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A Appendix Outline

In these supplementary materials, we provide additional details for our V-IRL
platform, including:

– Additional V-IRL agents results (Appendix B);
– Technical designs behind V-IRL Agents (Appendix C);
– Technical details and challenges in the V-IRL environment (Appendix D).
– A low-level case study of Intentional Explorer agent Hiro, delving into im-

plementation details of our system such as LLM prompts (Appendix F);
– More detailed setups and results for our V-IRL benchmarks (Appendix G).
– Discussion on ethical and data privacy issues for V-IRL (Appendix H).
– Conclusion of V-IRL (Appendix I).

B Additional V-IRL Agents

Here we present additional agents that further illustrate the flexibility of the
V-IRL platform beyond those displayed in Sec. 3.

B.1 RX-399: Urban Assistance Robot

Urban Assistance Robot

E
N

V Map C
V Vision

Name: RX-399 Age: Unk. Loc: HK/NYC
Bio: This urban robot’s advanced object detection, localization, and navigational teleme-
try systems allow it to perform perceptive tasks in busy city streets.
Intention: Report the locations of trash bins to the sanitation dept.

Task: Travel along a specified route and detect instances of a
specified object (e.g., trash bins, hydrants, benches, etc.).

Takeaway: V-IRL agents can use perceptive input to under-
stand and interact with their environment.

RX-399 is a state-of-the-art robot agent with advanced navigation and sensing ca-
pabilities. Its manufacturer is running a pilot program with sanitation departments
in Hong Kong and New York City to assess its readiness for garbage duty. . .

⋆ Work conducted during a visit to NYU.

https://virl-platform.github.io
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RX-399 navigates along pre-defined city routes, tagging all trash bins using its
open-world detector and geolocation module as depicted in Fig. 1. RX-399 can
actively adjust its camera pose to the optimal view for each potential object
thanks to our interactive embodied environment and the sensor-rich visual in-
put. During the pilot in Hong Kong, RX-399 locates eight trash bins, correctly
identifying five but overlooking one. In New York, it accurately detects all five
trash bins but mistakenly reports two mailboxes.

NYC

Hong Kong

Fig. 1: Portions of RX-399’s system records in HK and NYC.

B.2 Ungrounded LLM-only Concierge

In contrast to the expert concierge exemplar agent “Diego” in Sec. 3, Fig. 2 shows
that a simpler “ungrounded” LLM-only concierge agent is unable to consider
the real distance and travel time between locations without access to V-IRL,
resulting in an impractical itinerary. For example, lacking real geospatial infor-
mation, the ungrounded concierge allocates only 30 minutes for travel between
the “Brooklyn Botanic Garden” and “Wave Hill” in the Bronx, which actually
requires 60–100 minutes1. The hallucinated travel times overlook geospatial re-
alities and result in a plan with excessively distant destinations.

C Technical Details of V-IRL Agents

In Sec. 3, our discussion mainly focuses on the innovative capabilities and behav-
iors of V-IRL agents empowered by our platform. We avoid in-depth discussions
about technical details in the main paper due to the concern of readability. In
1 (per Google Maps https://maps.app.goo.gl/SW1r5GSx3ZVo7BTr7).

https://maps.app.goo.gl/SW1r5GSx3ZVo7BTr7


V-IRL 3
Single pass results

Morning walk at The High Line.
08:00 - 9:00

Breakfast at a local café in Chelsea. 

Subway ride from Chelsea to Green-Wood Cemetery.

12:45 - 13:45

10:00 - 10:30

Explore Green-Wood Cemetery.

14:00 - 15:30

Lunch at a quiet restaurant in Brooklyn.

Visit the Brooklyn Botanic Garden.

Travel from Brooklyn Botanic Garden to Wave Hill.
15:30 - 16:00

Stroll around Wave Hill.
16:00 - 18:00

Dinner at a cozy restaurant in Riverdale.

Travel back to the university.

18:15 - 19:00

19:00 - 20:00

10:30 - 12:30

09:15 - 10:00

START

1 2

3
4

5
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Fig. 2: An ungrounded LLM-only concierge agent’s itinerary.

this section, we go through our main technical designs for each agent. More
comprehensive technical implementations are available in our released code.

C.1 Peng: Route Optimizer

Peng is designed to showcase the utilization of real geographic coordinates within
our platform. By processing a sequence of real addresses, Peng calculates the
shortest path for traversing them using various modes of transportation, such
as walking, driving, and bicycling, among others. This capability is powered by
the mapping module described in Appendix D.3. After that, Peng proceeds to
navigate through the destinations along the predetermined path, employing the
point navigation procedure outlined in Appendix D.2.

C.2 Aria: Place Recommender

Aria leverages the realistic place information provided by our Place Info & Search
module (see Appendix D.4) to enhance LLMs’ reasoning capability in the ge-
ographic aspect. Specifically, Aria evaluates Peng’s intention to determine the
suitable type of place and searches all possible places in the vicinity. For each
searched place, Aria considers its reviews and user ratings from Google to sum-
marize a place overview. Subsequently, we customize prompts for Aria to amal-
gamate Peng’s biography, intentions, and the summarized place overviews to
rate each place between 0 and 10, accompanied by justifications.

Without such technical designs, LLMs could recommend some places that
are either too distant or permanently closed. This issue arises because LLMs
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struggle to accurately understand geospatial relationships and often depend on
outdated databases.

C.3 Vivek: Estate Agent

The process employed by Vivek is similar to that of Aria, as both are designed to
recommend places. However, Vivek showcases the versatility of our V-IRL plat-
form by demonstrating how it can seamlessly integrate a wide range of realistic
information beyond the Google Maps Platform, with a standardized definition
of geographic coordinates. This capability enables the creation of even more
sophisticated and intriguing agents.

C.4 RX-399: Urban Assistance Robot

Different from previous example agents, RX-399 introduces visual perception
capabilities such as open-world detection and feature matching. There are two
fundamental systems inside it – navigation and perception. In terms of nav-
igation, RX-399 can automatically navigate from the current position to the
pre-defined destination step by step. This navigation process is elaborated in
Appendix D.2, and thus, will not be extensively discussed here.

When it comes to its perception system, RX-399 is designed to simulate hu-
man visual perception by capturing street views within a 90-degree horizontal
angle to both its left and right. For each captured view, an open-world detection
process is conducted. Leveraging the interactive capabilities of our environment,
we further propose an active detection strategy to dynamically adjust the agent’s
ego-pose and focal length according to the scale and position of potential ob-
jects. This significantly improves its performance as illustrated in Tab. 1. In
the future, more advanced approaches such as visual search [17] could also be
considered. In the subsequent de-duplication procedure, which aims to avoid
double-counting objects across different viewpoints, we have tried a few strate-
gies including measuring with multi-view geometry, object tracking, and feature
matching. We choose feature matching because of its accuracy and efficiency.

City Hong Kong New York City
w/ active detection 0.63 / 0.83 0.71 / 1.00
w/o active detection 0.10 / 0.33 0.30 / 0.60

Table 1: RX-399 detection performance with or without active detection manner.
Metrics are accuracy / recall.

C.5 Imani: Urban Planner

The visual perception system of Imani mirrors that of RX-399. The primary
distinction between them lies in their navigation systems. Imani possesses the
capability to plan a navigation route in the given polygonal region, enabling RX-
399 to traverse that region. This functionality is named “region navigation” and
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elaborated in Appendix D.2. Additionally, within the Imani agent, we develop a
heatmap visualization tool to visualize and verify the data collected by RX-399
(see Fig.3 of the main paper).

C.6 Hiro: Intentional Explorer

Hiro is a representative agent equipped with geographical, perceptual, and rea-
soning abilities, to address a daily human task: randomly exploring to find a
suitable restaurant. In this regard, we have dedicated a separate section to of-
fer an in-depth case study, including the detailed methodology and prompts in
Appendix F.

C.7 Ling: Tourist

Our vision language navigation pipeline of Ling is similar to [16], leveraging vi-
sion models, the map, and LLMs. At each position, we start by capturing eight
street views around the agent, corresponding to front, left front, left, left
behind, behind, right behind, right and right front. Vision models use
these street views to identify landmarks mentioned in route descriptions, which
are then verbalized as landmark observations. Also, intersection information is
retrieved from the mover to formulate an intersection observation. LLMs play a
crucial role in processing landmark & intersection observations along with the
agent’s previous working history to determine the next action. After each action,
current observations and actions are stored into the agent’s working history. This
auto-regressive process continues until the agent decides to stop.

C.8 Local Agent

The primary mission of the Local agent is to generate human-like and easily
followable navigation instructions on a global scale (refer to Sec. 3.4). This task
is known as navigation instruction generation [15]. Contrary to most existing
research, which depends on human-annotated data for limited geographic areas,
our “Local” agent automatically selects suitable landmarks taking account into
real-world places and generates human-like route descriptions using LLMs across
the globe. Remarkably, it achieves this without the need for any training data,
relying solely on our tailored prompts and a few in-context examples. The ef-
fectiveness of its generated instructions has been verified through collaboration
with ”Ling”. To the best of our knowledge, this is a first in the field. There are
massive technical details on selecting easily noticeable landmarks and prompt
engineering, which are available in our released code.

C.9 Diego: Interactive Concierge

In Appendix E, we have already presented the technical designs of Diego’s
itinerary. Here, we detail how Diego can find scenic locations as shown in Fig. 8 of
the main paper. For any given destination, such as “Fort Tryon Park”, Diego will



6 Yang. et al.

sample a rectangle region around it and traverse all navigable positions within
it. At each position, he will capture a photograph (i.e. street view imagery)
using pre-defined headings, pitches, and FOVs. Each photograph will then be
evaluated using GPT-4(V) [2], where it receives a rating between 0 and 10 along
with explanatory reasons.

D Technical Details of Environment

In Sec. 4.2, we provide an overview of our system’s environment, which grounds
agents in real life. Here, we delve into the technical designs beyond mere leverag-
ing Google Map Platform system calls. Concrete implementations can be found
in our open-sourced code.

D.1 Geolocation & Street View Imagery

At the core of V-IRL lies its innovative use of sensor-rich environment, including
street view imagery and geolocations. They enable agents to gather surrounding
place and vision information.

Geolocation. Agents in the V-IRL platform inhabit virtual representations of
real cities around the globe. At the core of this representation are geographic
coordinates (i.e. geolocation) corresponding to points on the Earth’s surface.
The initial geolocation of each agent is specified by its “Location” configuration,
as illustrated in Fig. 9 of the main paper. Whenever agents require access to
surrounding information (e.g . street views, places or maps), geolocation serves
as a crucial parameter for querying the related Google Map APIs.

Street view imagery. Google Map Platform specifies each street view imagery
with multiple key parameters: geolocation, heading (the horizontal angle ranging
from 0◦ to 360◦), pitch (a vertical angle ranging from -90◦ to 90◦), and Field of
View (FOV, ranging from 20 ∼ 120). It’s noteworthy that adjusting the FOV
here is similar to changing the camera’s focal length, rather than simply zooming
in on an image, which ensures that image resolution remains high, even as the
FOV decreases to a low value. By modifying the heading, pitch, and FOV, we can
simulate the human sensory process of adjusting one’s pose and concentrating
on a specific area.

Alignment between street view imagery and geolocation. Within our
sensor-rich platform, a fundamental challenge is to ensure agents are positioned
at geolocations where street view imagery is available. To address this issue,
we design a custom operation named “relocate”. Specifically, when an agent
is initialized at a location lacking street view imagery, the “relocate” operation
will identify and transition the agent to the nearest viable geolocation where
street view data is available. Notice that, this operation is indispensable to our
platform, as the positions with available street views are relatively sparse in
comparison to the vast continuous space of all possible coordinates.
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D.2 Movement

Enabling agents to move along city streets is a core functionality of our platform,
allowing interaction between agents and the real world. Whenever an agent needs
to move, this module powers all related processes, from route planning and
direction selection to the continuous update of the agent’s geolocation during its
moving. Since Google Maps Platform does not provide APIs to access nearby
navigable positions and directions, the design of this movement module is a
significant technical challenge and a substantial contribution from our team. We
discuss its low-level implementations in Appendix D.2 and the enabled high-level
actions in Appendix D.2.

Mover Move by controlling the web interface. A straightforward solution
is to let the agent control the web front-end Google Street View to select moving
directions and move. Nevertheless, there are three key challenges for this solution:

(i) How can Python-implemented agents control the movement via
the interaction to the webpage? We use a Python package Selenium2 to
locate web elements responsible for movement. After determining a movement
direction, the agent uses Selenium to simulate a click action on the web element
corresponding to the chosen direction.

(ii) How can the agent acquire the necessary information to decide
moving direction? Although agents can access all potential movement direc-
tions from web elements, they cannot identify these directions without prior
knowledge of what each represents. We find that the “transform” attribute in
the web element corresponding to each direction can be leveraged to calculate
their represented heading angles. The heading angle also allows us to collect
street view imagery for each movement direction. Agent’s movement decision-
making is then based on these heading angles and the visual data from street
view imagery.

(iii) How to track the agent’s geolocation along its movement? To
accomplish this, we customize a webpage element to display the geolocation of
the current street view panorama. As the agents move and trigger updates to the
street view panorama, this customized element concurrently refreshes to reflect
the new geolocation. By using Selenium, we can then extract this updated ge-
olocation data, enabling continuous tracking of the agent’s geolocation changes.

Move by grid-based relocating. In our test of the above web-based mover,
a critical limitation emerged: the web-embedded Google Street View panoramas
display only a subset of navigable directions. This constraint significantly re-
stricts our agents’ mobility, often preventing them from successfully navigating
to their intended destinations due to the incomplete coverage of potential routes.

To overcome this obstacle, we develop an alternative method: a grid-based
relocating mover. This approach involves performing a grid search for geoloca-
tions in the vicinity of the agent and employing the “relocate” operation to sift
through these locations, identifying those that are navigable. While this method
2 https://www.selenium.dev/

https://www.selenium.dev/
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offers a more comprehensive view of navigable positions, it is markedly more
time-consuming than the web-based approach due to the extensive number of
Google Maps API calls required.

In our practical applications, we design a heuristic strategy that combines
web-based controlling and grid-based relocation. This hybrid approach aims to
balance the trade-offs between the speed and the completeness of navigable po-
sition data, optimizing our agents’ capabilities and efficiency in real-world sce-
narios.

Navigator Here, we introduce the high-level action of agents powered by the
mover – navigation. Unlike the mover, which concentrates on enabling agent
mobility in the environment, the focus here shifts to determining the direction
of movement. In our platform, we group different navigators according to their
usages into four types:

(i) Point navigator is designed to tackle navigation tasks that clearly define
single or multiple destinations (represented in addresses or geolocations). This
navigator employs the route planning function described in Appendix D.3 to
obtain a series of key positions for navigation. At each location, the agent utilizes
a greedy algorithm to select the most optimal direction towards the next key
position that has not yet been reached. Exemplary agents, such as “Peng”, “RX-
399” and “Local”, use this type of navigator in their implementation.

(ii) Region navigator is tailored for agents like “Imani” and “Diego”, who
need to traverse every position within a polygonal region. This navigator first
employs a grid search combined with our “relocate” operation to identify all nav-
igable positions within the specified region. Subsequently, it adopts a heuristic
algorithm designed to solve the traveling salesman problem, planning an effi-
cient order for visiting these positions. The agents’ task is to simply follow this
predetermined route, visiting each navigable position in the planned order.

(iii) Vision-language navigator is specifically developed for the tourist
agent “Ling”, as well as for tasks within the V-IRL vision-language navigation
benchmark. Its primary function is to guide the agent in selecting a proper
direction based on navigation instructions. The detailed pipeline is presented in
Appendix C.7.

(iv) Intention navigator is utilized in intentional explorer agent “Hiro” to
select the most suitable direction that aligns with the agent’s specific intentions.
The detailed methodology and prompt are detailed in Appendix F.2.

D.3 Mapping

The mapping module in our environment is designed to equip agents with func-
tionalities such as route planning and transportation time estimation. It mainly
utilizes the “Directions API”3 from the Google Map Platform to facilitate these
capabilities. Given the complex nature of this API’s interface, our principal fo-
cus has been on parsing its output and adapting it into various user-friendly
interfaces for agents.
3 https://developers.google.com/maps/documentation/directions

https://developers.google.com/maps/documentation/directions
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D.4 Place Info & Search

Place Info & Search module hosts another important information source in our
platform beyond the visual street view imagery, enabling agents to interact with
real-world “places”. It provides various attributes of places, including type, name,
location, imagery, reviews, etc. In this module, our technical efforts are primarily
focused on understanding, comparing, and integrating the most suitable func-
tions from the vast array of Google Maps Platform APIs related to place infor-
mation and nearby place searches. Additionally, we devise some post-processing
strategies to identify and eliminate invalid or conflicting data sources from the
Google Maps Platform.

Another essential capability enabled by this module is to associate object
proposals in street view imagery and their corresponding places in the real city.
This function is vital to enhance the reality of our platform by connecting street
view and geolocation. It also powers the “Hiro” agent and the evaluation of the
V-IRL Place detection benchmark. The implementation is detailed in Sec. 5.2.

Working
Memory

Interactive
Concierge

Local Agents

Revising Loop

Hierarchical 
Coordinator 

Interoceptive
Estimator

Supervisor

Planning Iterations

Environment

Human
Background

Intention

Interoceptive State

Budget

Human-Agent
Interaction

Agent-Agent
Collaboration

Information
Retrieval

Audit Revise Approve

Fig. 3: Architecture overview of interactive concierge agent Diego (Sec. 3.4). See
pipeline description in Appendix E.

E High-Level System Case Study: Interactive Concierge
“Diego”

By studying Diego (Sec. 3.4), we illustrate how our platform’s components are
combined to create complex agents.

Behind Diego’s proficiency in developing itineraries is his iterative planning
pipeline (depicted in Fig. 3). The process begins with Diego creating an initial
draft plan for the first activity using GPT-4, taking into account the user’s
biography, requirements, and previous activities in working memory. This draft
is then meticulously refined. First, a hierarchical coordination module re-
trieves real transportation time and asks a recommendation agent for dining
recommendations. Subsequently, an interoceptive estimation module eval-
uates the effect of the proposed activity on the user’s mental/physical state and
budget.

The crucial final step involves a supervisor module, which reviews (“audits”)
the incoming activity in light of the current user status, remaining budget, and
potential interactions (exemplified in Fig. 7 of the main paper). If the super-
visor deems the plan unsuitable, it initiates revisions. The revised plan is then
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looped back to the hierarchical coordinator and interoceptive estima-
tor for reliability, followed by another review from the supervisor (see the
revising loop in Fig. 3). This iterative process between the hierarchical co-
ordinator, the interoceptive estimator, and the supervisor continues until
the supervisor approves the activity and adds it to its working memory.

After finalizing an activity, Diego proceeds to plan the subsequent activity
by repeating this process until the day’s itinerary is complete.

F Low-Level System Case Study: Intentional Explorer
“Hiro”

This section delves deeper into the low-level implementation details of the In-
tentional Explorer agent “Hiro” (Sec. 3.3), focusing on the prompts utilized to
interact with various parts of our system. Concretely, we present the prompts in
four subparts: identifying a type of place to search using the user-defined inten-
tion (Appendix F.1), selecting appropriate roads (Appendix F.2), summarizing
reviews of places (Appendix F.3), and making action decisions (Appendix F.4).
These four components jointly enable Hiro to explore in our interactive embodied
environment driven by his initial intention.

F.1 Intention to Place Type

Starting with a user-defined agent intention, Hiro first determines the type of
place that could fulfill this intention using GPT-4 and the following prompt:

[Role]
You are PlaceSuggesterGPT, an expert in recommending types of places
based on user-specified intentions.

[Task Description]
Given a user-specified intention, determine the type of "place" one
should seek to fulfill the intention. Your response should be in the
following JSON format:
{"place": "Desired Place Type"}

[Example]
Input: "Intention: <buy a book>"
Output: {"place": "bookstore"}

[Input]
Intention: <{agent_intention}>
[Output]
Your recommended place type based on the user-specified intention, in
the required JSON format:

Using this prompt with the intention



V-IRL 11

Hiro is hungry and looking for a place where he can try some good local
food. He cannot handle spicy food.

returns the result

{"place": "restaurant"}.

The identified place type (here, restaurant) is extracted and set as the target
category for Hiro’s open-world detector during his exploration.

F.2 Road Selection

Whenever Hiro is at a crossroads, he determines the best road to follow using his
multi-modal LLM and GPT-4. The primary goal of the road selection process
is to identify the road most likely to lead to the desired place type that aligns
with Hiro’s intention. First, Hiro fetches the street view towards each potential
road using the V-IRL environment. Then he utilizes his multi-modal LLM (such
as InstructBLIP [6] or LLaVA [13]) to generate captions for each road using the
following prompt:

I am looking for a {place_type}. Please detail information that might
be helpful for me along this road:

Captions for each road are then formatted in the style of

{road_idx}: {road_description}

and concatenated to form all_road_descriptions. These road captions, along
with Hiro’s user-defined intention, are then fed into GPT-4 to determine the
most promising road to follow using the following prompt:

[Role]
You are PathSelectorGPT, an expert in choosing the optimal road from
multiple candidates based on a user-specified intention.

[Task Description]
Given an intention, the road previously traveled, and descriptions of
available candidate roads, select the best road from the crossroad.
Your response must be in the following JSON format:
{"idx": "Selected road index", "reason": "Justification for your selection"}
[Example]
For the intention "find a grocery store", the road previously traveled
as "1", and with candidates "2: Leads to residential area, 3: Leads
to a shopping district", the output might be: {"idx": "3", "reason":
"Road 3 leads to a shopping district which is more likely to have a
grocery store."}
[Input]
User Intention: <{agent_intention}>
Road Descriptions: {all_road_descriptions}
Previously Traveled Road: Road {from_road_idx}
[Output]
Your chosen road index and the reasoning behind your selection, in the
required JSON format:
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We design such a two-stage captioning and decision-making pipeline for road
selection because Multi-modal LLMs cannot process multiple images simultane-
ously. However, with the recent advancements of GPT-4V, it may be possible to
perform road selection using several road images with a single prompt at once.
Empirical findings suggest that GPT-4V yields more reasonable choices with the
following prompt:

[Role]
You are PathSelectorGPT, an expert in choosing the optimal road from
multiple road images according to a user-specified intention.

[Task Description]
Given a set of road images, select the best road from the crossroad.
Your answer must be in the following JSON format:
{"idx": "Selected road index (start by 0)", "reason": "Justification
for your selection"}

[Input]
User Intention: <{agent_intention}>

[Output]
Please answer with the road index and the reasoning behind your selection,
in the required JSON format:

An example road selection response for the first crossroad selection in Fig. 4 of
the main paper is as follows:

“idx”: “0”, “reason”: “Choosing road 0 promises a genuine taste of local cuisine
in a less commercialized setting. It’s likely to have family-run eateries where I can
request non-spicy dishes and savor authentic flavors. This road offers a tranquil
dining atmosphere, allowing for a more engaged and leisurely culinary exploration
among the locals.”

F.3 Summarize Place Reviews

When Hiro discovers a place in the street view imagery, he retrieves its cor-
responding name and Google reviews from the V-IRL environment. There is
a complex algorithm behind projecting the 2D box on street view imagery to
a concrete place in the real world, which is detailed in “matching between ob-
ject proposal and places” of Sec. 5.2. After Hiro obtains these place reviews, he
summarizes them into a place overview (to aid in decision-making) using the
following prompt:

[Role]
You are SummarizeGPT, skilled at condensing multiple reviews into a
concise overview of a location.

[Task Description]
Given multiple reviews with ratings, craft a brief overview of the place.
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Your response should be in the following JSON format:
{"summarization": "Concise description (limited to 80 words)"}

[Example]
For reviews "Great ambiance but average food (Rating: 3)" and "Loved
the decor, food could be better (Rating: 3.5)", the output might be:
{"summarization": "The place boasts great ambiance and decor, but the
food quality receives mixed reviews."}

[Input]
Reviews: {all_reviews}

[Output]
Your concise overview (max 80 words) based on the provided reviews,
in the prescribed JSON format:

F.4 Action Decision

After obtaining the overview of the identified place, Hiro decides to visit the
place or keep exploration using GPT-4 and the following prompt:

[Role]
You are ActionSelectorGPT, proficient in choosing the most appropriate
action based on a user’s background, intention, and an overview of a
place.

[Task Description]
Evaluate the provided user background, intention, and place overview
to select the most suitable action from the list. Your response should
be in the following JSON format:
{"action": "Selected Action", "reason": "Justification for your choice"}

Possible actions:
- enter_place(): Enter the designated place.
- continue(): Continue searching for another appropriate place.

[Example]
For the background "loves historical sites", intention "discover local
history", and place overview "This is a 200-year-old preserved mansion",
the output might be:
"action": "enter_place()", "reason": "The historical mansion aligns
with the user’s interest in historical sites."

[Input]
User Background: <{background}>
User Intention: <{intention}>
Place Overview: <{place_intro}>

[Output]
Your chosen action and the rationale behind your decision in the prescribed
JSON format:
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Hiro’s exploration will continue if he decides to continue() and will terminate
if he opts for enter_place().

G V-IRL Benchmarks: Details

G.1 Data Curation

Place Types. We collect place information in each region for all 96 places
types annotated by GMP4. Our V-IRL place: detection, recognition and VQA
benchmarks are built upon all or part of these place types.

Data Cleaning. Though scalable, automated data collection can introduce
noise due to the absence of human supervision. To this end, we design three
automatic data cleaning strategies: i) distance-based filtering to exclude places
not easily visible from any street views due to their distance; ii) human-review
filtering to remove “zombie” places with no reviews which might no longer be
valid or relevant; and iii) CLIP-based filtering to retain only place-centric images
with a high CLIP likelihood of being storefronts.

Continent City District

Africa Johannesburg Rosebank
Lagos Surulere

Asia

Mumbai Khar
New Delhi Lajpat Nagar
Hong Kong Prince Edward
Tokyo Shinjuku

Australia Melbourne CBD
Melbourne SouthBank

Europe Milan Brera
London Oxford St

North America
New York City Chinatown, Manhattan
New York City SoHo, Manhattan
San Francisco Union Square

South America Buenos Aires Monserrat

Table 2: Region list for global V-IRL benchmarks.

Data Quality Verification. We randomly sample over 10% data from each
benchmark and manually validate the quality. As shown in Tab. 3, only about
6% of the samples contain errors. This confirms the high quality of our data,
particularly given the real-world sources. This is attributed to the three data-
cleaning strategies for benchmark curation.

4 https://developers.google.com/maps/documentation/places/web-
service/supported_types/#table1

https://developers.google.com/maps/documentation/places/web-service/supported_types/#table1
https://developers.google.com/maps/documentation/places/web-service/supported_types/#table1
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V-IRL benchmark Rec & VQA Loc VLN
Sample error rate 3.8% 6.3% 7.1%

Table 3: Data quality verification for V-IRL benchmarks.

G.2 V-IRL Places: Detection (Details)

Matching between Object Proposals and Places. As mentioned in Sec.
5.1, we do not annotate bounding boxes for places on each potential street view
image. Such human annotation diverges from our initial motivation of providing
plug-and-play and sensor-rich (V-IRL) benchmarks. To assign ground truth for
each object proposal in this scenario, we develop a simple matching strategy to
assign object proposals from street view object detections to nearby places.

As illustrated in Fig. 4, we first project the bounding box of each object
proposal onto a frustum in the 3D space, subject to a radius. We then determine
if any nearby places fall within this frustum and radius. If any nearby place is
found, the closest one is assigned as the ground truth for the object proposal.
Otherwise, the object proposal is regarded as a false positive. When multiple
places are inside the frustum, we consider the nearest one as the ground truth
since it would likely block the others in the image. This process is also used
in Intentional Explorer agent Hiro to parse object proposals on images to place
information.

Fig. 4: Matching between 2D object proposal and street place.

All Category Results. Due to the page limit of the main paper, we only
present the results of 10 categories in Tab. 1 of the main paper. Here, we present
the place recall for all 20 categories in Fig. 5.

Example Illustrations. To facilitate the understanding of V-IRL Place De-
tection benchmark, we present some examples of CLIP (w/ GLIP proposals) in
Fig. 12.
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Fig. 5: Recalls in V-IRL Place Detection

Error Diagnosis of Detectors. Here, we conduct error diagnosis for detectors
in the V-IRL Place detection benchmark. We examine two error types: localiza-
tion error and classification error. As depicted in Fig. 6, the primary challenge
arises in classification, where detectors struggle to assign correct labels, despite
having accurate object proposals.
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Fig. 6: Error diagnosis in V-IRL Place Detection

G.3 V-IRL Places: Recognition and VQA (Details)

Place-centric Images vs. Street View Images. In contrast to the street
view imagery utilized in the V-IRL Place detection benchmark, the V-IRL Place
recognition and VQA benchmarks use place-centric images. To illustrate the
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Fig. 7: Top row: examples of street view imagery. Bottom row: corresponding place-
centric images.

distinction between these image types, we present examples in Fig. 7. The figure
shows that street view images, sourced from the Google Street View database5,
are taken from the street and encompass a broader view of the surroundings,
including multiple buildings and possible occluding objects/vehicles. In contrast,
place-centric images, drawn from the Google Place database6, are taken on foot
and focus more closely on the specific place—providing a more concentrated
view.

V-IRL Place VQA Process. The V-IRL Place VQA process is illustrated in
Fig. 8, where the candidate and true choices are generated by GPT-4 [2] given
the place types and place names corresponding to the image.

Place Types Performance for Recognition. In Figure 9, we present the
averaged accuracy for each place type across 10 benchmarked vision models.
The size and the x-axis position of each bubble correspond to the number of
places within each type. A clear trend emerges: accuracy tends to correlate with
the frequency. Common categories such as clothing store, cafe exhibit higher
accuracy, whereas vision models often struggle with infrequent place types like
bowling alley or mosque.

Place Types Performance for VQA. The place types performance of the
V-IRL place VQA in Fig. 10 further verifies the correlation between accuracy
and frequency from a human intention perspective. The top-10 categories are
closely aligned with the most common human activities, purchasing and dining.

5 https://developers.google.com/maps/documentation/streetview/request-streetview
6 https://developers.google.com/maps/documentation/places/web-service/photos

https://developers.google.com/maps/documentation/streetview/request-streetview
https://developers.google.com/maps/documentation/places/web-service/photos
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Question: Which human intentions can be accomplished here?
Choices: A. Learning how to cook authentic Australian food.

B. Applying for a reduction on parking fines.
C. Reporting a crime or lost property.
D. Attending a yoga session.

Fig. 8: Example of V-IRL Place VQA process.
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Fig. 9: Category-wise accuracy and numbers for V-IRL Place Recognition benchmark.

In contrast, the bottom-10 place types relate to places that are less frequently
encountered and serve a more diverse purpose, such as mosque, plumber and
embassy.
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Place VQA.

More V-IRL Place VQA Results. Here, we present more state-of-the-art
MLLMs including LLaVA-NeXT [12], Mini-Gemini [10], InternVL-1.5 [5], GPT-
4(V) [2],Qwen-VL-Max [3]. As shown in Fig. 11, LLaVA-NeXT (7B) outperforms
its predecessors LLaVA-1.5 and 1.0, but still has over 8% gap to InternVL-1.5
with 26B parameters. Closed-source MLLMs GPT-4V and Qwen-VL-Max yield
outstanding performance compared to most open-sourced models.
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Fig. 11: More state-of-the-art model results in V-IRL Place VQA benchmark.

Consistency Analysis of V-IRL Place VQA Results. Here, we study the
sensitivity of MLLM to the order of QA options in VQA. As shown in Tab. 4,
advanced MLLMs still exhibit 4.5%-10.6% mAcc drop with circular evaluation.
This highlights that MLLMs are still sensitive to the order of QA options pre-
sented.
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Method InternVL-1.5 [5] GPT-4V [2] Qwen-VL-Max [3]
mAcc (w/ circular) 77.6 77.1 74.3
mAcc (w/o circular) 82.1 83.1 84.9
mAcc drop -4.5 -6.0 -10.6

Table 4: MLLM consistency analysis on V-IRL Place VQA benchmark.

G.4 V-IRL Vision-Language Navigation (Details)

Navigation Pipeline. As mentioned in Appendix C.7, our VLN pipeline is
similar to [16], however, our benchmark offers greater scalability through the
worldwide V-IRL platform and an automated data collection pipeline, as op-
posed to the manual annotation of a specific region. Furthermore, our bench-
mark emphasizes the analysis of the vision component in the VLN pipeline, as
opposed to [16], which aims to enhance performance on existing VLN datasets
using LLMs.

Implementation Details. Here, we introduce the implementation details for
LLaVA-1.5 [11] and PP-OCR [7] (+ GPT-3.5). For LLaVA-1.5 [11], we transform
the landmark recognition task to a multiple choice VQA problem, asking

Which of the following landmarks can be identified with a high
degree of confidence?

The VQA options include all potential landmarks mentioned in the route de-
scription, along with a “None of above” choice. The model’s response to this
question is then parsed as the landmark observation.

For PP-OCR [7] (+ GPT-3.5), we first extract all recognized text using PP-
OCR [7] for each street view image. Then, GPT-3.5 [14] determines the presence
of each landmark in this street view image, jointly considering the OCR text
and landmark name.

Full Set Results. Apart from the mini-set results presented in Sec. 5.4, we
also provide the full set results of Oracle and CLIP (L/14@336px) in Tab. 5.
The Oracle results, interestingly, do not achieve a 100% success rate, due to
incorrect decisions made by the LLM at stop positions. This is evidenced by
the high arrival ratio and low reaction accuracy at stop positions. Empirically,
we observe that the LLM occasionally decides to keep moving, despite clear
destination indications in the observations.

When we substitute the map in oracle with the CLIP model to gather land-
mark observations from street view imagery, we observe a significant drop in
the success rate, due to the inevitable model prediction errors. To improve the
success rate in VLN, we can focus on two important factors: (i) designing bet-
ter vision models; (ii) developing LLMs and prompt techniques that are robust
to vision-related noise. Especially, our empirical findings suggest that sophis-
ticated prompt designs significantly improve the robustness of LLMs to visual
observation noise.
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Method Start Intersection Stop

Success Reac Arr Reac Arr Reac

Oracle (No Vision) 0.88 1.0 0.95 0.99 0.96 0.88

CLIP (L/14@336px) 0.22 0.84 0.66 0.90 0.61 0.22

Table 5: Results of V-IRL VLN-full.

H Discussion: Ethics & Privacy
Our platform serves as a tool for AI development and as a crucible for ethical dis-
course and preparation. As AI is inevitably being integrated into society—e.g .,
via augmented reality wearables, spatial computing platforms, or mobile robots
navigating city streets—it is imperative to confront and discuss ethical and pri-
vacy concerns now. Unlike these impending real-time systems, the data accessed
by V-IRL is “stale” and preprocessed—providing a controlled environment to
study these concerns.

Notably, V-IRL exclusively utilizes preexisting, readily available APIs; it does
not capture or make available any previously inaccessible data. Our primary
source of street-view imagery, Google Maps [9], is subject to major privacy-
protection measures, including blurring faces and license plates [8]. Moreover,
V-IRL complies with the Google Maps Platform license7, similarly to notable
existing works that also leverage Google’s street views [1, 4].

We believe V-IRL is an invaluable tool for researching bias. As discussed
in Sec. 5.5, V-IRL’s global scale provides a lens to study linguistic, cultural,
and other geographic biases inherent in models. By using V-IRL to study such
questions, we aim to preemptively tackle the ethical dilemmas that will arise
with deploying real-time systems rather than being blindsided by them. We
hope our work helps spur proactive discussion of future challenges throughout
the community.

I Conclusion

In this work, we introduce V-IRL, an open-source platform designed to bridge
the sensory gap between the digital and physical worlds, enabling AI agents to
interact with the real world in a virtual yet realistic environment. Through V-
IRL, agents can develop rich sensory grounding and perception, utilizing real
geospatial data and street-view imagery. We demonstrate the platform’s versa-
tility by creating diverse exemplar agents and developing benchmarks measuring
the performance of foundational language and vision models on open-world vi-
sual data from across the globe.

This platform opens new avenues for advancing AI capabilities in percep-
tion, decision-making, and real-world data interaction. As spatial computing and
robotic systems become increasingly prevalent, the demand for and possibilities
of AI agents will only grow. From personal assistants to practical applications
7 https://cloud.google.com/maps-platform/terms

https://cloud.google.com/maps-platform/terms
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like urban planning to life-changing tools for the visually impaired, we hope
V-IRL helps usher in a new era of perceptually grounded agents.
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Fig. 12: Samples of V-IRL Place Detection using CLIP (w/ GLIP proposals).
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