence the process, facilitating the convergence
of frames with substantial motion. In the later stages of training, observations
take precedence, allowing for the recovery of more precise and fine-grained mo-
tion details.

All points in the real space are warped to a time-independent canonical space
according to the estimated deformations. To further improve the performance
of our two-branch deformable model, we employ an efficient tri-plane spatial
representation for encoding our canonical space. Experimental evidence shows
that this representation permits a shallower observation MLP with only two
layers in our implementation. At the same time, we improve the warping ability
of the observation MLP by regularizing the learning of the radiance field in the
canonical space.

In summary, our contributions are as follows:

1) The first method for modeling 4D radiance fields as dynamic systems by
integrating a Kalman filter into the deformation field formulation, which
results in a plug-in, efficient method for estimating deformations;

2) KFD-NeRF, a novel deformable NeRF with the Kalman filter plug-in and
a tri-plane spatial representation, trained with a novel strategy of gradually
releasing temporal information to facilitate learning dynamic systems;

3) and regularization in the canonical space for enhancing the learning capacity
of a shallow observation MLP. We achieve state-of-the-art results on both
synthetic and real data with all these designs, compared to dynamic NeRFs.

2 Related Works

Neural Radiance Fields Representation. NeRF [30] represents 3D scenes based
on an implicit representation encoded by an MLP. Given multi-view images and
corresponding camera poses as input, the MLP is trained by “analysis by synthe-
sis,” achieving novel view synthesis and coarse geometry reconstruction. Vanilla
NeRF leaves room for improvement that has attracted abundant research.

Many methods [13, 20, 26, 39, 48] use sparse voxel grids to represent the 3D
scenes. While grid-based modeling achieves fast training and rendering, fine de-
tails require high-resolution grids leading to excessive memory consumption. The
optimization process for grids is also unstable, failing to leverage the smoothness
bias brought by MLP. Instant-NGP [31] proposes an efficient hash encoding for
mapping spatial and feature domains. For sparsely-observed regions, however,
this one-to-many mapping can easily introduce noise. The tri-plane representa-
tion [5, 6, 35] significantly reduces the memory footprint by leveraging its low-
rank decomposition. We use this representation to build a fine-detailed canonical
space.
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Dynamic Neural Rendering. For dynamic scenarios, modeling the time dimen-
sion together with the spatial representation becomes the main challenge. One
approach to dynamic NeRF [4,12,14,15,21,24,25,27,34,38,45] is to add times-
tamps as an extra dimension to the 3D space and formulate 4D interpolation.
Though intuitive, this leads to temporal incoherence due to the lack of supervi-
sion and priors between frames. Another approach [7, 9, 10, 17, 18, 25, 32, 33, 36,
40, 49] is to model the motion with deformation fields that warp points in arbi-
trary frames to the canonical space conditioned on the timestamps. This design
can take advantage of the MLP smoothness bias in accordance with the motion
smoothness prior. Nevertheless, deformation fields fail to find correspondences
in frames with significant motion. We emphasize the performance improvement
resulting from the switch in backbone spatial representation from D-NeRF [36]
(MLP-based) to TiNeuVox [10] (voxel grids based) and later analyze the impact
of different spatial representations on the deformation field. We also compare
with latest point-based 4D rendering works [29,44,46] inspired by 3D Gaussian
Splatting [23].

Deep Kalman Filter. The combination of deep learning and Kalman filtering
has been explored to address the challenges of incomplete observations in var-
ious scenarios. Some works [28, 52] use Convolutional Neural Network (CNN)-
based Kalman filtering for video compression and camera localization. Recurrent
Neural Network (RNN)-based Kalman filter has also been used in some stud-
ies [8, 37] to improve state estimation and to optimize pose regularization. The
Transformer in [50] enables a more comprehensive exploitation of temporal con-
textual information. All of these works along with [3, 11, 19], however, model
dynamics only in the learned latent space without taking into account physical
priors, with the exception of [16] which fuses known physical priors and network
outputs to construct a Kalman filter for video prediction. In this paper, for the
first time, we employ a neural Kalman filter to assist in the dynamic NeRF task.
We derive a two-stream method consisting of a shallow MLP and physical priors
to achieve efficient motion estimation.

3 Preliminaries

3.1 NeRF and Volume Rendering Revisited

NeRF [30] consists of three parts: sampling, volume mapping, and rendering.
In the sampling process, points x ∈ R3 are sampled along rays calculated from
the camera pose. Then, in the volume mapping process, each x in the 3D world,
as well as its viewing direction v ∈ R3, is queried to output the volume density
σ and radiance c = (r, g, b) of x. Finally, in the rendering process, the color of
each ray is computed with volume rendering [22]. The expected color of the ray
r(s) = o+ sv becomes [30]

C(r) =

∫ sf

sn

T (s)σ(r(s))c(r(s),v)ds , (1)
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where sn and sf are the near and far bounds, respectively, and

T (s) = exp

(
−
∫ s

sn

σ(r(k))dk

)
. (2)

The only supervision for training NeRF comes from the ground truth color
Cgt(r) of each ray

Limage =
∑
r∈R

∥C(r)− Cgt(r)∥22 , (3)

where R is the ray batch.

3.2 Kalman Filter

Consider a dynamic system with input ut, output yt, process noise nt and
measurement noise mt. We want to obtain its state xt at each frame t, assuming
the state equation follows

xt = Axt−1 +But + nt , (4)

and the output equation follows

yt = Cxt +mt , (5)

where A, B and C are the system matrix, control matrix and output matrix,
respectively.

There are two methods for obtaining the system’s state xt at any given t:
observation and prediction. The observation method tries to rely on yt in Eq. (5)
while the prediction method tries to mathematically model the system dynamics
to predict the state. Both of these methods, however, come with non-negligible
errors due to the existence of mt and nt and for inaccurate system modeling.

The Kalman filter algorithm posits that the state xt is obtained by a weighted
sum of the prediction based on the state xt−1 and the observation yt. For a
specific t, estimating the state xt can be divided into two steps: prediction step
and update step. Assuming that the process noise and measurement noise follow
zero-mean Gaussian distributions with variances Q and R, respectively, at the
prediction step, it first calculates a predicted state based on the estimated state
at t− 1

x̂−
t = Ax̂t−1 +But , (6)

and its error covariance
P−
t = APt−1A

T +Q . (7)

In the update step, this predicted state is combined with observation yt to obtain
updated state estimate

x̂t = x̂−
t +Kt(yt − Cx̂−

t ) , (8)
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Fig. 2: Visualization of feature planes learned by the feature interpolation method ➀

and the deformation fields method ➁. We show a point P in the real world space and
its corresponding four points P1, P2, P3 and P4 in the canonical space at four different
timestamps. The feature plane in ➁ exhibits better smoothness compared to ➀, so we
use ➁ to construct our backbone.

and its error covariance
Pt = (I −KtC)P−

t , (9)

where

Kt =
P−
t CT

CP−
t CT +R

(10)

is the Kalman gain, reflecting the weights assigned to the observation and pre-
diction components.

4 Method

Figure 3 illustrates the three stages of the complete pipeline of KFD-NeRF. In
this section, we will first analyze the advantages of using deformation fields as the
motion representation over feature interpolation. We will then introduce KFD-
NeRF based on the Kalman filter to achieve accurate deformation estimations.
Finally, we will discuss spatial reconstruction details, the training strategy, and
the incorporation of regularization.

4.1 Motion Representation: Deformation Fields vs. Feature
Interpolation

4D NeRFs generally employ two approaches to temporal modeling: motion
deformation fields or time-conditioned feature interpolation. A deformation field
D(x, t) → ∆x calculates the deformation ∆x at each timestamp t, which can
be used to warp a 3D point at t to its corresponding position in the canonical
space. In contrast, time-conditioned feature interpolation F (x, t) → f directly
learns a feature vector f from a given 3D point at t, which is sent to a decoder
for RGB and density calculation.
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Fig. 3: The overall pipeline of our KFD-NeRF. Our designed deformation field calcu-
lates final deformations based on two sources of knowledge. At the observation stage,
system observations are directly output by a shallow observation MLP. At the predic-
tion and fusion stage, we calculate predictions based on system dynamics, and further
fuse observations and predictions to obtain final deformation estimations. At the spa-
tial reconstruction stage, tri-plane encoded canonical points are concatenated with raw
positions and timestamps, which are further decoded to obtain predicted colors for
loss calculation. (*f represents a linear layer, used to obtain the Kalman gain from
noise-related terms εti and εti−1 .)

In Fig. 2, we illustrate the difference between these two methods with a
motion example from time t = 0 to time t = 1. Given a 3D point P in the real
world space, we can identify its corresponding four points in the canonical space
at four different timestamps, named P1, P2, P3, and P4. ➀ shows the feature to be
learned at P which changes over time. Notice that when the radiance undergoes
abrupt changes, the feature space exhibits many high-frequency signals, which
are hard to fit. ➁ shows the backward deformation from the real world space to
the canonical space to be learned at P which changes over time. These signals
are smoother and easier to fit by leveraging the motion’s smoothness prior. MLP
representations have inductive smoothness bias and are well-suited for learning
such deformations. Hence, we employ MLP-based deformation fields to represent
motion in this work.

4.2 Kalman Filter Guided Motion Prediction

Next, we derive the system equations for the dynamic radiance field following
Eqs. (4) and (5). As we are trying to model non-rigid motions, each 3D point
in the dynamic radiance field could be independently seen as a dynamic sys-
tem, with its velocity vti at each frame ti as a single input ut. Also note that
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this dynamic system is a single-state system since we only focus on estimating
deformation at each frame ti, denoted as dxti .

In the next step, we determine the coefficients matrix A, B, and C in Eqs. (4)
and (5), each degenerating to a value under a single-input and single-state sys-
tem. As we directly observe dxti , the output matrix C becomes 1. Since the
motion trajectory is unknown, we use a locally-linear motion model to describe
this dynamic system: dxti = dxti−1

+ ∆ti · vti (A = 1 and B = ∆ti). Further
considering noise, our state and output equations become{

dxti = dxti−1
+∆ti · vti + nti ,

yti = dxti +mti .
(11)

In Fig. 3, our designed deformation field consists of two parts: an MLP-based
observer and a system-dynamics-based predictor. As for the observer, by query-
ing 3D points coordinates x and timestamps ti, a two-layer shallow MLP is used
to output the mean observation yti (assuming zero-mean Gaussian measurement
noise mti) and noise-related terms εti . For the predictor, we follow the locally-
linear motion model and first calculate the input vti . Because the deformation of
the current frame ti is being estimated, we only use the information from frame
ti−1 and frame ti−2 to approximate the velocity

vti = (dxti−1
− dxti−2

)/∆ti . (12)

Based on the estimated velocity, we compute the predicted deformation state
d̂x

−
ti . The final estimation d̂xti is the sum of d̂x

−
ti and yti weighted by a Kalman

gain Kti . The Kalman gain in Eq. (10) is calculated by current measurement
noise and past process noise. In our implementation, we obtain Kti utilizing a
linear layer that takes noise-related terms εti and εti−1

and timestamps ti and
ti−1 as inputs, incorporating historical information. Algorithm 1 summarizes this
deformation estimation.

Volume is warped to the canonical space based on the estimated deformation,
which is further decoded to obtain density σ and color. We compute the loss by
comparing the rendered values with the ground truth and use it to update the
network, following Eq. (3). In addition, we note that the estimated deformation
serves as a good supervision for learning the observation MLP, in analogy with
observation updating process in Kalman filter. Therefore, we try to minimize
the error between the current observation and the estimated deformation with

Lkf =
1

N
∑
x∈N

∥∥∥yti − d̂xti

∥∥∥2
2
. (13)

The weighted yti and d̂x
−
ti stand for two sources of knowledge from the whole

system. yti represents the state directly observed by the observation MLP, which
lacks the information from past frames and thus has a low confidence in the early
stages of training. In contrast, d̂x

−
ti represents the current frame information

predicted from history, which provides a good prior in the early stages of training.
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Algorithm 1 Deformation Estimations
Prediction:
dxti−1 , εti−1 = observer(x, ti−1)
dxti−2 , εti−2 = observer(x, ti−2)
vti = (dxti−1 − dxti−2)/∆ti

d̂x
−
ti = dxti−1 +∆ti · vti = 2dxti−1 − dxti−2

Update:
yti , εti = observer(x, ti)
Kti = f(εti , εti−1 , ti, ti−1)

d̂xti = d̂x
−
ti +Kti(yti − d̂x

−
ti)

In the later stages of training, however, the confidence of the predictor drops
significantly due to the inherent errors of the modeled motion dynamics, which
is gradually compensated by the well learned observation MLP. Our Kalman
Filter guided model automatically strikes the balance of both leveraging d̂x

−
ti

in the early stages to accelerate convergence and avoid local minimum and also
using yti in the later stages to learn fine details.

4.3 Spatial Representation

MLP-based spatial representations suffer from slow convergence and require a
deeper deformation network (e.g ., eight layers MLP in [36]) to model 4D scenes.
Otherwise, the deformation field can get stuck in a local optimum before learning
the radiance field in the canonical space. Voxel grids based spatial representations
converge very quickly (e.g ., TiNeuVox [10]) but demand high spatial resolution
to store fine details, which requires significant memory footprint. Under memory
constraints, achieving high resolution in the canonical space can be challenging,
resulting in losing scene details and deteriorating the warping quality for each
frame. We employ a tri-plane representation, which uses three sets of mutually
orthogonal 2D planes to represent 3D space. This low-rank model allows for
rapid convergence while significantly reducing memory consumption, making it
possible to achieve fast and high-quality canonical space reconstruction.

What’s more, there are some inevitable errors due to coordinate shifts when
x′ are encoded by finite resolution tri-plane. To enhance the raw coordinate
information, we follow [10] by concatenating encoded tri-plane features with raw
coordinate inputs.

4.4 Training Strategy and Regularization

Our model takes into account temporal information so the learning of the
current frame partially relies on the results of previous frames. To ensure that
previous frames can offer ample priors, we employ a training strategy of gradually
releasing the training images in chronological order.

We also notice that the lack of constraints or priors in the canonical space
can affect the performance of the observation branch, which could be regularized
by pre-setting the shape in the canonical space. D-NeRF [36] sets frame t0 to be
the canonical space and force the deformation output of frame t0 to be masked
to 0. Such a hard mask, however, does not allow learning of the deformation



10 Y.Zhan, Z.Li et al.

at frame t0 and may cause the canonical space to be too complex for motions
warping.

We instead design a soft regularization term to normalize the difference be-
tween the canonical space and the radiance field in the real world at frame t0
to improve the observation branch. The canonical observation loss of a points
batch N is

Lco =
1

N
∑
x∈N

1(t)dx , (14)

where 1(t) = 1 when t = 0 and 1(t) = 0 when t ̸= 0.
We use a proposal sampling strategy from Mip-NeRF 360 [2] by distilling

the density field for occupancy estimation. This online distillation necessitates a
loss function Lprop to ensure consistency between the proposal network and our
learned model. Please refer to Section 3 in [2] for detailed definition.

Total variation loss Ltv is a common regularizer in inverse problems, which
encourages sparse edges in space. We apply this loss to each of our tri-plane to
get Ltv(x

′), where x′ are warped 3D points in the canonical space. The total
variation loss is

Ltv(x) =
1

|C|
∑
c,i,j

(
∥∥∥xi,j

c − xi−1,j
c

∥∥∥2

2
+

∥∥∥xi,j
c − xi,j−1

c

∥∥∥2

2
) , (15)

where c is a certain plane from the tri-plane collection C and i, j are indices on
the plane’s resolution.

The final loss function becomes

L = Limage + Lkf + Lco + Lprop + λtvLtv , (16)

and we experimentally choose λtv to be 1× 10−4.

5 Experimental Results

5.1 Dataset

For synthetic data, we use the Dynamic NeRF Synthetic Dataset provided by
D-NeRF [36], whose training and testing splits have already been well-organized.
For each scene in the synthetic dataset, a photo from an arbitrary view with
corresponding camera pose is provided at each timestamp. For real data, we use
the Nvidia Real Dynamic Scenes Dataset [47] which consists of 8 dynamic scenes
recorded by 12 synchronized cameras. We use 11 camera videos for training and
the remaining one for testing.

5.2 Baselines and Metrics

Due to differences in the format of synthetic and real data, we carefully
select cutting-edge baselines to thoroughly validate our method based on com-
parative experiments. For synthetic data, we test deformation based methods
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Fig. 4: Qualitative Comparison of our KFD-NeRF against other dynamic NeRF meth-
ods on synthetic data. Zoom in for better details.

Fig. 5: Qualitative Comparison of our KFD-NeRF against other dynamic NeRF meth-
ods on real data. Zoom in for better details.
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Synthetic Data
Model PSNR(dB)↑ SSIM↑ LPIPS↓ Average↓

D-NeRF [36] 30.25 0.954 0.076 0.0288
TiNeuVox-B [10] 32.93 0.973 0.043 0.0173
KPlanes [12] 30.47 0.963 0.072 0.0261
NDVG [17] 30.51 0.964 0.056 0.0223
V4D [14] 33.54 0.978 0.028 0.0141
4D-GS [44] 33.31 0.979 0.026 0.0136
KFD-NeRF 35.73 0.984 0.045 0.0131

Real Data
Model PSNR(dB)↑ SSIM↑ LPIPS↓ Average↓

TiNeuVox-B [10] 24.39 0.734 0.303 0.0869
KPlanes [12] 28.25 0.881 0.137 0.0433
Mixvoxels-L [41] 26.95 0.828 0.222 0.0619
V4D [14] 28.16 0.884 0.136 0.0426
KFD-NeRF 28.75 0.891 0.115 0.0389

Table 1: Quantitative comparison of our KFD-NeRF against other dynamic NeRF
methods. We show results on both synthetic and real data. See Sec. 5.2 for more
details.

D-NeRF TiNeuVox-B KPlanes NDVG V4D 4D-GS Mixvoxels-L KFD-NeRF-S KFD-NeRF-L
Training Time↓ 48hrs 40mins 60mins 35mins 7hrs 25mins 1.5hrs 30mins 3hrs
Params(MB)↓ 16 50 340 150 275 163 140 175 175

Table 2: Training time and parameter size for different methods.

D-NeRF [36] (MLP based spatial representation), TiNeuVox-B [10] (voxel grids
based spatial representation), NDVG [17] (voxel grids based spatial representa-
tion) and 4D-GS [44] (Gaussian points based spatial representation), and feature
interpolation based methods KPlanes [12] and V4D [14]. For real data, besides
TiNeuVox-B and KPlanes, we further compare multi-view videos reconstruc-
tion methods MixVoxels [41]. We train all these methods on a single GeForce
RTX3090. See Tab. 2 for detailed training time and parameters consumption of
ours and other methods.

We provide an exhaustive qualitative and quantitative comparison of our
KFD-NeRF with these baseline methods. Three main metrics are reported,
namely the peak signal-to-noise ratio (PSNR), the structural similarity index
measure (SSIM) [42], and the learned perceptual image patch similarity (LPIPS)
[51]. To provide more intuitive results, we further calculate metric “average” [1],
which is the geometric mean of MSE = 10−PSNR/10,

√
1− SSIM, and LPIPS.

Please see Tab. 1 for quantitative comparison and Figs. 4 and 5 for qualita-
tive comparison. Per-scene results can be found in the supplemental material.
We strongly recommend readers to watch the supplemental videos for a more
intuitive understanding of the results.

5.3 Ablation Studies

We conduct ablation studies on both synthetic and real data to validate our
various proposed system components. We compare our full model with variants
related to Lco, Lkf and prediction branch.
Canonical observation loss Lco. This loss is designed to regularize a contin-
uous and smooth volume shape in the canonical space for better observations.
Specifically, we guide the shape in the canonical space to be close to the shape
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Fig. 6: Two sources of knowledge at
frame ti from our pre-trained dynamic
system with inputs up to and includ-
ing frame ti−1. Notice that during the
early stages of training, our observa-
tion MLP has insufficient initialization,
resulting in the loss of many details
(green boxes on the right). Fortunately,
our predictions provide additional pri-
ors (green boxes on the left) for the cur-
rent frame based on information from
previous frames, compensating for the
loss in observations.

Lkf Lco PSNR(dB)↑ SSIM↑ LPIPS↓

a) 30.15 0.914 0.110
b) ! 30.60 0.920 0.106
c) ! 31.78 0.931 0.086
d) ! ! 32.24 0.938 0.080

Table 3: Ablation Studies on the Lkf

and Lco. We show all the ablation com-
binations and report the average results
on synthetic and real data.

Dynamic Static
Model PSNR(dB)↑ SSIM↑ PSNR(dB)↑ SSIM↑

P.N., (xi, ti) Input 25.61 0.963 29.58 0.812
P.N., (xi, ti, ti−1, ti−2) Input 25.66 0.964 29.55 0.812
w/ Prediction Branch (full) 26.71 0.967 29.57 0.813

Table 4: The ablation study on our
prediction branch for real data in aver-
age, where dynamic and static areas are
counted separately. P.N. is short for Pure
MLP Network.

at frame t0. In Tab. 3 line b), we remove Lco and observe a decrease in model
performance.
Estimation update loss Lkf . This loss tries to minimize the difference between
estimated deformation and current observation. This updating process ensures
that with each iteration, the observation acquire progressively more accurate
information to guide the learning process. In Tab. 3 line c), we remove Lkf and
witness a decrease in model performance.

5.4 Extra Studies on Prediction Branch

This study aims to demonstrate the effectiveness of our plug-in Kalman filter.
The most crucial step in Kalman filter is to fuse the original network observations
with the predictions from system dynamics. Therefore, we directly remove the
“Prediction and Fusion Stage” in our pipeline and use pure shallow observation
MLP to generate deformations. We further conduct an experiment where a pure
deformable network takes the current frame and the previous two states as inputs
to ablate the effectiveness of the Kalman motion modeling. In Tab. 4, we see a
clear drop in performance by pure MLP network-based methods, indicating that
simply inputting previous Kalman filter parameters without modeling motion
prediction is insufficient.

The prediction branch we have designed can offer reliable priors in the early
stages of training. We visualize these priors through an experiment to gain fur-
ther insight. Specifically, we train our system with only inputs up to and in-
cluding frame ti−1 and then let our system produce rendering results at frame
ti with two different branches: predictions and observations. This experiment



14 Y.Zhan, Z.Li et al.

Fig. 7: An example in Nvidia Dataset [47] to illustrate scale and topological issues in
choosing canonical space. From ➀ to ➁ there is a scale change due to moving closer
to the camera. From ➂ to ➁ there is a topological change caused by target disappear-
ance. According to this, choosing canonical space ➀ will suffer from low resolution and
choosing canonical space ➂ will suffer from incomplete topology while ➁ is a better
canonical space to choose.

effectively simulates the amount of knowledge contained in predictions and ob-
servations in the early stages of training when the system encounters new input
data. In Fig. 6 we show two sources of knowledge from prediction branch and
from direct output of observation MLP at frame ti. We see an obvious deficiency
in the observation MLP when initializing new input frames and are pleased to
find that the prediction branch compensates for this loss based on information
from previous frames.

6 Discussion and Conclusion

Limitations. Our method relies on a well-reconstructed radiance field in the
canonical space, which in our pipeline is guided by Lco. This design, however,
will partially fail, if the chosen canonical space exhibits significant scale changes
or even topological changes related to other frames. In Fig. 7 we use an ex-
ample to illustrate the influences caused by choosing canonical space. This phe-
nomenon, however, cannot be mitigated by precisely setting the canonical space
as we lack a priori access to the input data. We note that some works [1,33] focus
on addressing scale or topological issues in radiance fields reconstruction. Nev-
ertheless, these issues are not the main focus of our paper and will be explored
in future works to further refine our model.
Conclusion. In this work, we present KFD-NeRF, a Kalman filter guided NeRF,
for 4D dynamic view synthesis. We model the dynamic radiance field as a dy-
namic system in control theory and use Kalman filter to estimate the defor-
mation states based on both observations and predictions. We further enhance
our observation by encoding canonical space with an efficient tri-plane and by
regularizing the shape in the canonical space. Through our temporal training
strategy and newly derived pipeline, KFD-NeRF achieves state-of-the-art view
synthesis performance among a variety of dynamic NeRF methods. We hope
the dynamic system modeling of 4D radiance fields will encourage researchers to
explore motion contextual information. KFD-NeRF hopefully inspires the use of
existing sequential methods mainly in control theory and visual state estimation
to further improve 4D view synthesis and deformation estimations tasks.
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