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Fig. 1: V-IRL agents leverage real-world geospatial information and street view im-
agery to navigate urban terrains, execute complex tasks, and interact in real-time
scenarios. From recommending relevant destinations to assessing city infrastructure to
collaboratively giving & following verbal directions—we develop agents that illustrate
V-IRL’s current capabilities, flexibility, and utility. Above all else, we present a flexible
platform for researchers to harness abundant data from across the globe to create and
test diverse autonomous agents.

Abstract. There is a sensory gulf between the Earth that humans in-
habit and the digital realms in which modern AI agents are created. To
develop AI agents that can sense, think, and act as flexibly as humans in
real-world settings, it is imperative to bridge the realism gap between the
digital and physical worlds. How can we embody agents in an environ-
ment as rich and diverse as the one we inhabit, without the constraints
imposed by real hardware and control? Towards this end, we introduce
V-IRL: a platform that enables agents to scalably interact with the real
world in a virtual yet realistic environment. Our platform serves as a
playground for developing agents that can accomplish various practical
tasks and as a vast testbed for measuring progress in capabilities span-
ning perception, decision-making, and interaction with real-world data
across the entire globe. All V-IRL resources will be open-sourced.

Keywords: AI Agents, Embodied AI, Open-world Computer Vision

1 Introduction
The advent of large language models (LLMs) has breathed new life into au-
tonomous agent research by offering a universal interface for diverse capabilities,
⋆ Work conducted during a visit to NYU.
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ranging from basic reasoning to complex planning and tool use [72]. While these
developments are promising, most of these agents remain confined to text-based
environments or simplistic simulations. Visual components in existing agents are
either rudimentary—such as simulated tabletop environments [10, 29]—or rely
on abstracted representations using ground-truth APIs [27, 68]. Furthermore,
the prevalent visual models employed by these agents are trained on photogenic,
object-centric Internet images, which fail to capture the unpredictability and
diversity of real-world scenes.

This paper aims to bridge this gap between AI agents and the sensory world
by grounding them in real-world environments—a crucial step towards devel-
oping AI agents that can effectively operate in real-life scenarios. Our novel
setting for AI agents necessitates rich sensory grounding and perception: virtual
embodiment within cities around the globe using real visual and geospatial data.

To this end, we introduce V-IRL, a versatile platform for building and testing
virtual agents within this novel virtual-real-world setting. V-IRL harnesses the
power of mapping and street view data, enabling agents to navigate real-world
locations, access up-to-date information about their surroundings, and perform
practical tasks. With geospatial coordinates at its core, V-IRL is flexible and
extensible, integrating with arbitrary geospatial platforms and APIs. Moreover,
V-IRL opens up a vast sea of visual data, allowing a simple and extensible way
for researchers to evaluate vision models on realistic data distributions.

We demonstrate the versatility and adaptability of V-IRL by developing a
series of diverse exemplar agents, each solving a unique and practical task. As
these agents hinge upon foundational language and vision models, it is critical
to evaluate these models within this setting and their impact on agent perfor-
mance. We leverage the vast data available through our platform to develop
global scale benchmarks measuring the performance of underlying vision models
on images from diverse geographic and cultural contexts—evaluating their adapt-
ability to shifting environmental, architectural, and language-specific elements.
Furthermore, we evaluate the contributions of models to agent performance on
challenging tasks. Our results illustrate the potential of V-IRL in bridging the
gap between virtual agents and visually rich real-world environments, paving the
way for future research in this direction.

In summary, our contributions are:

– V-IRL: an open-source platform for building and testing agents in a real-
world setting that necessitates rich sensory grounding and perception—
embodiment using real geospatial data and street-view imagery.

– Development of diverse exemplar agents that showcase the platform’s
versatility and adaptability.

– Global benchmarks measuring the performance of foundational language
and vision models (1) in isolation using our platform’s real-world data and
(2) on end-to-end agent performance in challenging tasks. In addition, we
analyze the robustness of “open-world” vision models to real-world
data from across the globe.

We are excited to see how the research community will leverage V-IRL to develop
and test agents that can understand and interact with the real world.
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2 Related Work
Here, we ground V-IRL to three streams of research.
AI Agents. Agents are autonomous entities capable of perceiving their environ-
ment and acting to achieve goals [70]. Historically, agent development has lever-
aged symbolic and reinforcement learning methods [8, 30, 49], which face issues
of scalability and real-world utility. In contrast, the new wave of LLM-driven
agents overcomes these challenges with text as a universal interface, enabling
natural human interaction and adaptability to various tasks [50, 62, 63, 69, 77].
Moreover, these models equip agents with complex capabilities, such as tool use
and collaboration [26, 35, 51, 56, 68, 71, 85]. Yet a critical limitation persists: the
agents in this new wave are entirely text-based, devoid of any tangible connection
to the visual or sensory aspects of the real world.
Embodied AI. Embodied AI studies intelligent agents & robots perceiving
and interacting with their environment. A significant challenge in this field is
the acquisition of large quantities of realistic data. Consequently, robots are
primarily trained in simulated environments [11, 46, 55, 73, 74] to develop skills
such as navigation [3, 4, 12] and manipulation [25, 79]. Recent advancements in
LLMs [1,5,67] have enabled embodied agents to perform long-horizon and open-
end tasks in game-engines [27, 29, 39, 45, 60] or human rooms [9, 10, 20, 28, 38].
However, the diversity of tasks and data is still too narrow and simplistic to
enable them to operate flexibly in diverse real-world environments.
Open-World Computer Vision. Motivated by the success of vision-language
models [2, 7, 52, 80] pre-trained on large-scale web-crawled data [15, 32, 57, 61,
66, 75], open-world computer vision has received increasing attention in recent
years [18,19,23,33,34,37,48,65,76,83]. However, images and benchmarks sourced
from the Internet [6, 17, 22, 31, 33, 54] are unavoidably biased towards specific
distributions rather than truly reflecting the real world [53]. Because they are
trained and evaluated entirely on Internet data, existing “open-world” models
are effectively more open-Internet than open-world.

3 Virtual Intelligence in Real Life
To demonstrate the versatility of V-IRL, we use it to instantiate several exemplar
agents in our virtual real-world environment. In this section, we engage these
agents with tasks that highlight various capabilities of our platform. In Sec. 4,
we discuss the technical details of our platform and how it enables agents to
interact with the real world.

For illustration, we give V-IRL agents character metadata, including an 8-
bit avatar, a name, a short bio, and an intention they are trying to accomplish.
More concretely, agents are defined by pipelines that use this character metadata
along with our platform’s API and pretrained models to address complex tasks
(see Sec. 4). Here we provide a high-level overview of the tasks, highlight the
V-IRL capabilities they require, and visualize the agents solving them.

We highlight the specific V-IRL capabilities being employed throughout using
tags and corresponding colored underlines: E
N

V Map → action, LM LLM → rea-
soning, C

V Vision → perception, & C
O

L Colab → collaboration.
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3.1 Earthbound Agents

V-IRL agents inhabit virtual representations of real cities around the globe. At
the core of this representation are geographic coordinates corresponding to points
on the Earth’s surface. Using these coordinates, V-IRL allows virtual agents to
ground themselves in the real world using maps, street view imagery, information
about nearby destinations, and additional data from arbitrary geospatial APIs.

Route Optimizer

E
N

V Map

Name: Peng Age: 21 Loc: NYC
Bio: Originally from Chengdu, Sichuan, Peng is a student at PKU. He just arrived for a
semester abroad at NYC, and is couch surfing until he gets settled.
Intention: Peng needs to visit five locations around the city: his University Card Cen-
ter, Residence Hall, Research Center, Library, and Student Center.

Task: Given a starting address and a list of waypoints, plan the
shortest route to all waypoints and then follow it on street view.

Takeaway: V-IRL instantiates agents with real geospatial infor-
mation, and enables useful tasks like route optimization.

Peng needs to visit several locations throughout the city to get documents signed
for registration as a visiting student. . .
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Fig. 2: Optimizing Peng’s travel route to five places.

By leveraging geolocation and
mapping capabilities within
our V-IRL environment, Peng
saves 7 minutes by walking
along the shortest path as op-
posed to in-order waypoint
visitation. An illustration is
shown in Fig. 2.

3.2 Language-Driven Agents
To tackle more complex tasks, we follow the pattern of language-driven agents [72].
LLMs enable agents to flexibly reason, plan, and use external tools & APIs.

Place Recommender

E
N

V Map LM LLM

Name: Aria Age: 26 Loc: NYC
Bio: A 3rd year graduate student who loves to try new restaurants. She is always looking
for new places to try, and shares her favorite spots on her blog!
Intention: Pick out a lunch spot that Peng might like.

Name: Vivek Age: 35 Loc: NYC
Bio: A tech-savvy estate agent who combines his local knowledge with online tools like
Zillow to find the perfect homes for his clients in the bustling city.
Intention: Help Peng find a place to live for the semester.

Task: Given specific location, background, and intention, synthe-
size reviews of nearby businesses to provide a recommendation.

Takeaway: V-IRL exposes rich real-world information to agents
that they can use for real-world tasks.

Peng is starving for some lunch but doesn’t know where to eat. . . Luckily, he met
a nice grad student Aria during his errands who can help him find a good spot. . .
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Personalized Rating: 8👍

Personalized Rating: 2.5👎

Personalized Rating: 7.5👍
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Mexican START

Aria searches for possible restaurants nearby.
She then synthesizes public reviews to make fi-
nal recommendations via GPT-4. As Peng is
new to the city and originally from Sichuan, she
recommends a spicy Chinese joint Kwa Food
Deep Fried Skewers to give him a taste of home.

Peng hires Vivek to find an apartment in East Village, Jersey City, or Long Island
City for $1k–$3k monthly, close to a gym, supermarket, and public transit. . .

Recommendations

Personalized rating: 8/10👍
The apartment is well-located near a
supermarket and gym, which aligns with
Peng's lifestyle. Multiple bus stations are
nearby, but the lack of a close subway
station may affect his commute.

"address": 155 Washington St, 
Jersey City, NJ 07302, ” rent": 
$2643, "type": Apartment, ”sqft": 
571, "bedrooms": 0, "bathrooms": 
1, "year built": 1992,

Personalized rating: 7.5/10 👍
The apartment is well-located with easy
access to supermarkets, public transport,
and a gym, which aligns with Peng's
requirements. However, the price may
not be cost-effective for a student.

Rental Information
"address": 42-18 28th St, Unit 
12E, New York, NY 11101, 
”rent": $2904, "type": Apartment, 
”sqft": 450, "bedrooms": 0, 
"bathrooms": 1,

"address": 37-14 32nd St, Unit 
508, New York, NY 11101,  
”rent": $1986,  "type": Apartment,  
”sqft": 800,  "bedrooms": 1,  
"bathrooms": 1,

Personalized rating: 2/10👎
The estate lacks nearby supermarkets,
bus, subway stations, and gyms, which
are essential for Peng's requirements.

Vivek uses real estate APIs to find potential
apartments in Peng’s desired regions and price
range. For each candidate, he researches its
proximity to the places Peng cares about. Syn-
thesizing these factors, Vivek provides a holis-
tic rating with reasoning using GPT-4. His top
recommendation is a cost-effective 1 bedroom
apartment for $1986/mo, which is close to a
supermarket, 2 bus stations, and a gym.

3.3 Visually Grounded Agents

Although language-driven agents can address some real-world tasks using ex-
ternal tools, their reliance solely on text-based information limits their appli-
cability to tasks where visual grounding is required. In contrast, real sensory
input is integral to many daily human activities—allowing a deep connection
to and understanding of the world around us. Agents can leverage street view
imagery through the V-IRL platform to visually ground themselves in the real
world—opening up a wide range of perception-driven tasks.

Urban Planner

E
N

V Map C
V Vision

Name: Imani Age: 42 Loc: NYC
Bio: A sustainable urban development graduate, Imani is passionate about maintaining a
harmonious balance between nature and urban ecosystems.
Intention: Use RX-399 to collect first-person data for her studies.

Name: RX-399 Age: Unk. Loc: NYC
Bio: RX-399 is a robot with advanced detection, localization, and navigation systems.
Intention: Localize and count pre-defined categories to the user in specified regions.

Task: Record the location of all instances of any specified objects
(e.g., trash bins, hydrants, benches) in a specified region.

Takeaway: V-IRL enables realistic open-world applications re-
quiring vast geospatial and first-person visual information.

Imani is analyzing the distribution of trash bins, fire hydrants, and park benches
in Central Park, NYC for a project with the Parks and Recreation Department. . .

Imani sets routes spanning Central Park and objects of interest for RX-399, who
traverses the routes and records all detected instances. After RX-399 finishes its
route, Imani analyzes the collected data at different levels of detail. As depicted
in Fig. 3, the coarsest level shows general distributions of trash bins, hydrants,
and benches in the park. Imani can also zoom in to specific regions, where lighter
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Hydrant

Bench BenchHydrant

Trash bin Trash bin Trash bin Trash bin

Fig. 3: Imani’s visualization of trash bins, fire hydrants, & park benches in NYC’s
Central Park using data collected by RX-399.

colors represent positions with more unique instances identified. The following ta-
ble presents RX-399’s counting report: Category Trash Bin Fire Hydrant Park Bench∗

Count 1059 727 1015
.

(∗Note: contiguous benches counted as one instance). By retrieving geotagged
sensory-rich data within RX-399, Imani can also inspect the detection results
for each object to verify the reliability of RX-399’s reports.

During RX-399’s traversal, it
can avoid double-counting previ-
ously seen objects by using feature
matching to check for duplicates
across different viewpoints (see fig-
ure illustration on the right).

Intentional Explorer

E
N

V Map LM LLM C
V Vision

Name: Hiro Age: 22 Loc: HK
Bio: A seasoned traveler, Hiro thrives in unknown territories. He enjoys getting lost in
new places instead of following the travel guide.
Intention: Hiro is looking for an authentic lunch spot that is not too spicy.

Task: Explore on foot (in street view) looking for a destination
that fulfills a certain intention (e.g., lunch, shopping, etc.)

Takeaway: Agents can utilize visual detectors, VLMs and LLMs
to iteratively perceive, decide, and interact in the environment.

Hiro starts a new journey in Hong Kong. He decides to explore without a specific
destination, looking for a good local lunch spot with food that’s not too spicy. . .

As depicted in Fig. 4, starting at , Hiro walks down the street and encounters
the first intersection. Thanks to the interactive and sensory-rich environment,
he can adjust his pose to fetch street views for each possible path. Using VQA
on these views, he decides to turn left:

Residential buildings on the left road indicate cozy and family-run local food. . .A
better choice than the others!

Then, after exploring for a block, he encounters the second intersection where
he looks around and decides to turn right:

Looks like there are some local food spots this way. . .
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[ACTION 2]
“I should turn right.”

restaurant

[ACTION 3]
“I’ll pass. Keep exploring.”

[ACTION 1]
“I should turn left.”

restaurant

[EXPLORATION ENDS]
“Let’s dine here!”

[EXPLORATION STARTS]
“Let‘s grab a bite to eat, I’m hungry.”

A One
阿⼀豬扒酸辣⽶綫

Chinese Noodles

新天發
Chinese Takeout

Fig. 4: Hiro’s lunch exploration procedure in HK.

After a few steps, Hiro finds
“A One Chinese Noodles” us-
ing his open-world detector.
He retrieves information, rat-
ings, and reviews for the
restaurant using our plat-
form, which connects street
views to places. Hiro ulti-
mately decides to pass on it
and keep exploring because:

Most reviews mention
the spicy pork chop noo-
dles in this spot. . .

Finally, at the end of the block , Hiro discovers another lunch spot called
“Xintianfa”. He decides to dine there after reading numerous online reviews
praising its authentic cuisine and diverse menu. See the low-level case study for
technical details behind Hiro in Appendix F.

3.4 Collaborative Agents
Humans work together to solve complex real-world tasks. This collaboration
promotes efficiency and effectiveness by decomposing a complex task into simpler
sub-tasks, allowing each to be handled by an expert in its domain. Grounded in
the world via our platform, V-IRL agents can leverage geospatial data and street
view imagery to collaborate with other agents as well as with human users.

Agent-Agent Collaboration As with previous agents, collaborative agents
are designed for specific tasks; however, they can handle objectives beyond their
expertise through collaboration with each other.

Tourist

E
N

V Map LM LLM C
V Vision C
O

L Colab

Name: Ling Age: 25 Loc: NYC/SF/HK
Bio: Ling is a spirited traveler from Taipei who is always eager to explore new cities and
cultures. She is unafraid of asking locals for help when she’s lost!
Intention: NYC: find gifts for friends back home; go to a famous restaurant. SF: find a
store to repair a broken iPhone. HK: try some authentic local food.

Task: (i) Ask for directions to a specific location from a nearby
Local agent, who previews the route with the map and streetview
and then gives directions in natural language, mentioning ma-
jor intersections and landmarks. (ii) Follow these directions in
streetview, and if lost, ask another Local agent for assistance.

Takeaway: Agents can collaborate to solve complex tasks that
are beyond their individual expertise.

Ling travels to cities around the world. She seeks out authentic experiences and is
always unafraid to ask for help from Locals whenever she finds herself lost. . .

After obtaining route descriptions from Locals, Ling starts her journey—as
shown in Fig. 5. Grounded in our embodied platform, Ling can adjust her pose
and identify visual landmarks along the streets using open-world recognition
and her map. Correctly recognizing these landmarks helps her to make correct
decisions about where to change direction, move forward, and stop, as seen in
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I still can’t find the Apple 
Store. Maybe I should find 

some more help…

Hmm. I don’t see the Apple 
Store on my right. Maybe 
it’s a bit further ahead? Ahh, I see the Apple 

Store on my left now!

You just went past the 
Apple Store. You need 

to turn around.💬

Oh no, my iPhone 
screen just cracked!

There‘s an Apple Store just 
a short walk from here. I 
can guide you there:⭐

START

⭐ Try 1: First, turn around and head west. Continue straight until you reach the
intersection, with a Starbucks on your left. Next, turn left to head south. Walk a 
bit further, and your destination, Apple Union Square, will be on your right.

💬 Try 2: Turn around and head north. Walk straight for a short distance until 
you reach the intersection. You will see the Apple Union Square, on your left.

San Francisco

There are two restaurants 
on my left. I’m guessing 
one of them is Ka Hing?

I eat at Ka Hing 
every day!⭐

Is Ka Hing 
Restaurant here?

No, you should keep 
walking to the west.💬

Any good burger spots 
around here?

Black Tap is worth checking out! 
I'll tell you how to get there:⭐

Arrived!

START

⭐ First, turn right to face southeast and walk a short distance until you reach 
the next intersection. You should see Famous Ben’s Pizza on your left. Next, turn 
right to head southwest. Continue walking for a while until the next 
intersection. Janovic Paint & Decorating Center SoHo should be behind you on 
your right. Finally, turn right again to face northwest and walk just a bit further. 
Your destination, Black Tap Craft Burgers & Beer - SoHo, will be on your left.

NYC

I’ve found Ka
Hing, finally!

Is there a local 
restaurant you’d 

recommend?

START

⭐ Try 1: First, turn to south and walk until you reach the intersection. You will 
notice the McDonald on your left front. Then, take a right turn, and continue 
walking west. Proceed until you see Ka Hing Restaurant on your left-hand side.

NYC

Hong Kong

Where’s a good place to buy 
some gifts for my friends?

The MoMA Design Store is 
an excellent option! Let me 
tell you how to get there:⭐

I’ve found the
MoMA Store!

START

⭐ First, turn left to face northwest and walk a short distance until you reach the 
next intersection, with Prince St in front of you. Next, make a sharp left turn to 
head southwest. Continue straight for a while until you reach the next 
intersection, where you'll see Aritzia on your left front. Finally, make a sharp left 
turn to head southeast and walk a bit further. You will find your destination, the 
MoMA Design Store, on your left.

💬 Try 2: Facing west, walk a short distance until you spot Ka Hing Restaurant on 
your left.

McDonald’s
麥當勞
Fast Food $ 

Ka Hing 
嘉興餐廳

Black Tap Cra6 Burgers 
& Beer – SoHo

American - $$ 

Famous Ben’s Pizza

Starbucks

Apple Union Square
Electronics Store

MoMA Design Store
Gi5 Shop

Aritzia
Women’s clothing store

N

N

N N

Fig. 5: Ling’s collaborations with Local. Red and
green for the first and second attempts, respectively.

the top two NYC cases
in Fig. 5. The success of
these decisions made by Ling
with GPT-4 relies on the
real-sensory input for visual
grounding and the interactive
environment from V-IRL.

Nevertheless, Ling may
occasionally fail to find the
destination. In the SF exam-
ple of Fig. 5, Ling passes by
the Apple Store because only
its stainless steel wall is vis-
ible from her viewpoint. In
the HK case, Ling mistakes
another restaurant for her
destination and stops prema-
turely. Fortunately, when she
makes these mistakes, Ling
can ask another Local agent
for another round of naviga-
tion until it eventually leads
her to the destination.

Human-Agent Collaboration Grounded in the same environment we humans
inhabit, V-IRL agents can collaborate with and assist real human users.

Interactive Concierge

E
N

V Map LM LLM C
V Vision C
O

L Colab

Name: Diego Age: 62 Loc: NYC
Bio: Diego is an expert concierge at a hotel. He’s a master at creating intricate
itineraries and providing valuable local advice.
Intention: Plan personalized and practical itinerary for customer!

Task: Given a user’s location, background, and intention for a
day, plan a full itinerary balancing their state & budget.

Takeaway: V-IRL agents can collaborate with users to solve
complex tasks that require understanding the user’s internal state.

As a university student in NYC, you are excited to spend a day exploring lesser-
known and tranquil places. Your friend recommended Diego, who is known for his
professionalism in planning practical and personalized itineraries.

As depicted in Fig. 6, Diego’s itinerary is tailored to your needs. Diego not
only considers your physical and mental interoceptive status, budget for each
activity, but also anticipates your status changes and cost when you follow each
event. He can take into account real travel times from the V-IRL platform and
select suitable destinations by collaborating with another recommendation agent.
For comparison, see the “ungrounded” LLM-only concierge in Appendix B.2.

Also, as shown in Fig. 7, you can intervene in Diego’s planning process by
adjusting your interoceptive status or by providing verbal feedback. In response,
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35%

45%

50%

30%

20%

85%

75%

95%

90%

80%

75%

65%

63%

83%

73%

Morning walk in the Washington Square Park.

10:00 - 10:52

09:00 - 10:00

14:00 - 14:28

Travel from Washington Square Park to The Cloisters. 

Explore The Cloisters and the surrounding Fort Tryon Park. 

12:30 - 13:30

10:52 - 12:30

Having food in Jochy‘s Cafe near Fort Tryon Park.

14:28 - 16:00

Travel from Jochy‘s Cafe to the Little Red Lighthouse.

Visit Little Red Lighthouse and enjoy views of the Hudson River.

Travel from the Little Red Lighthouse to Wave Hill. 16:00 - 17:06

Explore the gardens and art exhibitions at Wave Hill.

Travel from Wave Hill to the Riverdale neighborhood. 19:00 - 19:13

Having food in Floridita Restaurant, Riverdale.

Travel from Floridita Restaurant in Riverdale to the university.

19:13 - 20:00

20:00 - 20:40

Interactive Concierge

Budget

$120

$117.25

$92.25

$72.25

$69.5

$69.5

$64.5

$54.5

$52.5

$22.5

$19.75

$120

1

5

67

4
2
3
8

START 17:06 - 19:00

Fig. 6: The Perfect Day Itinerary : Crafted by Diego, our iterative concierge agent, this
schedule is meticulously tailored, accounting for your mental and physical well-being
and budget variations as your day unfolds.

35%

Revised Plan 2:
Travel from the Little Red Lighthouse back to the university.

16:00 - 17:20

$66.7530% 5%

0%

0%

10%

0%

25%

20%

80%

70%

14:28 - 16:00Visit Little Red Lighthouse and enjoy views of the Hudson River.
Original Plan:
Travel from the Little Red Lighthouse to Wave Hill.

16:00 - 17:06

Revised Plan 1:
Eat at Buunni Coffee near Little Red Lighthouse for a short 
break and refreshment.

16:00 - 16:30

$69.5

$69.5

$49.5

Energy Hunger Stress Sadness Budget

40% 0%10%80%

Human Intervention (Option 1):
Adjusting interoceptive states

Human Intervention (Option 2):
Providing verbal feedback

“Oh no, I totally forgot! There's an assignment due tonight 
and I need to change my plans immediately to get it done!”

…

…

…

…
70%

Fig. 7: Diego adapts original plan to suit user’s intervention.

Diego promptly revises his original plan to accommodate your demands, and
re-estimates your state changes after his revision.

Finally, using V-IRL’s street views and map, Diego can traverse regions of
interest scouting for potential scenic viewpoints for you to visit as shown in Fig. 8.
He uses VQA to rate and assess each captured view, and adds the highest-rated
locations to your itinerary.

Geo: [40.8647205, -73.9325163]

Rating: 7.2👍

Geo: [40.8653388, -73.9322499]

Rating : 6.5👍

Geo: [40.8609142,-73.9324818]

Rating: 4.2👎

Geo: [40.8642401,-73.9325958]

Rating: 3.5👎

Geo: [40.8649162,-73.9311561]

Rating : 7.5👍
Fig. 8: Diego traverses regions of interest to find scenic locations for your itinerary.

4 System Fundamentals
This section introduces our system’s core: a platform designed for perception-
driven agents that transforms real-world cities around the world into a vast
virtual playground where agents can be constructed to solve practical tasks.
At its heart, V-IRL is comprised of a hierarchical architecture (see Fig. 9).
The platform lies at the foundation—providing the underlying components and
infrastructure for agents to employ. Higher level capabilities of C

V Perception ,

LM Reasoning , E
N

V Action , and C
O

L Collaboration emerge from the platform’s com-
ponents. Finally, agents leverage these capabilities and user-defined metadata in
task-specific routines to solve tasks.
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4.1 Agent Definition
In our system, agent behavior is shaped by user-defined metadata, including a
background, an intended goal, and an interoceptive state. The background pro-
vides the context necessary to instantiate the agent in the real world (location),
and to guide its reasoning and decision-making (biography). Intentions outline
agents’ purpose within the environment. An agent’s interoceptive state reflects
its internal mental and physical status—varying over time and influencing its
behavior. This novel concept is crucial to AI agents for enhancing collaboration
with humans (see Sec. 3.4). Concretely, agents are developed by writing task-
specific run() routines that leverage the various components of our platform
and the agent’s metadata to solve tasks.

ReasoningPerception Action Collaboration

Background Intention

Computer Vision Language Model

Environment

Interoceptive State

Ag
en

t
Ca

pa
bi

lit
ie

s
Pl

at
fo

rm

Open-World 
Recognition Localization

Street View 
Imagery Geolocation Mapping Place Info & 

SearchMovement

Feature 
Matching

Human / Agent 
Interaction

Tool & API
Use

Physical MentalGoal TaskBiography

VQA

Location

Fig. 9: Hierarchical V-IRL architecture described in Sec. 4.

4.2 Platform Components
Next, we delve into platform components, which provide the infrastructure to
instantiate capabilities, execute agent actions, and ground agents in real world.
Environment (Action) E

N
V Environment components are responsible for ground-

ing agents in the world around them: providing a navigable representation of
real cities (see Sec. 3.1). Geographic coordinates serve as the link between the
world and our virtual representation of it. Leveraging the Google Maps Plat-
form (GMP) [24], V-IRL enables agents to access street view imagery, query
valid movements, retrieve information about nearby locations, and plan routes.
As these coordinates and location information are bound to the real world, they
also provide a natural interface with external tools that leverage geolocation—
such as real estate APIs (see Sec. 3.2). More technical details in Appendix D.
Vision (Perception) C

V Perception components enable agents to process the
sensory-rich data provided by the environment, especially street view imagery.
Pretrained localization models [37] give agents a precise spatial understanding of
their environment. This allows RX-399 to identify and count instances of objects,
and Hiro to pick out specific businesses to look up with the GMP (Sec. 3.3). While
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localization models allow for precise interaction with perceptive input, open-
world recognition models [52] are more general, and allow agents to detect a wider
range of objects in their field of view (e.g ., Tourist searches for the Apple Store).
Pretrained feature matching models [40] provide an understanding of continuity
across views of the same location, and enable agents to identify & deduplicate
instances of the same object from different viewpoints (Sec. 3.3). Multimodal
models with VQA & Captioning capabilities [36] bridge the perceptual world
with natural language, and are essential for integration with reasoning (Sec. 3.3).

Language (Reasoning & Collaboration) LM Reasoning components allow
decision making based on information from perception and the environment.
LLMs such as GPT-4 [1] and Llama 2 [67] interface across various APIs (Sec. 3.2),
transforming environmental data and perceptual outputs into actionable in-
sights. They also enable C

O
L Collaboration between agents or with humans through

natural language (Sec. 3.4). See case studies in Appendix E for details.

4.3 V-IRL Capabilities
Our platform’s components can be flexibly combined to exhibit a vast array
of capabilities. In Sec. 3, we present agents that exhibit increasingly complex
behaviors, each requiring more components of the platform. From simple com-
binations, like the Route Optimizer (Sec. 3.1), to more complex arrangements,
like the Tourist (Sec. 3.4), our system showcases the versatility and potential of
the V-IRL platform to be applied to various real-world scenarios. To facilitate
understanding, we perform both high-level and low-level case studies of how V-
IRL’s components are combined to create complex V-IRL agents “Diego” and
“Hiro” in Appendix E and F, respectively.

5 V-IRL Benchmarks
In the previous sections, we illustrate the primary benefit of the V-IRL platform:
seamless access to first-person street-view imagery and descriptive information
about real-world cities across the globe. This scalable source of truly open-world
data can be harnessed to test core component models and agent capabilities.
We propose three V-IRL benchmarks: two evaluating vision-language models on
open-world vision tasks (Secs. 5.2 and 5.3), and one evaluating end-to-end agent
performance (Sec. 5.4). More benchmark details and results are in Appendix G.

5.1 Automated Data and Annotation Collection
To allow our V-IRL benchmarks to scale globally, we develop an automatic
data/annotation construction pipeline instead of crawling and manually anno-
tating limited data. This allows models to be conveniently tested worldwide,
provided there is access to Google Street Views [24].
Region Selection. Though our benchmark is feasible across all regions covered
by the GMP, we select 14 districts across 12 cities from 6 continents to ensure
coverage of a diverse data distribution while keeping inference costs affordable.
The detailed locations of these regions are listed in Appendix G.1.
Vision and Place Data Collection. Within each region, we collect geoloca-
tions with available street views, place information, and place-centric images.



12 Yang. et al.

5.2 V-IRL Place: Detection

Every day, humans traverse cities, moving between varied places to fulfill a range
of goals, like the Intentional Explorer agent (Sec. 3.3). We assess the performance
of vision models on the everyday human activity of localizing places using street
view imagery and associated place data.

Setups. We modify RX-399 (Sec. 3.3) to traverse 28 polygonal areas from the
14 districts while localizing & identifying 20 types of places.

Benchmarked Models. We evaluate five open-world detection models: Ground-
ingDINO [43], GLIP [37], Owl-ViT [48], OpenSeeD [82] and Owl-ViT v2 [47].
We also implement a straightforward baseline, CLIP (w/ GLIP proposal), which
involves reclassifying the categories of GLIP proposals with CLIP [52].

Evaluation. We evaluate the models based on localization recall, which is quan-
tified as Ntp

Ntp+Nfn
, where Ntp and Nfn represents the number of correctly localized

places and missed places, respectively. See more details in Appendix G.2.

Results. Tab. 1 shows that open-world detectors like GroundingDINO [43],
Owl-ViT [48] and GLIP [37] are biased towards certain place types such as
school, cafe, and park, respectively. In contrast, CLIP (w/ GLIP proposal)
can identify a broader spectrum of place types. This is mainly caused by the
category bias in object detection datasets with a limited vocabulary. Hence,
even if detectors like Owl-ViT are initialized with CLIP, their vocabulary space
narrows down due to fine-tuning. These results suggest that cascading category-
agnostic object proposals to zero-shot recognizers appears promising for “real”
open-world detection—especially for less common categories in object detection
datasets. See full results and more analysis in G.2.
Table 1: Benchmark results on V-IRL Place Detection. AR10 and AR20 denote average
recall on subsampled 10 and all 20 place categories, respectively.

Place Types AR10 AR20

GroundingDINO [43] 0.0 0.0 0.0 0.0 0.0 4.9 0.0 0.0 100.0 0.0 11.7 5.8
Owl-ViT [48] 0.0 61.0 0.0 0.0 0.0 2.4 0.3 0.0 0.0 0.0 7.1 7.1
GLIP [37] 20.0 0.0 100.0 0.0 0.0 0.0 18.4 0.0 0.0 0.0 15.4 9.0
OpenSeeD [82] 60.0 11.9 50.0 0.0 0.0 0.0 20.5 0.0 0.0 16.7 17.7 16.7
Owl-ViT v2 [47] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4
CLIP [52] (w/ GLIP proposal) 60.0 6.8 50.0 40.0 25.0 29.3 14.7 0.0 0.0 16.7 26.9 23.7

5.3 V-IRL Place: Recognition and VQA

In contrast to the challenging V-IRL place detection task using street view im-
agery alone, in real life, humans can recognize businesses by taking a closer,
place-centric look. We assess existing vision models in this manner on two per-
ception tasks based on place-centric images: i) recognizing specific place types;
ii) identifying human intentions via Vision Question Answering (VQA).

Setups. For recognition, we assess 10 open-world recognition models on iden-
tifying a place’s type from 96 options using place-centric images. For VQA, we
evaluate 8 multi-modal large language models (MM-LLM) to determine viable
human intentions from a four-option multiple-choice (see more in Appendix G.3).
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Evaluation. We adopt mean accuracy (mAcc) to evaluate both place recognition
and VQA tasks. For place VQA, we follow MMBench [44] to conduct circular
evaluation and GPT-assisted answer parsing.

Table 2: Benchmark results on V-IRL
Place recognition and VQA. Green
for increased resolution models; Blue
denotes model parameter scaling.

Model #Param mAcc (%)

V-IRL Place Recognition
CLIP [52] ViT-B/32 151M 18.2
CLIP [52] ViT-L/14 428M 37.2
CLIP [52] ViT-L/14@336px 428M 41.3
OpenCLIP [15] ViT-B/32 151M 21.2
OpenCLIP [15] ViT-L/14 428M 31.0
Eva-02-CLIP [64] ViT-B/16 150M 19.5
Eva-02-CLIP [64] ViT-L/14 428M 34.2
Eva-02-CLIP [64] ViT-L/14@336px 428M 40.7
SigLIP [81] ViT-B/16 203M 29.5
SigLIP [81] ViT-L/16@384px 652M 37.3

V-IRL Place VQA
MiniGPT-4 [84] Vicuna-13B-v0 14.0B 3.9
mPLUG-Owl [78] LLaMA-7B 7.2B 5.5
Shikra [14] Vicuna-7B 7.2B 10.9
BLIP-2 [36] FlanT5XXL 12.1B 69.6
InstructBLIP [16] FlanT5XXL 12.0B 68.0
LLaVA [42] Vicuna-13B-v1.3 13.4B 23.5
LLaVA-1.5 [41] Vicuna-7B-v1.5 7.2B 60.1
LLaVA-1.5 [41] Vicuna-13B-v1.5 13.4B 61.9

Results. Tab. 2 shows that CLIP
(L/14@336px) outperforms even the biggest
version of Eva-02-CLIP and SigLIP in
the V-IRL recognition task, highlight-
ing the high-quality data used to train
CLIP [52]. The bottom of the table shows
that BLIP2 [36], InstructBLIP [16], and
LLaVA-1.5 [41] excel at intention VQA,
whereas others struggle. We note that
these three top-performing MM-LLMs
provide consistent answers in the circu-
lar evaluation, while others frequently fail
due to inconsistent selections. Moreover,
vision models perform better on intention
VQA over place-type recognition, suggest-
ing direct prompts about human intention
could be more effective for intention-driven
tasks. We provide more results and analy-
sis in Appendix G.3.

5.4 V-IRL Vision-Language Navigation
As discussed in Sec. 3.3, Intentional Explorer and Tourist agents require co-
ordination between vision models and language models to accomplish vision-
language tasks. To investigate the effect of various models on end-to-end agent
performance, we develop an embodied task that jointly tests vision and lan-
guage models: Vision-Language Navigation (VLN). In VLN, agents navigate to
a desired destination by following textual directions using only raw street views.
Setup. We adopt the Tourist implementation from Sec. 3.4 and swap its recog-
nition component with the various benchmarked models. These models are used
to identify visual landmarks during navigation. Subsequently, GPT-4 [1] predicts
the next action according to the recognition results. Navigation instructions are
generated using the Local agent. Recent work VELMA [59] attempts to enhance
VLN by leveraging LLMs on existing datasets [13, 58]. In contrast, our V-IRL
VLN benchmark evaluates vision models and their coordination with language
models across a global data scale. See more details in Appendix G.4.
Benchmarked methods. Four approaches are evaluated to recognize land-
marks during navigation: (i) Oracle that searches nearby landmarks with GMP [24];
(ii) Zero-shot recognizers CLIP [52] & EVA-CLIP [64]; (iii) Multi-modal LLM
LLaVA-1.5 [41]; (iv) An OCR model [21] to extract text in street views followed
by GPT answer parsing. Implementation details are provided in Appendix G.4.
Evaluation. We primarily measure navigation success rate (Success), defining
success as the navigator stopping within 25 meters of the destination. In ad-
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Table 3: Results on V-IRL VLN miniset. We test various CLIP-based models,
MM LLM , and OCR model with GPT postprocessing.

Method Start Intersection Stop

Success Reac Arr Reac Arr Reac

Oracle (No Vision) 1.0 1.0 1.0 1.0 1.0 1.0

CLIP (B/32) [52] 0.22 1.0 0.86 0.84 0.83 0.22
CLIP (L/14@336px) [52] 0.44 0.83 0.73 0.94 0.67 0.44
EVA-02-CLIP (BigE/14-plus) [64] 0.39 0.89 0.77 0.94 0.72 0.39
EVA-02-CLIP (L/14@336px) [64] 0.22 1.0 0.82 0.83 0.78 0.22

LLaVA-1.5-13B [41] 0.11 0.61 0.55 1.0 0.56 0.11
PP-OCR [21] (+ GPT3.5) 0.28 0.89 0.73 0.94 0.72 0.28

20 40 60 80 100
% Eng. Speakers

English Speakers

(a) Recognition (b) Localization (c) Visual Question Answering (d) English Speakers

Fig. 10: City-level visualization of V-IRL benchmark results.
dition, as navigation success is mainly influenced by the agent’s actions at key
positions (i.e., start positions, intersections and stop positions), we also evaluate
the arrival ratio (Arr) and reaction accuracy (Reac) for each route. Arr denotes
the percentage of key positions reached, while Reac measures the accuracy of
the agent’s action predictions at these key positions. To save GPT-4 resources,
we mainly compare vision modules on a 10% mini-set comprising 18 routes from
9 regions. See Appendix G.4 for full-set results with CLIP and Oracle.
Results. Table 3 shows that, with oracle landmark information, powerful LLMs
can impressively comprehend navigation instructions and thus make accurate de-
cisions. However, when relying on vision models to identify landmarks in street
views, the success rate drops dramatically—suggesting that the perception of
vision models is noisy and misguides LLMs’ decision-making. Among these rec-
ognizers, larger variants of CLIP [52] and EVA-02-CLIP [64] perform better,
highlighting the benefits of model scaling. LLaVA-1.5 [41] shows inferior results
with CLIP (L/14@336px) as its vision encoder, possibly due to the alignment
tax [1] from instruction tuning. Further, PP-OCR [21] (+ GPT-3.5) achieves a
28% success rate, emphasizing the value of OCR in visual landmark recognition.

5.5 Geographic Diversity
Spanning 12 cities across the globe, our V-IRL benchmarks provide an opportu-
nity to analyze the inherent model biases across different regions. As depicted in
Fig. 10, vision models demonstrate subpar performance on all three benchmark
tasks in Lagos, Tokyo, Hong Kong, and Buenos Aires. Vision models might strug-
gle in Lagos due to its non-traditional street views relative to more developed
cities (see street views in Fig. 1). For cities like Tokyo, Hong Kong, and Buenos
Aires, an intriguing observation is their primary use of non-English languages in
street views (Fig. 10 (d) 1 and Fig. 1). This suggests that existing vision models
may face challenges when deployed in non-English-dominant countries.
1 Source: https://en.wikipedia.org/wiki/List_of_countries_by_English-speaking_population

https://en.wikipedia.org/wiki/List_of_countries_by_English-speaking_population
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