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Abstract. In this paper, we propose a simple yet effective approach for
self-supervised video object segmentation (VOS). Previous self-supervised
VOS techniques majorly resort to auxiliary modalities or utilize iter-
ative slot attention to assist in object discovery, which restricts their
general applicability. To deal with these challenges, we develop a sim-
plified architecture that capitalizes on the emerging objectness from
DINO-pretrained Transformers, bypassing the need for additional modal-
ities or slot attention. Our key insight is that the inherent structural
dependencies present in DINO-pretrained Transformers can be lever-
aged to establish robust spatio-temporal correspondences in videos. Fur-
thermore, simple clustering on this correspondence cue is sufficient to
yield competitive segmentation results. Specifically, we first introduce
a single spatio-temporal Transformer block to process the frame-wise
DINO features and establish spatio-temporal dependencies in the form
of self-attention. Subsequently, utilizing these attention maps, we im-
plement hierarchical clustering to generate object segmentation masks.
To train the spatio-temporal block in a fully self-supervised manner,
we employ semantic and dynamic motion consistency coupled with en-
tropy normalization. Our method demonstrates state-of-the-art perfor-
mance across three multi-object video segmentation tasks. Specifically,
we achieve over 5 points of improvement in terms of FG-ARI on com-
plex real-world DAVIS-17-Unsupervised and YouTube-VIS-19 compared
to the previous best result. The code and checkpoint are released at
https://github.com/shvdiwnkozbw/SSL-UVOS.

Keywords: Video Object Segmentation · Self-supervised Learning

∗ Equal Contribution
† Corresponding author. Email: dhlin@ie.cuhk.edu.hk

https://orcid.org/0000-0001-7033-774X
https://orcid.org/0000-0002-0378-6438
https://orcid.org/0000-0002-4715-1338 
https://orcid.org/0000-0002-8865-7896
https://orcid.org/0000-0003-4552-0029
https://github.com/shvdiwnkozbw/SSL-UVOS


2 S. Ding et al.

(a) Video Frame (b) DINO Attention (c) Random Initialized Spatio-temporal Attention (d) Learned Spatio-temporal Attention

Fig. 1: Attention leaks the object’s position! We visualize the self-attention maps
of different queries ( prompt) from the video sequence (a). The frame-wise DINO
attention maps (b) highlight image regions corresponding to the queried object. A ran-
domly initialized spatio-temporal Transformer block on top of DINO produces noisy
spatio-temporal attention maps (c) that coarsely track objects over time. Our method
diminishes noise in the learned spatio-temporal attention maps (d) which derive tem-
porally coherent object segmentation.

1 Introduction

Representing the visual scene with objects as the basic elements has been long
acknowledged as a core cognitive capability of an intelligent agent. In the realm
of computer vision, Video Object Segmentation (VOS) tasks require a model to
segment and track specified objects within a video sequence, striving to emulate
this foundational function. This task holds significant importance in various real-
world vision systems, including but not limited to, autonomous driving [18] and
surveillance security [43]. However, traditional methods for VOS [6,44] typically
follow a fully supervised paradigm and entail substantial costs for obtaining
pixel-level per-frame annotations. This factor significantly limits their feasibility
for large-scale applications. Thus, the researchers turn their attention to self-
supervised learning [8, 9, 11, 12, 23, 38, 47, 50, 66], a more efficient approach that
leverages unlabeled data.

Despite its promising potential, self-supervised VOS poses significant chal-
lenges. Firstly, previous methods tend to incorporate additional signals such as
optical flow [36, 68, 71], or depth cues [16, 29], to furnish object-related clues.
However, these auxiliary signals within videos can often be difficult to extract
and unreliable when it comes to multi-object scenarios, thus limiting their avail-
ability. Secondly, most existing models [1,48,74] adopt slot attention [39] to parse
the frame into objects. Nevertheless, the requirement for a predefined quantity
of learnable slot queries limits its adaptability to in-the-wild data, especially
when the number of objects is unknown. To address these limitations, we re-
call the recent self-supervised learning technique DINO [7, 42], which demon-
strates emerging objectness in the attention maps of pretrained Vision Trans-
former (ViT) [14]. As depicted in Fig. 1(b), DINO attention maps encode spa-
tial dependencies between diverse patches. These dependencies present different
patterns for various objects, providing abundant cues for object segmentation.
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This phenomenon motivates us with an intriguing possibility: Can we utilize the
object-aware attributes of DINO to learn robust spatio-temporal dependencies
and thereby produce coherent object segmentations in videos?

In this paper, we delve into the potential of this idea with a simple archi-
tecture. Based on DINO pretrained ViT, we introduce a single spatio-temporal
Transformer block to process frame-wise DINO features and calculate spatio-
temporal attention maps. Remarkably, these attention maps in Fig. 1(c) show-
case the ability to coarsely discriminate and track object parts even with random
initialization. Based on this observation, we can roughly estimate the patches
belonging to the same object over time. Then, we encourage both semantic and
motion alignment among patches belonging to the same object while distinguish-
ing those from different objects in a fully self-supervised manner. The training
significantly diminishes noise in the learned spatio-temporal dependencies as dis-
played in Fig. 1(d). In inference, we directly apply Hierarchical Clustering [28]
to these spatio-temporal attention maps to derive object segmentation masks
within a sequence. Interestingly, this naive clustering method yields unexpectedly
competitive results. Our method greatly outperforms slot attention-based meth-
ods on various datasets, e.g., 9 points improvement over SOLV [1] on DAVIS-17,
12 points improvement over SMTC [48] on YTVIS-19. We argue that clustering
on the whole spatio-temporal attention maps, instead of frame-by-frame fea-
ture clustering as in slot attention ensures the temporal coherence of produced
segmentations and guarantees the object’s permanence.

In summary, our proposed method BA (short for Betrayed by Attention)
offers three distinct advantages: (1) BA solely requires RGB frames and op-
erates entirely under self-supervision without the need for external modality.
This characteristic renders our method highly accessible and adaptable in real-
world scenarios; (2) The architecture is remarkably simple and systematically
efficient. We only introduce a single learnable Transformer block and harness
a parameter-free clustering algorithm to discover the objects. It facilitates easy
generalization to multi-object scenes, without the constraints imposed by slot
attention; (3) Our method achieves state-of-the-art results across a bunch of un-
supervised video multi-object segmentation benchmarks, such as MOVi-E [19],
DAVIS-17-Unsupervised [46], and YouTube-VIS-19 [69]. Notably, we surpass the
previous state-of-the-art method, TimeT [52], by 6.6 points on YTVIS-19 and
by 6.1 points on DAVIS-17 in terms of the FG-ARI metric.

2 Related Work

Video Object Segmentation aims to segment objects coherently in a video se-
quence [2,6,15,17,20,21,25,27,33,44]. In video object segmentation (VOS), there
are two prevalent protocols for evaluating the learned models: Semi-supervised
VOS and Unsupervised VOS. In semi-supervised VOS, the algorithm is provided
with the object masks in the first frame, and required to track them in subse-
quent frames. In contrast, unsupervised VOS aims to identify and segment salient
objects from the background without any specific reference. In this paper, we fo-



4 S. Ding et al.

cus on the more challenging unsupervised VOS setting without using any kind of
manual annotations in either training or inference. Recently, there emerges a line
of self-supervised algorithms for unsupervised VOS [10, 29, 34, 58, 64, 68, 70–72].
CIS [71] facilitates fully unsupervised motion segmentation, discarding object
mask supervision during training. By formulating a min-max game of mutual
information, the generator is motivated to create segmentations that effectively
distinguish foreground objects from the background. AMD [37] minimizes the
warping synthesis error to train appearance and motion pathways without any
supervision. GWM [10] uses a single RGB image as input with optical flow acting
as supervision to highlight moving areas. MG [68] and OCLR [65] solely leverage
optical flow as input to generate object-centric layered representations, with each
layer indicating a potential object. Despite the impressive performance of state-
of-the-art self-supervised VOS methods [1, 48, 52] in discovering single objects,
they still face limitations when it comes to solving multi-object discovery tasks.
In contrast, by leveraging the rich object cues in attention maps, our method
can discern multiple objects in real-world scenarios.

Self-supervised Spatio-temporal Correspondence learning usually lever-
ages free temporal supervision signals in videos to learn representations that
facilitate accurate pixel or object tracking across space and time [4, 7, 13, 24,
26, 30, 31, 35, 57, 59, 67]. Vondrick et al. [57] employ the natural temporal color
coherence to train a colorization model on grayscale videos, thereby establish-
ing fine-grained correspondence between current and future frames. CRW [26]
presents a self-supervised learning approach for dense correspondence in raw
videos. It uses space-time graph-based random walks and cycle consistency to
implicitly supervise chains of comparisons. Hu et al. [24] independently learn
semantics and temporal correspondence from two pathways and fuse them at
a later stage. UME [32] respectively designs short-term appearance and long-
term semantic consistency to learn generalizable correspondence. Taking a step
further by integrating high-level semantics with low-level temporal correlation,
SMTC [48] develops two-stage slot attention to establish dense correspondence
with more emphasis on foreground objects. In this work, we explicitly initialize
the spatio-temporal correspondence on top of the DINO pretrained Transformer.
This initialization effectively guides the learning process with a self-supervised
pixel-level consistency.

Object-aware DINO Features have shown efficacy in object localization
tasks, particularly in image domain [5, 22, 41, 54, 60, 63, 73, 76]. DINO’s origi-
nal paper [7] reveals that the learned representations and attention maps carry
substantial object cues that can be harnessed for object discovery. The ground-
breaking work, LOST [54], utilizes these features from DINO to perform object
segmentation by constructing a graph wherein objects are segmented using the
inverse degrees of nodes. TokenCut [62] employs DINO features for applying the
Normalized Cut algorithm [53], thereby obtaining foreground segments in an
image. Furthermore, CutLER [60] and MOST [51] can localize multiple objects
without any supervision based on the DINO features. Motivated by the success-
ful application of DINO features in image settings, recent works have expanded
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their use to video segmentation tasks [1,48,52,61,62]. SMTC [48] utilizes the rich
semantics and correspondence cues in the DINO features to provide a reliable
reference for object decomposition in consecutive frames. TimeT [52] introduces
a feature forwarding process to propagate dense DINO features across time and
establish temporal consistency. Most of the existing works focus on leveraging
DINO feature vectors for optimization and adaptation to videos. While in our
work, we lay more emphasis on the self-attention maps. We extend the frame-
wise DINO attention maps to spatio-temporal maps, which explicitly encode
space-time structural dependencies and help coherent object discovery in videos.

3 Method

3.1 Preliminary on DINO Attention Maps

The self-supervised ViT, as achieved by DINO [7], has exhibited a rich emergence
of objectness in the attention maps. To elucidate this, we visualize the self-
attention map from the final Transformer block of the DINO pretrained ViT-S/8
as a representative. As illustrated in Fig. 1(b), an image patch exhibits a high
degree of attention dependencies with patches of the same object. Conversely,
image patches of distinct objects tend to present different attention distributions.
Encouraged by this observation, we pose the following question: Could it be
possible to directly harness these attention maps to achieve object segmentation
without relying on annotations?

Clustering
Metric

Cosine similarity KL divergence

F A Av Ãv

DAVIS-16 47.4 60.3 51.1 75.4
DAVIS-17 14.7 26.7 20.9 39.2
Table 1: Preliminary video object segmenta-
tion results using varying clustering metrics. F
represents features pretrained with DINO. A
denotes per-frame attention maps from DINO,
while Av and Ãv denote spatio-temporal at-
tention maps produced by a randomly initial-
ized and a final learned temporal correlator re-
spectively, on top of DINO. The IoU (J score)
is reported for both DAVIS-16 and DAVIS-17-
Unsupervised datasets.

(a) DINO Feature 𝐹 (b) DINO Attention 𝐴

Fig. 2: Visualizations of the cluster-
ing results. The left column is the re-
sults of DINO features F , the right
column is the results of DINO at-
tention A. F results in much noisier
clusters, while A distinguishes differ-
ent classes of objects.

In response to this question, we conduct a straightforward initial exploration
with these attention maps. We denote the attention map of the last Transformer
block as A ∈ RHW×HW and its output features F ∈ RHW×C , where H, W and
C respectively denote the height, width, and channel dimension of the feature
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Fig. 3: Our architecture BA overview. Given the video frames and a DINO pretrained
Transformer, we first use a temporal correlator to construct the spatio-temporal cor-
respondence. We then utilize these attention maps as a clustering metric and apply
hierarchical clustering across all frames to generate segmentation masks. During train-
ing, for each patch, we sample a positive/negative set and assign an importance weight
based on its corresponding attention map. We promote alignment within the positive
set while differentiating the representations from the negative set. The final loss, nor-
malized with importance weights, only trains the temporal correlator with the DINO
ViT remaining frozen.

map5. For an intuitive comparison, we apply unsupervised clustering on both
attention maps A and features F to yield the object segmentation masks. For
the detailed procedure, please refer to the Sec. 3.2. Then, we report frame-wise
evaluation results on the video object segmentation datasets DAVIS-16 [45] and
DAVIS-17-Unsupervised [46] in Table 1. Interestingly, we observe that the atten-
tion maps significantly excel in decoupling object components compared to fea-
tures, exhibiting an improvement of over 10 points on both datasets in terms of
IoU. Surprisingly, a spatio-temporal attention map Av generated by a randomly
initialized Transformer block on top of DINO also outperforms the frame-wise
DINO feature F . And it is further demonstrated in Fig. 2. The DINO features
lead to very noisy clusters, while attention maps can discriminate objects of
different categories. We speculate this is because the attention maps preserve
intact correspondences, which are more suitable for fine-grained tasks such as
object grouping and discrimination. Therefore, creating spatio-temporal struc-
tural dependencies that expand beyond spatial DINO attention maps appears
promising for video object segmentation tasks.

3.2 Our Simple Architecture for VOS

Motivated by the frame-wise preliminary result, we introduce a temporal correla-
tor instantiated with a spatio-temporal Transformer block [3] on top of the DINO
pretrained ViT backbone, to extend the self-attention calculation to the spatio-
temporal domain. Specifically, given the frame-wise DINO features {F1, . . . , FT }
of T frames, we process them through a spatio-temporal Transformer block Φst.
It consists of one standard ViT encoder layer, with self-attention computed over
5 Here we omit the CLS token, and average the multi-head attention along the head

dimension.
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the spatio-temporal grids. Specifically, we concatenate the frame-wise DINO fea-
tures along the temporal dimension with the addition of learnable temporal po-
sitional embeddings pe, i.e., F = {F1+pe1, . . . , FT +peT } ∈ RTHW×C and then
linearly project F to obtain the queries Q = fQ(F ), keys K = fK(F ), and values
V = fV (F ). Then, we can obtain the self-attention map Av ∈ RTHW×THW and
temporally fused features Fv ∈ RTHW×C :

Av = softmax
(
QK⊤
√
C

)
, Fv = AvV = {F̃1, . . . , F̃T }. (1)

In this way, we establish spatio-temporal structural dependencies beyond frame-
wise DINO features and have the potential to improve object permanence across
the entire time span.

Since Av[i] ∈ RTHW is a proximity distribution that describes the structural
dependencies between the i-th patch and all other positions, we adopt symmetric
KL divergence to measure the distance M ∈ RTHW×THW between any two
patches as:

M[i, j] = DKL(Av[i]||A[j]) +DKL(Av[j]||Av[i]), (2)

where DKL denotes KL divergence. Based on this distance matrix M, we then
apply Hierarchical Clustering [28] to obtain the object segmentation masks.
Please consult our appendix for a detailed implementation of the hierarchical
clustering algorithm. In this way, we iteratively merge THW patches into N
centroids Ac ∈ RN×THW . Since each centroid likely represents the spatial distri-
bution of an object, we consider the cluster assignments as potential candidates
for the object segmentation mask. Specifically, we calculate the KL divergence
distance between the Av and Ac as D ∈ RTHW×N , and use argmin operation
to produce the cluster assignments Z within the video sequence:

Z = argmin(D, dim=1) ∈ {1, ..., N}THW . (3)

Then, we employ a bipartite matching mechanism, following the standard eval-
uation protocol in DAVIS-17 Challenge [46], to match the predicted masks with
ground truth for evaluation.

A recent study, DiffSeg [56], used hierarchical clustering to process attention
maps from a stable diffusion model, but it operated solely in the image domain.
Our work extends the powerful image foundation model to the spatio-temporal
domain, demonstrating that accurate spatio-temporal correspondence can be
learned without supervision. Additionally, our method does not rely on hierar-
chical clustering. As shown in Table 4, using K-means clustering also achieves
competitive performance, indicating that the learned spatio-temporal correspon-
dence is effective across various clustering strategies.

Besides, there are two noteworthy aspects in our clustering stage. First, in
the clustering process, we only set a distance threshold hyper-parameter with-
out specifying the number of cluster centroids and the hierarchical clustering
algorithm can adaptively generate different numbers of clusters according to
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the complexity of the video. Second, our reference to the entire spatio-temporal
distribution enables coherent object segmentation across multiple frames. As a
result, the generated segmentation masks effortlessly track corresponding objects
over time without extra association procedures.

3.3 Training

Noticing that even a randomly initialized attention map Av shown in Figure 1(c),
exhibits an initial ability to differentiate parts and track objects over time, we
leverage these maps as indicators for positive and negative sets sampling. Math-
ematically, given the attention maps Av ∈ RTHW×THW , we first reshape Av

into shape THW × T ×HW then use top-k operation to retrieve Kp position
indexes in each frame with highest attention scores:

Ip = top-k(reshape(Av),Kp, dim=-1). (4)

In this way, we obtain a position index set Ip ∈ RTHW×T×Kp , which represents
positions potentially associated with the same object as the i-th patch. The
reshape operation ensures that we consistently extract the same number of
patches in each frame. This, in turn, guarantees effective object tracking within
consecutive frames and promotes consistent temporal correspondence learning.
Similarly, we perform this operation to find Kn positions in each frame with the
lowest attention scores In ∈ RTHW×T×Kn . Each In[i] represents positions least
likely to belong to the same object as the i-th patch. After obtaining the positive
and negative index sets, we apply self-supervised correspondence learning in two
aspects: semantic consistency and dynamic motion consistency.
Semantic consistency. Intutively, we take the temporally fused features Fv =
{F̃1, ..., F̃T } ∈ RTHW×C as the semantic representation. We promote the seman-
tic alignment between the features of the same object and distinguish features
from different objects. Given the i-th patch, we first refer to the positive pair
indexes Ip[i] in Eq. 4 to gather the features that are likely from the same object.
Then we calculate the cosine distance between the query feature and all positive
feature vectors, and produce the distance matrix Sp[i] ∈ RTKp . Similarly, we
gather distinct features using In[i], and form negative distance matrix Sn[i]. We
employ a simple margin loss to enforce higher consistency between corresponding
object areas:

Ls[i] =

TKp∑
j=1

TKn∑
k=1

max(Sp[i, j]− Sn[i, k] + λ1, 0), (5)

where λ1 is the margin hyper-parameter and we set λ1 = 0.8 as default.
Dynamic motion consistency. Regarding dynamic motions, rather than cal-
culating optical flow, inter-frame feature correlations, or latent cost volumes as
motion representations, we turn to highly accessible attention maps Av. These
maps exhibit spatio-temporal correlations of specific patches, serving as an ef-
fective latent representation of temporal dynamics. Therefore, it is feasible to
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directly employ these attention maps to bolster motion consistency between
corresponding objects. Similar to the semantic consistency learning, given the
attention map of i-th patch Av[i] as a query, we also leverage the positive (nega-
tive) pair indexes Ip[i] (In[i]) to gather the attention maps of the corresponding
(distinct) objects. Then we calculate the symmetric KL divergence as in Eq. 2
between the query and all positive (negative) attention maps, obtaining the dis-
tance matrix Mp[i] ∈ RTKp and Mn[i] ∈ RTKn . We utilize the same margin
loss for optimization, with λ2 = 1.0 as the margin hyper-parameter:

Lm[i] =

TKp∑
j=1

TKn∑
k=1

max(Mp[i, j]−Mn[i, k] + λ2, 0). (6)

Overall objectives. Besides, we evaluate the importance of each spatio-temporal
patch and lay more emphasis on the informative regions. Formally, we employ
the entropy of the attention maps as a measure of the information content within
each patch:

e[i] =

THW∑
k=1

−Av[i, k] logAv[i, k], (7)

with e[i] denoting the entropy of i-th patch. A higher entropy value indicates
more ambiguous spatio-temporal correlations, which provide less information.
Hence, we perform softmax normalization on the reversed entropy to produce
the importance weight w for each patch as:

w[i] =
exp(−e[i])∑THW

j=1 exp(−e[j])
. (8)

Then, the overall learning objectives on semantic and motion consistency can be
formulated as the weighted summation over all spatio-temporal patches:

L =

THW∑
i=1

w[i](Ls[i] + Lm[i]). (9)

Since we only introduce one additional temporal correlator and an entirely
parameter-free clustering strategy, we exclusively tune a single standard spatio-
temporal Transformer block with 1.6M parameters and freeze the DINO encoder
throughout the training process. This straightforward method not only maintains
a minimal number of learnable parameters but also yields remarkable results in
video object segmentation.

4 Experiments

4.1 Datasets

For training, we adopt the challenging video dataset YouTube-VIS-19 [69] for
video instance segmentation. YouTube-VIS-19 consists of 2,883 high-resolution
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YouTube videos and each video usually contains multiple object instances of dis-
tinct semantics. During the inference, we evaluate our method on unsupervised
multiple object segmentation. We use the synthetic MOVi-E [19] dataset and
real-world datasets like DAVIS-17-Unsupervised [46] and YouTube-VIS-19 [69],
reporting Foreground Adjusted Rand Index (FG-ARI) and mIoU. For MOVi-E,
we integrate its training set into our training due to significant distribution shifts.
For the rest, we maintain solely training on the YouTube-VIS-19 set. Note that
we do not present any mask annotation to the model during either the training
or inference stages.

4.2 Implementation Details

In training, we sample T = 3 frames with temporal stride 4 as the input clip.
Each frame is augmented with random crop and color jitter and resized to 192×
384. We adopt DINO pretrained ViT-S/8 [7] as the frame encoder, which is
then followed by a single spatio-temporal Transformer Encoder block with 8
heads as temporal correlator Φst. We set the number of sampled positive and
negative pairs to Kp = 10 and Kn = 50 in default. For optimization, we adopt
AdamW [40] with a learning rate 1×10−4, and train the model for a total of 30k
iterations with a batch size of 16. In the inference stage, our model can be flexibly
applied to video sequences of arbitrary lengths. For inference, we set the distance
threshold in hierarchical clustering to 1.0. We follow the standard evaluation
protocol outlined in the DAVIS-17 challenge [46] to match the predicted masks
with the ground truth.

Table 2: Quantitative results on multiple object video segmentation. For MOVi-E and
YouTube-VIS-19 datasets, we report FG-ARI and mIOU. Besides, we report Region
Similarity J and Contour Accuracy F on DAVIS-17-Unsupervised. ⋆ The original paper
of TimeT [52] includes the IoU of the background category, we rerun the evaluation to
exclude background here. † We use DINOv2 ViT-S/14 as our frozen frame encoder.

MOVi-E YTVIS-19 DAVIS-17

Model FG-ARI mIoU FG-ARI mIoU FG-ARI J&F J F

SAVi [29] 42.8 16.0 11.1 12.7 - - - -
STEVE [55] 50.6 26.6 20.0 20.9 - - - -
OCLR [65] - - 15.9 32.5 14.7 - 34.6 -
VideoSAUR [74] 73.9 35.6 39.5 29.1 - - - -
SOLV [1] 80.8 - 29.1 45.3 32.2 - 30.2 -
SMTC [48] - - 31.4 38.8 33.3 40.5 36.4 44.6
TimeT⋆ [52] - - 37.9 40.4 35.5 40.0 35.8 44.2

BA (ours) 83.4 40.2 44.3 50.1 40.1 43.9 39.2 48.6
BA† (ours) 84.4 40.7 44.5 50.1 41.6 43.7 39.4 48.0
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4.3 Comparison with State-of-the-art

We evaluate our method on challenging multi-object segmentation, which aims to
segment different objects in a temporally coherent manner. Among the compared
methods, SAVi [29] and OCLR [65] employ optical flow as supervision to dis-
criminate motions of different objects. STEVE [55], VideoSAUR [74], SOLV [1]
and SMTC [48] develop variants of slot attention with temporal constraints to
bind to distinct instances. TimeT [52] propagates dense DINO features across
time to enhance temporal consistency and applies clustering on learned features
to produce object segmentations. In contrast, our method directly uses spatio-
temporal attention maps for object segmentation. As shown in Table 2, BA
achieves state-of-the-art results on both synthetic (MOVi-E) and realistic video
datasets (YTVIS-19 and DAVIS-17), indicating promising generalization ability.
Specifically, comparing to the prior arts, we gain an approximately 5-point ad-
vantage over both VideoSAUR [74] on YTVIS-19 and SMTC [48] and TimeT [52]
on DAVIS-17 in terms of FG-ARI. The superior results under our simple archi-
tecture reveal the feasibility of utilizing the spatio-temporal dependencies to
mine object cues and derive reliable video object segmentation results. Besides,
we also report the results using DINOv2 ViT-S/14 as the frame encoder. Despite
the larger patch size, our method still achieves competitive performance. This
demonstrates the robustness of our approach to pretraining models.

O
ur
s

G
T

D
IN
O

R
G
B

SM
TC

Fig. 4: Qualitative comparison with DINO [7] and SMTC [48] on DAVIS-17-
Unsupervised. Different color denotes different clusters.
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Qualitative Comparison. To visually demonstrate the effectiveness of our
proposed method, we contrast our segmentation results with those of the DINO
counterpart and prior arts SMTC [48] in Fig. 4. For the DINO baseline, we clus-
ter the patches through the attention map A. As can be observed, our method
is able to segment with significantly less noise. For instance, in the motocross-
jump sequence, BA nearly outlines the entire motorbike and the rider, whereas
DINO misses most of the bike’s body and only identifies its tyre. This shows that
inferring the masks by associating a collection of RGB features and construct-
ing spatio-temporal correspondences greatly enhances the segmentation result.
Additionally, with the benefit of temporal correspondence, our model can dif-
ferentiate between distinct object instances with the same semantics. Consider
the soapbox sequence displayed in the right column; our method distinguishes
two different people - one running behind the soapbox and another sitting in
the soapbox throughout the video. This level of distinction cannot be obtained
from DINO’s spatial attention map, further emphasizing the effectiveness of in-
troducing rich spatio-temporal relations in video segmentation tasks.

4.4 Ablation Study

In the ablation study, we utilize DINO ViT-S/8 as the frozen backbone. We re-
port FG-ARI and IoU on YouTube-VIS-2019 and J&F on DAVIS-17-Unsupervised
for multi-object segmentation.
Training objective Ls, Lm, and w. To understand the contribution of each
component to the VOS performance, we individually evaluate each loss item
as depicted in Table 3. Compared to the baseline without training, the inclu-
sion of semantic consistency loss Ls with entropy-based weighting mechanism w
(second row) elevates FG-ARI from 23.4 to 30.1 on YouTube-VIS-19. Further-
more, the motion consistency loss Lm (third row) yields even more substantial
improvements, resulting in FG-ARI reaching 39.9. This aligns with our prelimi-
nary observations that dynamic motions play a more significant role than seman-
tics in fine-grained object segmentation. Combining all components (fourth row)
provides the best results, highlighting the synergy between the components. Ad-
ditionally, removing the weighting function w (fifth row) slightly decreases the
performance on both two benchmarks, affirming the value of entropy normaliza-
tion to prioritize informative regions.
Clustering metrics and strategy. To further explore whether our clustering
strategy optimally leverages the learned spatio-temporal properties, we select
four types of clustering metrics for comparison. Specifically, we adopt both fea-
ture vectors and attention maps directly from DINO and those from our learned
spatio-temporal Transformer block. Table 4 reveals three key observations. First,
our learning paradigm consistently outperforms the off-the-shelf DINO in terms
of both features and attention maps, improving all metrics by over 10 points. This
strongly supports our motivation that establishing spatio-temporal correspon-
dence is crucial for video object segmentation. Second, utilizing the intermediate
attention maps directly for clustering proves to be more effective than employing
the final features. We speculate this occurs because the attention maps encode
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fine-grained structural dependencies between various positions, whereas feature
vectors primarily capture high-level semantics. Third, the hierarchical clustering
strategy is not mandatory for success. We also achieve similar performance by
replacing it with K-means clustering, where we set the number of centroids to
8, indicating that BA distills general object-aware representations across time.

Table 3: Ablation on different com-
binations of semantic consistency loss
Ls, motion consistency loss Lm and
entropy weight w. The first row rep-
resents the results obtained from a
randomly initialized spatio-temporal
Transformer block.

YTVIS-19 DAVIS-17

Ls Lm w FG-ARI mIoU J&F FG-ARI

- - - 23.4 25.5 23.1 18.4
✓ ✗ ✓ 30.1 32.4 29.6 27.5
✗ ✓ ✓ 39.9 46.1 38.6 37.3
✓ ✓ ✓ 44.3 50.1 43.9 40.1
✓ ✓ ✗ 43.1 48.1 42.5 38.1

Table 4: Ablation on different clustering
metrics. Features F and attention maps A
are directly obtained from DINO. Fv and
Av are generated from our learned spatio-
temporal Transformer block. Av and A∗

v re-
spectively denote the hierarchical clustering
and K-means clustering results.

Clustering
Metric

YTVIS-19 DAVIS-17

FG-ARI mIoU J&F FG-ARI

F 22.1 23.8 16.1 19.4
Fv 33.9 31.4 33.4 32.1
A 30.1 34.8 29.3 30.5
Av 44.3 50.1 43.9 40.1
A∗

v 42.5 48.5 41.3 39.3

Number of frames T and temporal stride. To investigate whether a wider
temporal receptive field can reinforce temporal coherence and enhance object
segmentations, we experiment by varying the number of input frames and tem-
poral stride in training. Our results, displayed in Table 5, reveal that the perfor-
mance significantly deteriorates when the stride is very small, such as a temporal
stride of 1 in the first row. However, it begins to plateau upon reaching 4. This is
because a small temporal stride leads to very subtle temporal dynamics in con-
secutive frames, resulting in a trivial learning task while a larger temporal stride
provides richer dynamics, effectively encouraging the model to capture tempo-
ral consistency and maintain object permanence. Moreover, adding more frames
results in diminishing returns, indicating that a modest temporal receptive field
is adequate for sufficient temporal context in video object segmentation.
Motion representations. In training, we use the spatio-temporal attention
maps as latent motion representations for dynamic motion alignment Lm. There
are some alternatives to formulate this motion representation. Here we explore
two variants in Table 6. The one is simple global feature correlation, which di-
rectly calculates the dot product between spatio-temporal feature vectors, i.e.,
Cg = F̃ F̃⊤ ∈ RTHW×THW . The other is local feature correlation, where we
sample a sliding local window with size Tp × Hp × Wp for each grid, and ob-
tain the local correlation matrix Cl ∈ RTHW×TpHpWp . It is obvious that using
the self-attention maps as motion representation substantially outperforms the
performance of the other two methods. Compared to the global correlation, the
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Table 5: Ablation on the number of
frames T and temporal stride. When
sampling more than 3 frames with a
larger stride, the method exhibits a di-
minishing effect.

YTVIS-19 DAVIS-17

T Stride FG-ARI mIoU J&F FG-ARI

3 1 37.4 43.6 37.1 33.6
3 4 44.3 50.1 43.9 40.1
3 8 44.2 50.2 43.3 40.7
5 4 44.8 50.6 44.3 41.5

Table 6: Ablation on different motion rep-
resentations in calculating motion consis-
tency loss Lm. We compare using the self-
attention matrix, simple local and global
feature correlation as the latent motion rep-
resentation.

YTVIS-19 DAVIS-17

MotionRep FG-ARI mIoU J&F FG-ARI

Local Corr. 30.5 33.8 29.6 27.7
Global Corr. 39.1 49.2 36.4 33.9
Self-Attention 44.3 50.1 43.9 40.1

learnable parameters in attention layers enhance the modeling capacity, which
enables the self-attention maps to capture more comprehensive spatio-temporal
dependencies and serve as a better motion representation. The local correla-
tion only captures temporal dynamics in limited reception fields, restricting the
ability for long-term perception.

5 Conclusion

In this paper, we introduce a simple yet powerful approach for self-supervised
video object segmentation. Specifically, our proposed architecture introduces
only a single spatio-temporal Transformer block that ingests frame-wise DINO
features and constructs the spatio-temporal correspondence through the atten-
tion layer. During training, we adopt a dual self-supervised consistency objective
that encompasses both semantic consistency and dynamic motion consistency,
supplemented with entropy normalization. In inference, we utilize hierarchical
clustering on spatio-temporal attention maps to generate temporally coherent
object segmentation masks. This extremely straightforward approach neverthe-
less delivers state-of-the-art results on challenging real-world multi-object seg-
mentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19.
Limitation. While promising, BA still has room for improvement. Firstly, the
current spatio-temporal attention block cannot accommodate very long window-
size frames due to the quadratic memory cost. Potentially, adopting memory
mechanisms [49, 75] that are capable of handling long-duration data may prove
more suitable. Secondly, neither pixel-level constraints nor spatio-temporal de-
pendencies consider the granularity in the video. Incorporating multi-scale fea-
tures [4] may present a promising direction.
Social Negative Impact. Although our method produces coherent video ob-
ject segmentation without annotation, it could also enhance deepfake video tech-
nologies, making it easier to produce false videos for malicious intent. It is im-
portant to regulate the use of such technology and ensure it is leveraged for
beneficial purposes.
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