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Abstract. Current large-scale diffusion models represent a giant leap
forward in conditional image synthesis, capable of interpreting diverse
cues like text, human poses, and edges. However, their reliance on sub-
stantial computational resources and extensive data collection remains a
bottleneck. On the other hand, the integration of existing diffusion mod-
els, each specialized for different controls and operating in unique latent
spaces, poses a challenge due to incompatible image resolutions and la-
tent space embedding structures, hindering their joint use. Addressing
these constraints, we present “PanGu-Draw” , a novel latent diffusion
model designed for resource-efficient text-to-image synthesis that adeptly
accommodates multiple control signals. We first propose a resource-
efficient Time-Decoupling Training Strategy, which splits the monolithic
text-to-image model into structure and texture generators. Each gen-
erator is trained using a regimen that maximizes data utilization and
computational efficiency, cutting data preparation by 48% and reducing
training resources by 51%. Secondly, we introduce “Coop-Diffusion” ,
an algorithm that enables the cooperative use of various pre-trained diffu-
sion models with different latent spaces and predefined resolutions within
a unified denoising process. This allows for multi-control image synthe-
sis at arbitrary resolutions without the necessity for additional data or
retraining. Empirical validations of Pangu-Draw show its exceptional
prowess in text-to-image and multi-control image generation, suggesting
a promising direction for future model training efficiencies and genera-
tion versatility. The largest 5B T2I PanGu-Draw model is released on
the Ascend platform. Project page: https://pangu-draw.github.io
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1 Introduction

The Denoising Diffusion Probabilistic Models (DDPMs) [11] and their subse-
quent enhancements [5, 14, 21] have established diffusion models as a leading
approach for image generation. These advancements excel in the application of
diffusion models to text-to-image synthesis, yielding high-fidelity results with
large-scale models and datasets, supported by substantial computational re-
sources [13, 20, 24, 26, 29]. These foundational models, capable of understanding
⋆ Corresponding author: xu.hang@huawei.com
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Fig. 1: Illustration of three multi-stage training strategies and comparison between
them in resource efficiency in data, training and inference aspects. Our time-decoupling
training strategy significantly surpasses the representative methods in Cascaded Train-
ing [20,31] and Resolution Boost Training [26,37] in resource efficiency.

and rendering complex semantics, have paved the way for diverse image gen-
eration tasks, accommodating various control signals such as reference images,
edges [39], and poses [39].

However, the extensive computational demand and significant data collec-
tion required by these models pose a substantial challenge. The ambitious goal of
higher fidelity and increased resolution in image synthesis pushes the boundaries
of model and dataset sizes, escalating computational costs, and environmental
impact. Moreover, the aspiration for versatile control and multi-resolution in im-
age generation introduces additional complexity. Existing diffusion models, each
tailored for specific controls and operating within distinct latent spaces, face the
challenge of integration due to incompatible image resolutions and latent space
embeddings, obstructing their concurrent utilization.This incompatibility not
only leads to more resource consumption of retraining but also impedes the joint
synthesis of images controlled by multiple factors, thereby limiting the scalability
and practical application of such existing generative models. In response to these
challenges, our work introduces a novel paradigm named “PanGu-Draw” that
judiciously conserves training resources while enhancing data efficiency, thereby
proposing a resource-efficient pathway forward for diffusion model scalability.

As shown in Figure 1, the training strategies of predecessors like DeepFloyd
[31] and GLIDE [20], which employ a cascaded approach, excel in leveraging
data across resolutions but suffer from inefficient inference due to their reliance
on multiple models. Alternatively, Stable Diffusion [26] and AltDiffusion [37] use
a Resolution Boost Training strategy aiming for cost-effectiveness by refining a
single model. However, this strategy falls short on data efficiency.

In light of these considerations, our PanGu-Draw framework advances the
field by presenting a Time-Decoupling Training Strategy that segments the train-
ing of a comprehensive text-to-image model into two distinct generators: one
dedicated to structural outlines and another to textural details. This division
not only concentrates on training efforts but also enhances data efficacy. The
structural generator is adept at crafting the initial outlines of images, offering
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flexibility in data quality and enabling training across a spectrum of data cal-
ibers; the textural generator, in contrast, is fine-tuned using low-resolution data
to infuse these outlines with fine-grained details, ensuring optimal performance
even during high-resolution synthesis. This focused approach not only accelerates
the training process of our 5B model but also significantly reduces the reliance
on extensive data collection and computational resources, as evidenced by a 48%
reduction in data preparation and a 51% reduction in resource consumption.

Furthermore, we introduce a pioneering algorithm named Coop-Diffusion,
which facilitates the cooperative integration of diverse pre-trained diffusion mod-
els. Each model, conditioned on different controls and pre-defined resolutions,
contributes to a seamless denoising process. The first algorithmic sub-module ad-
dresses inconsistencies in VAE decoders that arise during the denoising process
across different latent spaces, ensuring cohesive image quality by effectively rec-
onciling disparate latent space representations. The second sub-module confronts
the challenges associated with multi-resolution denoising. Traditional bilinear
upsampling for the intermediate noise map, introduced during the denoising
process, can undesirably amplify the correlation between pixels. This amplifi-
cation deviates from the initial Independent and Identically Distributed (IID)
assumption, leading to severe artifacts in the final output image. However, our
innovative approach circumvents this issue with a single-step sampling method
that preserves the integrity of pixel independence, thus preventing the introduc-
tion of artifacts. Coop-Diffusion obviates the need for additional data or model
retraining, addressing the challenges of multi-control and multi-resolution image
generation with scalability and efficiency.

PanGu-Draw excels in text-to-image (T2I) generation, outperforming estab-
lished models like DALL-E 2 and SDXL, as evidenced by its FID of 7.99 in
English T2I. It also leads in Chinese T2I across metrics like FID, IS, and CN-
CLIP-score. User feedback highlights a strong preference for PanGu-Draw, align-
ing well with human visual perceptions.

In summary, our contributions are manifold:
• PanGu-Draw: A resource-efficient diffusion model with a Time-Decoupling
Training Strategy, reducing data and training resources for T2I synthesis.
• Coop-Diffusion: A novel approach for integrating multiple diffusion mod-
els, enabling efficient multi-control image synthesis at multi-resolutions within a
unified denoising process.
• Comprehensive evaluations demonstrate PanGu-Draw’s (5B model) can pro-
duce high-quality images aligned with text and various controls, advancing the
scalability and flexibility of diffusion-based image generation.

2 Related Work

Text-to-Image Generation. The integration of diffusion models into the realm
of text-to-image (T2I) generation marks a significant stride in computational cre-
ativity [5,7,12,13,20,21,24,26,29,31–33]. Models like GLIDE [20] and DALL-E
2 [24] have significantly advanced in generating diverse and semantically aligned
images from textual descriptions. LDM [26] addresses computational challenges
by creating images from text-conditioned low-dimensional latent representations.
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ControlNet [39] introduces spatial conditioning controls, offering flexibility in
image generation under varied conditions like edges and depth. Despite the pro-
liferation of such specialized models, a unified framework that consolidates these
disparate capabilities remains absent, limiting the potential for multi-control and
complex editing in image synthesis.
Model Efficient Training and Scaling Up Strategies. Efficient training and
scaling of models are pivotal for advancing large-scale neural networks. Previous
models like DeepFloyd [31] and GLIDE [20] capitalize on cascaded approaches
that proficiently utilize data across various resolutions, which results in less ef-
ficient inference processes. Contrastingly, models like Stable Diffusion [26] and
AltDiffusion [37] adopt Resolution Boost Training strategies that refine a single
model for cost-effectiveness, which however do not fully exploit data efficiency.
In scaling up strategies, training efficiency is also important. Efficient adapta-
tion and scaling are explored in [3] through distillation, and in [23] by marrying
model expansion with domain-specific prompts. Serial scaling and knowledge
distillation reduce training times significantly as demonstrated by [8], while [6]
proposes progressive network expansion for faster training with minimal loss.
We propose a novel Time-Decoupling training strategy to diffusion model scal-
ing that enhances efficiency. eDiff-I [1] similarly proposes to split a diffusion
model across time steps to boost generation quality without increasing inference
cost. However, they do not consider about data and training efficiencies.

3 Preliminary

Given an image x0, diffusion models first produce a series of noisy images
x1, ..., xT by adding Gaussian noise to x0 according to some noise schedule given
by ᾱt as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) . (1)

Diffusion models then learn a denoising model ϵθ(xt, t) to predict the added
noise of a noisy image xt with the following training objective:

L = Ex0∼q(x0),ϵ∼N (0,I),t∼[1,T ] ∥ϵ− ϵθ (xt, t)∥2 , (2)

where t is uniformly sampled from {1, ..., T}. Once the denoising model ϵθ(xt, t)
is learned, starting from a random noise xT ∼ N (0, I), one can iteratively predict
and reduce the noise in xt to get a real image x0. During the sampling process,
we can predict the clean data x0 from ϵθ (xt, t) with single-step sampling as:

x̂0,t =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t)). (3)

Our text-to-image generation model is built on the model architecture pro-
posed in Latent Diffusion Model [26]. In this model, a real image x0 is first
down-sampled 8 times as a lower-dimension latent code z0 with an image en-
coder model E, which can be decoded with a latent decoder model D back to a
real image x0. The denoising network ϵθ(zt, t, c) is parameterized as a U-Net [28]
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model, where embedding of time step t is injected with adaptive normalization
layers and embedding of input text c is injected with cross-attention layers.

4 PanGu-Draw

In this section, we first illustrate our resource-efficient 5B text-to-image gener-
ation model, trained with a time-decoupling training strategy and further en-
hanced with a prompt enhancement LLM. Then, we present our Coop-Diffusion
algorithm for the cooperative integration of diverse pre-trained diffusion models,
enabling multi-control and multi-resolution image generation.

4.1 Time-Decoupling Training Strategy

Enhancing data, training, and inference efficiency is vital for text-to-image mod-
els’ practical use. Figure 1 shows two existing training strategies: (a) Cascaded
Training, using three models to incrementally improve resolution, is data-efficient
but triples training and inference time. (b) Resolution Boost Training starts at
512×512 and then 1024×1024 resolution, discarding lower resolution data and
offering moderate efficiency with higher training costs and single-model inference
across all timesteps. These approaches differ from our time-decoupling strategy,
detailed below.

Responding to the need for enhanced efficiencies, we draw inspiration from
the denoising trajectory of diffusion processes, where initial denoising stages pri-
marily shape the image’s structural foundation, and later stages refine its tex-
tural complexity. With this insight, we introduce the Time-Decoupling Training
Strategy. This approach divides a comprehensive text-to-image model, denoted
as ϵθ, into two specialized sub-models operating across different temporal in-
tervals: a structure generator, ϵstruct, and a texture generator, ϵtexture. Each
sub-model is half the size of the original, thus enhancing manageability and
reducing computational load.

As illustrated in Figure 1(c), the structure generator, ϵstruct, is responsible
for early-stage denoising across larger time steps, specifically within the range
T, ..., Tstruct, where 0 < Tstruct < T . This stage focuses on establishing the
foundational outlines of the image. Conversely, the texture generator, ϵtexture,
operates during the latter, smaller time steps, denoted by Tstruct, ..., 0, to elab-
orate on the textural details. Each generator is trained in isolation, which not
only alleviates the need for high-memory computation devices but also avoids
the complexities associated with model sharding and its accompanying inter-
machine communication overhead.

In the inference phase, ϵstruct initially constructs a base structural image,
zTstruct

, from an initial random noise vector, zT . Subsequently, ϵtexture refines
this base to enhance textural details, culminating in the final output, z0. This
sequential processing facilitates a more resource-efficient workflow, significantly
reducing the hardware footprint and expediting the generation process without
compromising the model’s performance or output quality, as demonstrated in
our ablated experiment in Sec. 5.3.



6 G. Lu et al.

Model VAE Resolution

SD1.x SD1 512
SD2.x SD2 768
SDXL SDXL 1024

ControlNet SD1 512
ImageVariation SD1 512
InstructPix2Pix SD1 512

DeepFloyd / 1024
Imagen / 1024

StableSR SD1/SD2 x2
Our SDXL 1024

(a) Candidate Models

(Any Resolution)

... ... ... ...

Eq. (4) Eq. (5)

Multi-Control
Fusing

(b) Bridging Latent  Space Gap (c) Bridging Resolution Gap

Multi-Control
Fusing

sampling step

down-sample

Any Resolution

Lower Resolution

Eq. (4)

up-sample

add noise

Latent Space A

Latent Space B

Image Space

Remove Objects from Image
Replace Objects from Image
Change Image by the Text

Image-to-Image Text-to-Image
Super Resolution Any-resolution Synthesis
Edge-to-Image Pose-to-Image
Seg-to-Image Depth-to-Image

Sketch-to-Image Line-to-Image

(d) Multi-tasks Supported

Fig. 2: Visualization of our Coop-Diffusion algorithm for the cooperative integration
of diverse pre-trained diffusion models. (a) Existing pre-trained diffusion models, each
tailored for specific controls and operating within distinct latent spaces and image
resolutions. (b) This sub-module bridges the gap arising from different latent spaces
by transforming ϵ′t in latent space B to the target latent space A as ϵ̃t. (c) This sub-
module bridges the gap arising from different resolutions by performing upsampling on
the predicted clean data x̂′

0,t.

Resource-Efficient Specialized Training Regime. We further adopt spe-
cialized training designs for the above two models. The structure generator
ϵstruct, which derives image structures from text, requires training on an exten-
sive dataset encompassing a wide range of concepts. Traditional methods, like
Stable Diffusion, often eliminate low-resolution images, discarding about 48% of
training data and thereby inflating dataset costs. Contrarily, we integrate high-
resolution images with upscaled lower-resolution ones. This approach, as proven
by our ablated experiments in Sec. 5.3, shows no performance drop, as the pre-
dicted zTstruct

still contains substantial noise. In this way, we achieve higher data
efficiency and avoid the problem of semantic degeneration.

Since the image structure is determined in zTstruct
and the texture generator

ϵtexture focuses on refining texture, we propose training ϵtexture at a lower reso-
lution while still sampling at high resolution. This strategy, as demonstrated in
our ablated experiments in Sec. 5.3, results in no performance drop and no struc-
tural problems (e.g., repetitive presentation [15]). Consequently, we achieved an
overall 51% improvement in training efficiency. Figure 1 summarizes the data,
training, and inference efficiency of different training strategies. Besides higher
data and training efficiency, our strategy also achieves higher inference efficiency
with fewer inference steps compared to the Cascaded Training strategy and a
smaller per-step model compared to the Resolution Boost Training strategy.

4.2 Coop-Diffusion: Multi-Diffusion Fusion

As shown in Figure 2(a), there are numerous pre-trained diffusion models, such
as various SD, ControlNet, image variation, etc., each tailored for specific con-
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trols and image resolutions. It is promising to fuse these pre-trained models for
multi-control or multi-resolution image generation without needing to train a
new model. However, the different latent spaces and resolutions of these models
impede joint synthesis of images controlled by different models, thereby limit-
ing their practical applications. In response to these challenges, we propose the
Coop-Diffusion algorithm with two key sub-modules, as shown in Figures 2(b)
and (c), to bridge the latent space gap and the resolution gap, and to unite the
denoising process in the same space.
Bridging the Latent Space Gap. To bridge the latent space gap between
two different latent spaces A and B, we propose to unify the model prediction
in latent space A by transforming the model prediction ϵ′t in latent space B to
latent space A using the image space as an intermediate. This is done in the
following way: first, we predict the clean data ẑ′0,t using Equation (3) as:

ẑ′0,t =
1√
ᾱt

(z′t −
√
1− ᾱtϵ

′
t), (4)

which is then decoded into a pixel-level image x̂′
0,t using the latent decoder

model D′. This image is encoded into latent space A using the image encoder
model E, as z̃0,t = E(x̂′

0,t), and finally transformed into a model prediction by
inverting Equation (3) as:

ϵ̃t =
1√

1− ᾱt

(zt −
√
ᾱtz̃0,t). (5)

With the united ϵ̃t, we can now perform multi-control fusion between ϵ̃t and ϵt
(the prediction from model ϵθ with zt in latent space A, omitted in Figure 2 for
brevity). In this paper, we adopt the fusion method proposed in Composable-
Diffusion [19] as: ϵt,fuse = d · ϵ̃t +(1− d) · ϵt, where d and 1− d are the guidance
strengths of each model with d ∈ [0, 1], to guide the denoising process jointly
with these two models for multi-control image generation. Algorithm 1 further
illustrates this unification and fusion process.
Bridging Resolution Gap. To integrate the denoising processes of a low-
resolution model with a high-resolution model, upsampling and/or downsam-

(a) Upsampling from intermediate 𝑧𝑡. (b) Our upsampling algorithm.

Fig. 3: Results of fusing a low-resolution model and a high-resolution model with differ-
ent upsampling methods. Upsampling from intermediate zt results in severe artifacts,
while our upsampling algorithm results in high-fidelity image.
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Algorithm 1 Coop-Diffusion: Multi-Diffusion Fusing
Sub-Module 1. Bridging Latent Space Gap
Input: random noise zT ∼ N (0, I), diffusion model ϵθ, decoder D, encoder E in latent
space A; random noise z′T = zT , diffusion model ϵ′θ, decoder D′, encoder E′ in latent
space B; guidance strength d, sampling method S.
1: for t = T, . . . , 1 do
2: ϵ′t = ϵ′θ(z

′
t), ẑ′0,t = 1√

ᾱt
(z′t −

√
1− ᾱtϵ

′
t)

3: x̂′
0,t = D′(ẑ′0,t), z̃0,t = E(x̂′

0,t)

4: ϵ̃t =
1√

1−ᾱt
(zt −

√
ᾱtz̃0,t)

5: ϵt = ϵθ(zt), ϵt,fuse = d · ϵ̃t + (1− d) · ϵt
6: zt−1 = S(zt, t, ϵt,fuse)
7: z′t−1 = S(z′t, t, ϵ

′
t,fuse) ▷ ϵ′t,fuse from ϵt,fuse similar to the process from ϵ′t to ϵ̃t,

omitted for brevity
8: end for
9: return D(z0)

Sub-Module 2. Bridging Resolution Gap
Input: diffusion model ϵθ, decoder D, encoder E in high-resolution space; random
noise z′T ∼ N (0, I), diffusion model ϵ′θ, decoder D′, encoder E′ in low-resolution space;
low-resolution sampling end step Tlow, sampling method S.
1: for t = T, . . . , Tlow + 1 do
2: ϵ′t = ϵ′θ(z

′
t), z′t−1 = S(z′t, t, ϵ

′
t)

3: end for
4: ẑ′0,Tlow

= 1√
ᾱTlow

(z′Tlow
−

√
1− ᾱTlow ϵ

′
Tlow

)

5: x̂′
0,Tlow

= D′(ẑ′0,Tlow
), x̂0,Tlow =Upsample(x̂′

0,Tlow
)

6: ẑ0,Tlow = E(x̂0,Tlow )

7: zTlow =
√
ᾱTlow ẑ0,Tlow +

√
1− ᾱTlow ϵ, ϵ ∼ N (0, I)

8: for t = Tlow, . . . , 1 do
9: ϵt = ϵθ(zt), zt−1 = S(zt, t, ϵt)

10: end for
11: return D(z0)

pling is necessary. Traditional bilinear upsampling, often applied to the inter-
mediate result zt during the denoising process, can undesirably amplify pixel
correlation. This amplification deviates from the initial Independent and Identi-
cally Distributed (IID) assumption, leading to severe artifacts in the final images,
as shown in Figure 3(a). Conversely, downsampling does not present this issue.
To address the IID issue in upsampling, we propose a new upsampling algorithm
that preserves the IID assumption, thereby bridging the resolution gap between
models with different pre-trained resolutions.

Figure 2(c) visualizes our upsampling algorithm. Specifically, for a low-resolution
z′t, we use the image space as an intermediate space to transform z′t in low-
resolution space into high-resolution space as z̃t. We first predict the noise ϵ′t
with the denoising model ϵ′θ and then predict the clean data ẑ′0,t as described in
Eq. 4. This is decoded into an image x̂′

0,t using decoder D′. We then perform
upsampling on x̂′

0,t to obtain its high-resolution counterpart x̂0,t. Finally, x̂0,t is
encoded into the latent space with encoder E as ẑ0,t, and t-step noise is added
to get the final result z̃t using Eq. 1.

With the unified z̃t, we can now perform multi-resolution fusion. First, we
denoise with a low-resolution model to obtain the intermediate z′t and its high-
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resolution counterpart z̃t. Then, we perform denoising with a high-resolution
model starting from z̃t, and vice versa. This approach allows us to conduct
one-stage super-resolution without undergoing all the low-resolution denoising
steps, thereby improving inference efficiency. Algorithm 1 further illustrates this
unification and fusion process.

5 Experiments

Implementation Details. We adopt the pretrained Variational Autoencoder
(VAE) model from SDXL [22], and we build our structure and texture generator
based on the architecture of its U-Net model with the following modifications.
To achieve bilingual text-to-image generation (Chinese and English), we pre-
train a Chinese text encoder [9, 36] on our Chinese training dataset. We then
concatenate the text embeddings from this Chinese text encoder with those from
a pretrained English text encoder, serving as the final text embeddings for the
denoising models. For multi-resolution image generation, we select a range of
image resolutions around 1024×1024 and further condition the denoising model
on the sinusoidal positional embeddings corresponding to the index of image res-
olutions. The Tstruct parameter is set to 500, as suggested by our ablation study.
Dataset Construction. To encompass the abundant concepts in the world, we
collect images in various styles from multiple sources, including Noah-Wukong
[9], LAION [27], and others, such as photography, cartoons, portraits, and gam-
ing assets. The collected images are filtered based on CLIP score, aesthetic score,
watermark presence, resolution, and aspect ratio. To improve the semantic align-
ment of PanGu-Draw, we discard parts of the noisy captions that are meaningless
or mismatched to the image, sourced from the Internet. Instead, we recaption the
collected images by first employing an open-vocabulary detector [35] to locate
the primary subjects within the images. These subjects are then processed by
LLaVA [18], a high-performance vision-language model, along with prompting
templates, to yield detailed image descriptions. These English annotations are
subsequently translated into Chinese.
Evaluation Metrics. We evaluate PanGu-Draw’s text-to-image generation on
COCO [17] with 30k images for English, and COCO-CN [16] with 10k images
for Chinese. The Frechet Inception Distance (FID [10]) is utilized to evaluate
image quality and diversity. For Chinese, additional metrics include the Inception
Score (IS [30]) and CN-CLIP-score [34], assessing image quality and text-image
alignment. Besides, a user study is conducted to evaluate image-text alignment,
fidelity, and aesthetics using ImageEval-prompt1 across 339 prompts.

5.1 Text-to-Image Generation

Evaluation on COCO. As shown in Table 1, PanGu-Draw achieves a FID of
7.99, which is superior to compared methods such as DALL-E 2 and SDXL. It
also achieves competitive FID with SOTA methods, indicating the effectiveness

1 https://github.com/FlagOpen/FlagEval/tree/master/imageEval
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Table 1: Comparisons of PanGu-Draw with recent representative English text-to-
image generation models on COCO dataset in terms of FID.

Method FID↓ Model Size Release
DALL-E [25] 27.50 12B N

LDM [26] 12.63 1.5B Y
GLIDE [20] 12.24 5B N
SDXL [22] 11.93 2.5B Y

PixArt-α [4] 10.65 0.6B Y
DALL-E 2 [24] 10.39 5.5B N

Imagen [29] 7.27 3B N
RAPHAEL [33] 6.61 3B N
PanGu-Draw 7.99 5B Y

Table 2: Comparisons of PanGu-Draw with Chinese text-to-image generation mod-
els on COCO-CN dataset in terms of FID, IS and CN-CLIP-score. The classifier-free
guidance scales are set as 9 following AltDiffusion [37].

Model FID↓ IS↑ CN-CLIP-score↑
AltDiffusion [37] 25.31 29.16 35.12

Taiyi-Bilingual [38] 24.61 34.29 32.26
Taiyi-CN [38] 23.99 34.29 34.22
PanGu-Draw 21.81 37.00 36.62

Table 3: Results of a User study on ImageVal-prompt in terms of image-text alignment,
image fidelity, and aesthetics.

Method Align↑ Fidelity↑ Aesthetics↑ Ave↑
DALL-E 3 [2] 4.72 4.59 4.76 4.69

MJ 5.2 4.63 4.54 4.75 4.64
SDXL [22] 4.41 4.37 4.59 4.46

SD [26] 4.17 3.99 4.20 4.12
PanGu-Draw 4.5 4.52 4.72 4.58

of our time-decoupling training strategy and its outstanding data and training
efficiencies. Our 5B PanGu model is the best-released model in terms of FID.
Evaluation on COCO-CN. As shown in Table 2, PanGu-Draw outperforms
other released Chinese text-to-image models, including Taiyi-CN, Taiyi-Bilingual,
and AltDiffusion, across all three metrics. This performance highlights PanGu-
Draw’s exceptional Chinese text-to-image generation capabilities and the effec-
tiveness of our bilingual text encoder architecture.
User Study. We conducted a user study to compare PanGu-Draw with top-
performing methods, including SDXL [22], Midjourney 5.2, and DALL-E 3 [2]. As
shown in Table 3, PanGu-Draw achieves better results than SD and SDXL across
all three metrics. It also attains approximately 99%/98% of the performance of
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“一位年轻女性，身着优雅礼服，佩戴毕业帽，微
笑着面对镜头，伸出手臂，她的背景是夕阳下的校
园。”“A young woman, wearing an elegant gown and 

graduation cap, smiles at the camera and extends her 

arms, with the sunset on campus in the background.”

“旅行者们泛舟在波光粼粼的湖面上，周围是雄伟的山脉，以中国水墨画风格描绘，画面色彩淡雅，具
有古典诗意。” “Travelers are boating on the sparkling lake, surrounded by majestic mountains, painted in the 

style of Chinese ink painting, with elegant colors and a classical poetic feel.”

“一个巨大的水晶球，内部蕴含着一个微型雨林，
雨林中蝴蝶飞舞，阳光透过树叶洒落。” “A huge 

crystal ball contains a miniature rainforest inside, with 

butterflies flying in the rainforest and sunlight shining 

through the leaves.”

“一艘古老的海盗船，完全由糖果和巧克力制成。”
“An ancient pirate ship made entirely of candy and 

chocolate.”

“一位面带微笑的女子，身穿白色T恤，红色夹克

在阳光下熠熠生辉，画面清新，风格像动漫，细节
丰富。”“A smiling woman wearing a white T-shirt 

and a red jacket shines in the sun. The picture is fresh, 

anime-like in style, and rich in details.”

“赛博朋克风格的摄影机，无人机在夜空中飞行，
以粒子水墨画风展现，具有强烈的光影效

果。”“Cyberpunk style camera, drone flying in the 

night sky, presented in particle ink painting style, with 

strong light and shadow effects.”
“一台未来风格的摩托车，闪耀着霓虹灯，停在夜

晚的东京街头。”
“A futuristic motorcycle, shining with neon lights, is 

parked on the streets of Tokyo at night.”

“一座由冰晶和雪花构成的精致城堡，坐落在北极
的冰原上。”

“An exquisite castle made of ice crystals and 

snowflakes, located on the Arctic ice sheet.”

“一只穿着中世纪铠甲的兔子，手持长剑站在一座
古老城堡的城墙上，背后是落日的余晖。”

“A rabbit wearing medieval armor and holding a sword 

stands on the wall of an ancient castle with the setting 

sun behind him.”

Fig. 4: Images generated with PanGu-Draw, our 5B multi-lingual text-to-image gen-
eration model. PanGu-Draw is able to generate multi-resolution high-fidelity images
semantically aligned with the input prompts.

Midjourney 5.2 and DALL-E 3, respectively, indicating PanGu-Draw’s excellent
text-to-image capabilities. Figure 4 shows some high-fidelity multi-resolution im-
ages generated by PanGu-Draw. As we can see, the generated images of PanGu-
Draw are of high aesthetics and semantically aligned with the input prompts.

5.2 Multi-Diffusion Fusing Results

Multi-Control Image Generation. To demonstrate the effectiveness of the
proposed reusable multi-diffusion fusing algorithm, Coop-Diffusion, we first present
multiple results of multi-control image generation. Figure 5 displays results from
fusing an image variation model2 with PanGu-Draw. The fusing results maintain
a style similar to that of the reference image, matching the texture described
by the input prompt. Figure 6 shows results from fusing PanGu-Draw with a
pose/edge-to-image ControlNet model, which operates in guess mode without
input prompts. Here, the fusing results combine the structure of the pose/edge
image with the texture described by the input prompt.
2 https://huggingface.co/lambdalabs/sd-image-variations-diffusers



12 G. Lu et al.

“一只白色的狗”

("a white dog")

(a) Input image and generation results of image variation.

(b) Input prompt and generation results of PanGu-Draw.

(c) Generation results of fusing image
variation and PanGu-Draw with Coop-

Diffusion algorithm.

Fig. 5: Generation results of the fusing of an image variation model and PanGu-Draw
and with the proposed Coop-Diffusion algorithm.

“一个穿毛衣的男人”

("a man with sweater")

(a) Input pose and generation results of pose-to-image.

(b) Input prompt and generation results of PanGu-Draw.

(c) Generation results of fusing pose-to-
image and PanGu-Draw with Coop-

Diffusion algorithm.

(a) Input edge map and generation results of edge-to-image.

“一只绿色的小鸟”

("a little green bird")

(b) Input prompt and generation results of PanGu-Draw.

(c) Generation results of fusing edge-to-
image and PanGu-Draw with Coop-

Diffusion algorithm.

Fig. 6: Generation results guided by fusing signals of text and pose/edge map by our
Coop-Diffusion.

Multi-Resolution Image Generation. We also present multi-resolution im-
age generation results of fusing PanGu-Draw with low-resolution text-to-image
and edge-to-image ControlNet model by first denoising with the low-resolution
model to get the intermediate z′t and the high-resolution counterpart z̃t, and then
perform denoising in high resolution with PanGu-Draw. Figure 7 shows the re-
sults from the low-resolution model and our fusing algorithm Coop-Diffusion.
As we can see, PanGu-Draw adds much details to the low-resolution predictions
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LR model LR model + HR model

Fig. 7: Images generated with a low-resolution (LR) model (1st row: T2I model; 2nd
row: edge-to-image ControlNet) and the fusion of the LR model and HR PanGu-Draw
with our Coop-Diffusion. The resolutions are 512×512 and 1024×1024 respectively.
This allows for single-stage super-resolution for better details and higher inference
efficiency.

leading to high-fidelity high-resolution results. Besides, compared with the com-
mon practice of super-resolution with diffusion model, which carries out all the
low-resolution denoising steps, our method achieve higher inference efficiency.

5.3 Ablation Study

In this section, we perform ablation studies to analyze our time-decoupling train-
ing strategy. The baseline model has 1B parameters while the structure and
texture generators both have 0.5B parameters. During the training process, the
latter two models only train half the steps of the baseline model with Tstruct

set as 500. Both settings of the models are trained from scratch on a subset of
the LAION dataset containing images with all sizes. After training, FID, IS and
CLIP-score on COCO are reported for comparison.
Time-Decoupling Training Strategy. We compare the performance of mod-
els trained with the Resolution Boost strategy and our time-decoupling strategy
in Table 4. We found that models trained with our strategy achieves better
performance in all three criteria, indicating the effectiveness of our strategy.
Training Designs. The structure and texture generators (ϵstruct and ϵtexture)
are designed to train on different resolutions to improve data and training effi-
ciency. However, this approach may negatively influence the final performance.
In Table 5, we compare such a design with a traditional training process, where
ϵstruct discards low-resolution images, or ϵtexture trains with high resolution. Re-
sults on COCO show that ϵstruct benefits from these extra up-scaled data, and
ϵtexture learns enough texture patterns at a smaller resolution.
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Table 4: Comparison of models across Resolution Boost (1B parameters) and Time-
Decoupling training strategies (0.5B parameters for structure and texture generators)

Model FID↓ IS↑ CLIP-score↑
Resolution Boost 106.12 10.46 22.9
Time-Decoupling 87.66 11.07 23.4

Table 5: Performance of structure and texture models training with images of different
resolutions.

Structure Data Texture Resolution FID↓ IS↑ CLIP-score↑
All data 256 87.66 11.07 23.4

Only high resolution 256 89.52 10.96 23.2
All data 512 90.98 10.59 23.3

Table 6: Comparisons of PanGu-Draw inference performance with different time step
splitting point Tstruct settings.

Tstruct FID↓ IS↑ CLIP-score↑
200 105.08 10.59 22.98
300 98.08 10.72 23.12
500 87.66 11.07 23.40
700 89.48 11.02 23.32

Timestep Splitting Point. The timestep splitting point Tstruct between the
structure and texture generators also influences the final performance. To this
end, we set Tstruct to 200, 300, 500, and 700, while keeping the other settings of
the structure and texture generators unchanged. As shown in Table 6, as Tstruct
increases from 200 to 700, the performance initially increases and then decreases
continuously. Tstruct = 500 is the optimal value, and we adopt it as the default
setting in all other experiments.

6 Conclusion

In this paper, we present “PanGu-Draw”, a new latent diffusion model for effi-
cient text-to-image generation that effectively integrates multiple control signals.
Our approach includes a Time-Decoupling Training Strategy to separate the
text-to-image process into structure and texture generation, enhancing data use
and computational efficiency. Additionally, “Coop-Diffusion” is introduced, an
algorithm allowing cooperative use of different pre-trained diffusion models in a
unified denoising process for multi-control image synthesis at various resolutions
without extra data or retraining. PanGu-Draw outperforms models like DALL-E
2 and SDXL in English T2I, achieves superior FID, IS, and CN-CLIP-scores in
Chinese T2I, and receives favorable user feedback. This positions PanGu-Draw
as a versatile and efficient state-of-the-art method.
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