
REFRAME: Reflective Surface Real-Time
Rendering for Mobile Devices

Chaojie Ji1, Yufeng Li2, and Yiyi Liao1B

1 Zhejiang University
2 University of Electronic Science and Technology of China

Fig. 1: REFRAME enables real-time rendering on consumer GPUs and mobile de-
vices, delivering superior subjective quality with a low face number compared to the
baselines [9, 45]. Additionally, it effectively decouples the appearance properties and
environmental information of the scene, which helps its capabilities for downstream
scene editing tasks.

Abstract. This work tackles the challenging task of achieving real-time
novel view synthesis for reflective surfaces across various scenes. Exist-
ing real-time rendering methods, especially those based on meshes, often
have subpar performance in modeling surfaces with rich view-dependent
appearances. Our key idea lies in leveraging meshes for rendering ac-
celeration while incorporating a novel approach to parameterize view-
dependent information. We decompose the color into diffuse and spec-
ular, and model the specular color in the reflected direction based on a
neural environment map. Our experiments demonstrate that our method
achieves comparable reconstruction quality for highly reflective surfaces
compared to state-of-the-art offline methods, while also efficiently en-
abling real-time rendering on edge devices such as smartphones. Our
project page is at https://xdimlab.github.io/REFRAME/.

Keywords: Reflective surface · Real-time rendering · Mobile device

B Corresponding author.

https://xdimlab.github.io/REFRAME/

2 C.Ji et al.

1 Introduction

Novel view synthesis (NVS) generates realistic images from novel viewpoints
using multiple input views. While Neural Radiance Fields (NeRF) [33] excel
at high-quality NVS through volume rendering, they struggle with modeling
reflective appearance and lack real-time rendering capabilities.

Several methods [19, 52, 59, 63] extend NeRF to decouple the intrinsic scene
properties, e.g ., into materials and lighting, and obtain color by the rendering
equation [20]. Decoupling the environmental lighting and the physical param-
eters of the object often helps in modeling reflective objects. In contrast to
recovering the precise physical meaning which may harm the visual quality due
to the approximated rendering equation, another line of works [14,46,56] avoids
full decomposition but enables representing reflective objects by modeling the
reflective radiance. However, none of the aforementioned methods is capable of
real-time rendering, especially on mobile devices, due to the expensive query of
the rendering equation, or the underlying volume rendering formulation.

There are many existing methods focusing on accelerating the rendering of
NeRF. One line of works sticks with the volume rendering pipeline where the
color of a pixel is accumulated along the ray. Acceleration is achieved by im-
proving the sampling strategy [25, 27, 31, 48], tabulating the intermediate out-
put [12, 16, 18, 34, 40, 49, 55, 58], or leveraging super-resolution neural render-
ing [28]. However, deploying these methods on edge devices such as smartphones
is often greatly hindered due to the demanding computational power they typi-
cally require. Besides, tabulation-based methods require large memory consump-
tion and greatly increase communication costs when transmitting data between
the cloud server and the client. Another line of works [9,39,45] distills radiance
fields into a mesh for real-time rendering, combined with a small MLP to model
view-dependent effects. Mesh-based methods can leverage traditional graphics
pipelines for acceleration, enabling them to achieve real-time rendering even on
edge devices. Nonetheless, real-time rendering methods [9, 15, 16, 45, 58] often
struggle to model objects with highly reflective surfaces. Besides, these mesh-
based real-time rendering methods [9,45,57] typically require a large number of
vertices and faces to achieve high fidelity.

In this paper, we propose REFRAME, a mesh-based REFlective surface
ReAl-time rendering method for MobilE devices (e.g ., smartphones), see Fig. 1.
We find the fact that existing NeRF distilled mesh rendering pipelines [9,45] do
not perform well in rendering objects with highly reflective appearances mainly
for two reasons. Firstly, these methods utilize the viewing direction to model
the view-dependent appearance, approved to be less effective than using the re-
flection direction [46]. As such, our method adopts the reflection direction-based
parameterization. Nevertheless, this parameterization requires surface normal,
yet estimating precise vertex normal based on a mesh representation can be
challenging. Therefore, we propose a geometry learner that learns vertex and
normal offsets through two networks. This leads to good normal estimations to
calculate the reflection direction while maintaining relatively low vertex and face
numbers. Secondly and more importantly, to alleviate inference burden, real-time

REFRAME 3

rendering methods often have limited capacity to model complex view-dependent
information. In order to enhance the expressive power of the model without in-
creasing the inference computational cost, we employ a four-layer MLP during
training to learn the environmental features. This information is then baked into
a two-dimensional environment feature map during inference. Remarkably, the
distilled environment feature map incurs a memory overhead of less than 1MB
and can be edited for relighting purposes. Finally, despite our method achiev-
ing real-time rendering with an advantage in mesh faces and vertices number
compared to existing works, the reconstruction quality of our method is compa-
rable to the current state-of-the-art (including non-real-time methods) work and
even outperforms them in rendering highly reflective objects. We summarize our
contributions as follows:

• We propose a novel mesh geometry learner, allowing for robustly optimizing
mesh vertex positions and normals. This leads to high rendering quality with
relatively low mesh vertex and face numbers.

• We propose to use an environment feature map to model view-dependent
appearances of highly reflective objects, which enhances the capacity to re-
construct complex reflective appearances without increasing the inference
burden. This further enables relighting effects.

• Our rendering quality is on par with the current state-of-the-art methods
while being able to achieve real-time rendering across various platform de-
vices. Moreover, our method even surpasses the current non-real-time state-
of-the-art approaches in rendering objects with highly reflective appearances.

2 Related Work

NeRF-based Scene Representation: NeRF [33] and its derivative works [1–
3,41,44,46,53] have employed ray-marching based volume rendering methods to
achieve high-quality and realistic rendering of different types of objects in various
environments. Many follow-up works have extended NeRF in different aspects,
including dynamic scene modeling [36–38], 3D-aware generation [7,8,42], and se-
mantic scene understanding [11,24,65]. In this work, we focus on addressing two
limitations of NeRF, i.e., modeling of reflective objects and real-time rendering.
Reflectance Decomposition: A number of works [4, 5, 19, 43, 52, 59–64] in-
vestigate the task of inferring geometry and material properties based on neu-
ral fields representation, typically by formulating the image generation using
the physically-based rendering. Despite achieving lighting and material control,
these methods are typically inferior to state-of-the-art NeRF-based methods that
directly model the radiance in terms of the rendering quality. This is due to
the fact that these methods rely on simplified rendering equations of the real
world. Another line of works achieves better rendering quality by avoiding full
decomposition, yet allowing for modeling glossy objects by modeling the re-
flected radiance [14, 46, 56] or replacing the explicit rendering equation with a
learned neural renderer [6, 30]. However, none of these methods are capable of
real-time rendering due to the underlying volume rendering formulation. While

4 C.Ji et al.

Fig. 2: Pipeline for REFRAME. Components with a yellow background are either
baked or omitted during the mobile rendering stage. Training Stage: The initial mesh
is updated first before performing differentiable rasterization [26]. Next, we obtain the
diffuse color cd and specular feature fs based on the position p, and the environment
feature fe based on reflective direction ωr. Then we obtain the specular color cs and
combine it with cd to create the final full color c. Mobile Rendering Stage: We
bake the intermediate output for real-time rendering. This mesh-based rendering can
be implemented using WebGL and easily deployed on various platforms (e.g ., desktop
and mobile devices). Here, we retrieve the cd and fs from baked texture images, and
the fe from the environment feature map. cd and cs are processed the same as the
training stage to obtain c.

NvDiffRec [35] enables real-time rendering based on the mesh representation,
its quality is also limited by the full decomposition. In this work, we follow the
partial decomposition pipeline [46] and propose to learn a neural environment
map based on a NeRF-distilled mesh representation, with a focus on achieving
real-time rendering.
NeRF Acceleration: Accelerating NeRF rendering is another significant re-
search area, with approaches reducing sampling points along the ray [25,31,48],
tabulating the intermediate output [12, 16, 18, 49, 55, 58], using thousands of
small MLPs to represent the scene [10, 40], or utilizing super-resolution tech-
niques [28, 51]. However, these methods typically require consumer GPUs for
real-time rendering, making it challenging to deploy them on edge devices with
limited computational resources.

More recently, a few approaches [9, 45, 57] propose to distill a NeRF rep-
resentation into a mesh for real-time rendering, where MobileNeRF [9] and
NeRF2Mesh [45] enable real-time rendering on mobile devices. However, Mo-
bileNeRF [9] does not model the accurate geometry of the scene, leading to ex-
pensive memory costs with a large number of vertices and faces. NeRF2Mesh [45]

REFRAME 5

is the most relevant work to ours, which distills grid-based representation into
a mesh. The good geometry prior for NeRF2Mesh [45] leads to a relatively low
number of vertices and faces. However, none of the aforementioned methods
are capable of modeling highly reflective objects faithfully due to their way of
view-dependent color modeling. We propose to use a neural environment map to
tackle this challenge by modeling the reflected radiance. Furthermore, we pro-
pose to estimate a high-quality vertex normal, further reducing the number of
faces and vertices while maintaining the quality.

3 Method

The pipeline of our method is illustrated in Fig. 2. Before training, we employ
a volumetric rendering technique to obtain an initial coarse mesh similar to ex-
isting methods [9, 39, 45, 57]. During the training stage, we leverage a geometry
learner to update both the vertices and the vertex normals (Sec. 3.1). We further
learn a shader that decomposes diffuse and specular color (Sec. 3.2), where the
specular branch is designed to be able to model highly reflective surfaces by com-
bining view-independent specular features and reflective direction-conditioned
environment features. After training with loss functions introduced in Sec. 3.3, we
perform UV unwrapping and bake both view-independent and view-dependent
features to enable real-time rendering on various devices (Sec. 3.4).

More formally, let M = (V,F) denote the initial coarse mesh where V = {v ∈
R3} is the set of vertices and F is the set of faces. We further compute initial
vertex normals N = {nv ∈ R3} given the initial mesh. Let p ∈ R3 denote a
rendered surface point on the mesh, np ∈ R3 the corresponding normal, ωo ∈ S2
the viewing direction, and ωr ∈ S2 the reflective direction. During training, our
goal is to refine the mesh M, as well as map (p,ωr) to a color c ∈ R3 to enable
mesh-based real-time rendering.

3.1 Geometry Learner

Before training, we follow NeRF2Mesh [45] to extract the initial coarse mesh
through grid-based representation [34]. This allows for better modeling of depth
discontinuities in geometry [50] and prevents the optimization of mesh geometry
from getting stuck in local optima. Then, we propose to leverage a geometry
learner to refine the geometry of the initial coarse mesh, including refining the
vertex positions and normals.
Vertex Offset: As shown in Fig. 3, the initial mesh extracted from NeRF-based
methods may be of low quality. Existing methods [45,54] directly update the ver-
tex positions through gradient backpropagation, which means the vertex update
step size is determined by the learning rate and the gradient backpropagated.
Thus, costly and difficult manual learning rate tuning is needed to adapt update
step sizes for different objects, with a lack of robustness as shown in our exper-
iments. To address this, our method uses a hybrid representation to provide a

6 C.Ji et al.

(a) Initial normal. (b) Optimized normal. (c) Initial mesh. (d) Optimized mesh.

Fig. 3: Mesh Optimization. The geometry of the initial mesh is often poor. We are
able to significantly improve the geometry of the mesh through geometry learner.

learned, adaptive step size for different vertices and different objects:

v′ = v +∆v, ∆v = gθv(v) (1)

where v′ is the updated vertex, gθv is a multi-resolution hash encoding in com-
bined with a small MLP [34]. Though [47] also uses MLP for vertex offset learn-
ing, our coarse-to-fine hybrid representation allows us to leverage local informa-
tion as well as global information, leading to better modeling of the geometry.
Normal Offset: Our method relies on surface normals to estimate the reflection
direction ωr to model view-dependent appearance. Following the classical idea
of smooth shading, we leverage smoothly interpolated vertex normals to approx-
imate our surface normal. Obtaining accurate vertex normals is yet challenging,
especially when the number of faces is limited. Hence, we learn a per-vertex
normal offset by taking v and nv as input:

n′
v = nv +∆nv, ∆nv = gθn(v,nv) (2)

where n′
v is the learned per-vertex normal and gθn is another multi-resolution

hash encoding-based network. In the experimental section, we demonstrate that
learning such a per-vertex normal allows for modeling more accurate surface
normals without increasing the number of vertices and faces. Note that gθv and
gθn are only used during training, as we can directly save the updated vertices
v′ and normals n′

v for real-time rendering.

3.2 Color Formulation

We decompose the final color c into a diffuse color cd and a specular one cs:

c = min(max(cd + cs, 0), 1) (3)

where cd+ cs is clamped to [0, 1], both individual terms cd and cs from sigmoid
are in [0,1]. We now elaborate on the diffuse and specular color formulation.
Diffuse Color Formulation: With the updated mesh M′ = (V ′,N ′,F), we
perform differentiable rasterization [26] to obtain the position p corresponding

REFRAME 7

to each pixel. Subsequently, p is mapped to a diffuse color cd ∈ R3 and a view-
independent feature fs ∈ R3 which will be used later for decoding specular color:

cd, fs = fϕ(p) (4)

While the number of channels of fs is flexible, we observe that such a compact
three-channel representation is sufficient for our purpose.
Specular Color Formulation: Recent non-real-time methods [14, 46, 56] pro-
pose to model view-dependent color based on the reflective direction ωr, instead
of the viewing direction used by NeRF. This approach has been shown to effec-
tively model reflective surfaces. Motivated by these methods, we calculate the
reflective direction as follows:

ωr = 2(ωo · np)np − ωo (5)

where np is smoothly interpolated surface normal at p based on our learned
vertex normal n′

v. Next, the specular color can be obtained as follows:

cs = fψ(fs,ωr, (ωo · np)) (6)

where (ωo · np) is considered as input to model the Fresnel effects [21] and fψ
needs to be a tiny MLP to enable real-time rendering.
Environment Learner: In practice, we observe that naïvely mapping the re-
flective viewing direction to specular color (see Eq. (6)) leads to unsatisfying per-
formance due to the capacity limitation of the tiny MLP fψ. For a similar reason,
Ref-NeRF adopts an 8-layer MLP to map fs and ωr to the view-dependent color.
However, increasing the capacity of fψ hampers the real-time rendering capabil-
ity. Therefore, instead of increasing the capacity of fψ, we propose to leverage
a neural environment learner of large capacity that maps ωr to an environment
feature fe ∈ RM (M=3 in our paper):

fe = fe(γ(ωr)) (7)

where γ(·) denotes positional encoding and fe is a 4-layer MLP. This leads to
our final implementation of the specular color:

cs = fψ(fs, fe, (ωo · np)) (8)

Note that fe can be baked into a two-dimensional neural environment feature
map for real-time rendering as it solely depends on ωr.
Scene Editing: REFRAME can decouple geometry, diffuse and specular color,
so we can perform simple scene editing tasks. For example, we can edit the
geometry and appearance of objects by modifying the mesh or texture image.
Additionally, we can perform relighting on the objects by modifying the envi-
ronment feature map of the scene, as shown in Fig. 4.

8 C.Ji et al.

(a) Orginal image. (b) Flip lighting. (c) Change lighting.

Fig. 4: Relighting. We can achieve relighting of objects by editing our environment
feature map. The image illustrates the editing process of flipping or replacing the
environmental feature map. The left side shows the rendering result, the top right
corner presents the corresponding environment feature map, and the specular color is
displayed in the bottom right corner.

3.3 Loss Functions

We train our model based on image reconstruction loss and several regularization
terms. At each iteration, we render a full image and train with the corresponding
ground truth. Let ĉ denote the ground truth RGB value at one pixel. We op-
tionally use ground truth binary mask for supervision at synthetic object-centric
scenes. Our full loss function is shown in Eq. (9):

L =λcLc + λcd
Lcd

+ λSSIMLSSIM+

λmaskLmask + λ∆nvL∆nv + λmaxLmax
(9)

Image Reconstruction Loss: Our model is first supervised by the L2 loss
between the final rendered color and the ground truth.

Lc = ||c− ĉ||2 (10)

To encourage the correct decoupling of diffuse and specular colors, we add a
diffuse loss to guide the diffuse color to be close to the ground truth color:

Lcd
= ∥cd − ĉ∥2 (11)

We also introduce SSIM [17] loss for better perceptual quality. On object-
centric datasets, we additionally utilize mask loss to ensure the rasterization
mask closely aligns with the ground truth mask. Note that the mask loss is
optional and is not required on unbounded datasets.
Regularizations: We regularize the predicted vertex normal n′

v to be close to
the original vertex normal nv computed from the mesh. This allows for stabi-
lizing the optimization of the vertex normals, e.g ., avoid completely flipping the
normal. This is achieved by regularizing the magnitude of the normal offset:

L∆nv = ||∆nv||1 (12)

We introduce another regularization to encourage the specular color cs to be
reasonable when visualized alone. As shown in Eq. (3), the final color c will be

REFRAME 9

clamped when the sum of specular color cs and diffuse color cd exceeds 1. In
this case, the gradient is truncated due to the clamp operation, preventing the
backpropagation from updating the color values. This may leave an undesired
large specular color cs with no penalization. Therefore, we encourage the sum
of specular color and diffuse color to not exceed 1:

Lmax = ||max(cd + cs − 1, 0)|| (13)

3.4 Real-Time Rendering

Environment Feature Map: During the training process, we employ a four-
layer MLP with a width of 256 as our environment learner. If we query fe through
the environment learner module during the inference process, it would signifi-
cantly slow down the inference speed. Hence, during the inference phase, we
bake the learned environment feature fe into a 2D environment feature map by
converting ωr ∈ S2 to its polar coordinate, see supplementary for more details.
This allows us to simply query the corresponding feature on the environment fea-
ture map based on ωr, thereby greatly accelerating our inference speed, reaching
above 200 FPS on a single NVIDIA 3090 GPU.
Texture Images: To further reduce the inference burden and better deploy our
method across different platforms, we can also bake the cd and fs obtained from
querying the fϕ into two texture images. Specifically, we map the vertices of the
mesh to UV coordinates and then bake the features into two texture images,
respectively. In order to obtain the normal np from the learned normal vector
n′
v during real-time rendering, we also bake the normal np into a texture image.

4 Experiment

Implementation Details. Training: Prior to the training stage, we employ the
classic quadric error metrics algorithm [13] to simplify the initial mesh to 75,000
faces except for the outdoor scenes which typically have complex geometry. We
train for 250 epochs on each scene, with a training time of approximately 2 hours.
We utilize the Adam optimizer [23] and employ the cosine annealing learning rate
adjustment strategy [32] during the training stage. Rendering: The resolution
of our baked texture image is 4096 × 4096, and the resolution of the baked
environment feature map is 720 × 360. As referenced in Sec. 3.4, once we have
baked the environment learner into the environment feature map, our approach is
already capable of achieving above 200 FPS on the GPU (referred to as Ours).
This implementation ensures a fair comparison with the baselines since their
results quoted are evaluated using GPU implementation that can not directly
deploy on mobile devices. Given that we use texture images for rendering when
implemented on mobile devices, we also employ texture images on the GPU for
quality evaluation (referred to as Ours (Mobile)). Following NeRF2Mesh [45] and
MobileNeRF [9], we employ anti-aliasing to enhance our rendering quality. For
details on the implementation of anti-aliasing, please refer to the supplementary
material. All experiments are performed on a single NVIDIA 3090 GPU.

10 C.Ji et al.

NeRF Synthetic Dataset Shiny Blender Dataset Real Captured Dataset
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [33] 31.01 0.947 0.081 - - - - - -
Ref-NeRF [46] 33.99 0.966 0.038 35.96 0.967 0.058 24.45 0.665 0.142

3DGS [22] 33.30 0.969 0.030 30.37 0.947 0.083 24.06 0.661 0.259
NvDiffRec [35] 29.05 0.939 0.081 29.05 0.938 0.111 - - -
MobileNeRF [9] 30.90 0.947 0.062 26.62 0.883 0.163 22.96 0.493 0.430
NeRF2Mesh [45] 29.67 0.940 0.072 26.96 0.896 0.170 22.71 0.523 0.419

Ours 31.04 0.961 0.040 36.02 0.983 0.040 22.50 0.598 0.325
Ours (Mobile) 30.84 0.959 0.042 35.83 0.981 0.041 22.11 0.524 0.423

Table 1: Rendering Quality. Baseline comparisons of the rendering quality on three
different datasets. Red represents the optimal, orange represents the second best, and
yellow represents the third.

Dataset. We validate the effectiveness and robustness of our method using three
different datasets with varied scenes. 1) NeRF [33] Synthetic Dataset: This
dataset consists of eight synthetic scenes. 2) Shiny Blender Dataset: This
dataset is introduced by Ref-NeRF [46] and includes six glossy objects, serving
as the primary dataset for assessing the reflective surface modeling capabilities of
the methods. 3) Real Captured Dataset: We select three outdoor scenes with
rich reflective appearances same as Ref-NeRF [46] to validate the effectiveness
of our method in real-world outdoor capture scenarios. Due to the poor quality
of the initial mesh extracted by Nerf2Mesh [45] when modeling glossy objects,
we utilize the meshes extracted by Neuralangelo [29] and Ref-NeuS [14] as our
initialization in certain scenes, see supplementary for more details.
Baseline. We compare with various types of baselines, including Ref-NeRF [46],
3DGS [22], NvDiffRec [35], MobileNeRF [9], and NeRF2Mesh [45] in our study.
Ref-NeRF [46] serves as the state-of-the-art volume rendering method for han-
dling the strong reflective appearance. 3DGS [22] represents a powerful new rep-
resentation capable of real-time rendering on GPU. NvDiffRec [35] represents
physically based rendering methods. MobileNeRF [9], and NeRF2Mesh [45] are
representative works in the field of real-time rendering for mobile devices. We
import the results of the baselines from their original paper and replicate the
results that missing in their original paper.

4.1 Reconstruction Quality

Rendering Quality. We compare the rendering quality of our method and
baseline methods on three datasets, see Tab. 1. It is worth noting that Ref-
NeRF [46] is the state-of-the-art method for modeling glossy objects but cannot
achieve real-time rendering, even on high-end GPU. We introduce Ref-NeRF [46]
as a benchmark for rendering quality and demonstrate that our method achieves
comparable or even superior rendering quality to non-real-time state-of-the-art
methods. While 3DGS [22] can render in real-time on GPU and has higher PSNR
on both NeRF Synthetic and Real Captured dataset than ours, it’s important

REFRAME 11

C
a
r

H
e
lm

e
t

T
o
a
s
te

r
NvDiffRec MobileNeRF NeRF2Mesh Ours Ground Truth

Fig. 5: Rendering Quality on Shiny Blender Dataset. Our method achieves
optimal rendering quality in most scenes and provides better modeling of reflective
appearance compared to the comparison methods [9, 35,45].

to note that 3DGS struggles to model reflective surfaces effectively (Fig. 6a).
Moreover, they have a larger memory overhead than us. E.g ., for gardenspheres,
the memory cost for 3DGS is 1.4GB, whereas our method only requires 84.3MB.

In comparison to mesh-based real-time rendering methods [9, 35, 45], we
achieve optimal rendering quality in most object-centric datasets, as shown
in Fig. 5. Despite having mask supervision on object-centric datasets as well,
NvDiffRec [35] and NeRF2Mesh [45] struggle to achieve high rendering quality.
This could be due to the fact that NvDiffRec relies on the simplified render-
ing equation, whereas NeRF2Mesh’s simple color formulation struggles to model
highly reflective objects. Note that NeRF2Mesh also requires an initial mesh in
its second stage, and we provide NeRF2Mesh with the same initial mesh as ours
for all experiments for a fair comparison.

In unbounded outdoor scenes without masks, our method still achieves high-
quality rendering, as demonstrated in Fig. 6a. Although our PSNR may be
slightly lower compared to the baselines, we outperform them in rendering fore-
ground glossy objects. However, this advantage is not accurately reflected in the
PSNR metric since the foreground reflective objects occupy only a small region
in the image. Further, our method mainly exhibits artifacts in the background,
this is due to the fact that the initial mesh can only faithfully reconstruct the
foreground but not the background, see supplementary for more details.

Surface Quality. Furthermore, we observe that our method not only improves
the rendering quality when modeling glossy objects but also generates more
accurate meshes, as shown in Fig. 6b. It can be seen that the meshes obtained
from [35,45] often have poor quality in the reflective region while our method is
capable of accurately reconstructing the geometry.

12 C.Ji et al.

(a) Rendering Quality on Real
Captured Dataset. (b) Surface Quality on NeRF Synthetic Dataset.

Fig. 6: Qualitative Comparison. Compared to the baselines, our method recon-
structs reflective regions of higher fidelity and yields more accurate surface geometry.

MacBook Pro iPhone12 iPad Air3 Legion Y-7000 HUAWEI nova7
MobileNeRF [9] 120.00 60.00 60.00 55.31 39.19
NeRF2Mesh [45] 120.00 60.00 60.00 48.69 32.56
Ours (Mobile) 120.00 60.00 60.00 48.50 31.71

Table 2: Computational Efficiency Comparison. We test the FPS of our method
and the baseline methods [9, 45] on the NeRF Synthetic dataset across multiple de-
vices. On MacBook Pro, iPhone 12, and iPad Air3, both our method and the baseline
methods [9, 45] achieve the maximum screen refresh rate.

4.2 Rendering Efficiency

Computational efficiency. During the mobile rendering stage, the bottleneck
of our rendering speed lies in querying the tiny MLP fψ to obtain the specular
color. However, due to our MLP being only two layers with 64 widths, our
rendering speed remains relatively fast. Therefore, our method achieves real-
time rendering on both consumer GPUs and mobile devices. We compare the
rendering speed with the baselines [9,45] that can render in real-time on mobile
devices across multiple platform devices, as seen in Tab. 2.
Memory efficiency. Our cache mainly consists of texture images, the environ-
ment feature map, and the mesh. Due to our high-quality estimation of vertex
normals, our mesh can achieve high-quality rendering with a low number of ver-
tices and faces, leading to a small cache size in most scenes, as shown in Tab. 3.

4.3 Ablation Study

Geometry Learner. [54] and [45] utilize direct gradient backpropagation
to update the vertex positions of the mesh. We employ this update strategy
in our method and verify that this update method lacks robustness. Directly
using the backpropagated gradients to update the vertex positions can lead to a
devastating blow to the mesh, especially when using a large learning rate. This

REFRAME 13

NeRF Synthetic Dataset Shiny Blender Dataset
#V (103) #F (103) Cache #V (103) #F (103) Cache

MobileNeRF [9] 494 224 125.75 1028 343 152.37
NeRF2Mesh [45] 200 192 73.53 45 91 22.15
Ours (Mobile) 37 75 47.55 38 75 52.86

Table 3: Memory Efficiency. While exhibiting higher quality, our method maintains
a relatively low memory consumption compared to baselines. Cache reported in MB.

w/o gθv Ours
L=0.001 L=0.0001 L=0.001

Toaster 17.01 17.01 24.95
Materials 23.01 29.06 29.58

Table 4: Ablation of Vertex Offset
Learning. L represents the learning rate.
Reported in PSNR.

w/o ∆nv Ours

Toaster
#F=10k 24.24 24.62
#F=75k 24.55 24.95

Materials
#F=10k 27.69 28.23
#F=75k 29.46 29.58

Table 5: Ablation of Normal Offset
Learning. Reported in PSNR.

significantly compromises the rendering quality, as shown in Tab. 4. Additionally,
different datasets require different learning rates, as indicated in Tab. 4. While
a learning rate of 0.0001 works fine for the materials dataset, it performs poorly
on the toaster dataset. In contrast, our vertex update strategy not only exhibits
robustness across different datasets but also provides higher rendering quality.

In order to verify the necessity of estimating an offset for the vertices normal,
we conduct experiments with the w/o normal offset setting. In this setting, we
do not estimate a normal offset for each vertex, but we still compute an updated
normal based on the updated vertex positions. As shown in Tab. 5, introducing
per-vertex normal offset provides a gain in reconstruction quality. This gain is
particularly significant when the number of faces is low. Notably, in the case
of the toaster dataset, a mesh with 10k faces with normal offset even achieves
rendering quality surpassing that of a mesh with 75k faces without normal offset.
Environment Learner. To validate the effectiveness of the environment learner
fe, we directly input ωr values into the tiny MLP fψ as shown in Eq. (6), similar
to [9] and [45], except they use viewing direction instead of reflective direction.
Experimental results demonstrate that directly inputting ωr into the tiny MLP
fψ cannot learn the correct reflection appearance as a result of the limited net-
work’s capacity, as depicted in Fig. 7. Therefore, introducing the environment
learner module improves the reconstruction quality without compromising the
inference speed, as demonstrated in Tab. 6.
Environment Feature Map: We can directly optimize an environment fea-
ture map instead of learning it through the environment learner module and
baking it. However, as shown in Tab. 7, the direct optimization of the envi-
ronment feature map performs poorly when the map resolution is high. This is
because, at higher resolutions, neighboring directions are mapped to distant grid
points, leading to a non-smooth interpolation. As a result, the grid points can-

14 C.Ji et al.

(a) w/o fe (b) Ours (c) Ground Truth

Fig. 7: Ablation of Environment Learner. Elimi-
nating fe results in bad rendering quality.

w/o fe Ours
Toaster 19.31 24.95

Materials 27.37 29.58

Table 6: Ablation of Envi-
ronment Learner. Reported
in PSNR.

Resolutions Ours Directly optimization
H*W PSNR Cache(KB) PSNR Cache(KB)

Toaster
180*360 24.86 49 24.16 91
900*1800 24.96 504 23.59 2460

Materials
180*360 29.55 63 29.58 114
900*1800 29.58 706 29.03 3000

Table 7: Ablation of Environment Feature Map. Our method outperforms in
both cache size and rendering quality.

not share global information and only contain its own local information. On the
other hand, when the resolution is too low, the rendering quality is limited by
the capacity of the environment feature map. In contrast, our method exhibits
good rendering quality across different resolutions by learning the environment
feature map via an MLP. Additionally, our environment feature maps enjoy the
smoothness bias of the MLP, resulting in relatively smooth tensor maps. Con-
sequently, when saving images in PNG format, our method demonstrates good
compression performance. This further reduces the overhead of our caching.

5 Conclusion

Although our method successfully models the appearance of glossy objects, sim-
ilar to Ref-NeRF [46], it still struggles with accurately modeling interreflections
and non-distant illumination. Additionally, our method requires a certain level
of quality in the initial mesh.

In summary, our method achieves real-time rendering on edge devices with
low hardware budgets. Besides, we propose a novel approach for modeling view-
dependent appearance and can optimize the appearance and geometry of glossy
objects with high computational efficiency and low memory footprint. Further-
more, by effectively decoupling the scene’s geometry, appearance, and environ-
mental information, our method can perform simple scene editing tasks.

Acknowledgements

This work is supported by NSFC under grant 62202418 and U21B2004. We thank
Xiaoran Cao, Chenxi Tu, and Sicheng Li for their valuable discussions.

REFRAME 15

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5855–5864 (2021)

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–
5479 (2022)

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf:
Anti-aliased grid-based neural radiance fields. arXiv preprint arXiv:2304.06706
(2023)

4. Bi, S., Xu, Z., Srinivasan, P., Mildenhall, B., Sunkavalli, K., Hašan, M., Hold-
Geoffroy, Y., Kriegman, D., Ramamoorthi, R.: Neural reflectance fields for ap-
pearance acquisition. arXiv preprint arXiv:2008.03824 (2020)

5. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: Nerd:
Neural reflectance decomposition from image collections. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 12684–12694 (2021)

6. Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J., Lensch, H.: Neural-pil:
Neural pre-integrated lighting for reflectance decomposition. Advances in Neural
Information Processing Systems 34, 10691–10704 (2021)

7. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo,
O., Guibas, L.J., Tremblay, J., Khamis, S., et al.: Efficient geometry-aware 3d
generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16123–16133 (2022)

8. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
5799–5809 (2021)

9. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile
architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 16569–16578 (2023)

10. Esposito, S., Baieri, D., Zellmann, S., Hinkenjann, A., Rodola, E.: Kiloneus: A ver-
satile neural implicit surface representation for real-time rendering. arXiv preprint
arXiv:2206.10885 (2022)

11. Fu, X., Zhang, S., Chen, T., Lu, Y., Zhu, L., Zhou, X., Geiger, A., Liao, Y.:
Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation. In:
2022 International Conference on 3D Vision (3DV). pp. 1–11. IEEE (2022)

12. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14346–14355 (2021)

13. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
Proceedings of the 24th annual conference on Computer graphics and interactive
techniques. pp. 209–216 (1997)

14. Ge, W., Hu, T., Zhao, H., Liu, S., Chen, Y.C.: Ref-neus: Ambiguity-reduced neu-
ral implicit surface learning for multi-view reconstruction with reflection. arXiv
preprint arXiv:2303.10840 (2023)

16 C.Ji et al.

15. Guo, Y.C., Cao, Y.P., Wang, C., He, Y., Shan, Y., Zhang, S.H.: Vmesh: Hybrid
volume-mesh representation for efficient view synthesis. In: SIGGRAPH Asia 2023
Conference Papers. pp. 1–11 (2023)

16. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Bak-
ing neural radiance fields for real-time view synthesis. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5875–5884 (2021)

17. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th international
conference on pattern recognition. pp. 2366–2369. IEEE (2010)

18. Hu, T., Liu, S., Chen, Y., Shen, T., Jia, J.: Efficientnerf efficient neural radiance
fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 12902–12911 (2022)

19. Jin, H., Liu, I., Xu, P., Zhang, X., Han, S., Bi, S., Zhou, X., Xu, Z., Su, H.:
Tensoir: Tensorial inverse rendering. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 165–174 (2023)

20. Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th annual conference
on Computer graphics and interactive techniques. pp. 143–150 (1986)

21. Kautz, J., McCool, M.D.: Approximation of glossy reflection with prefiltered envi-
ronment maps. In: Graphics Interface. vol. 2000, pp. 119–126 (2000)

22. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Kundu, A., Genova, K., Yin, X., Fathi, A., Pantofaru, C., Guibas, L.J., Tagliasac-
chi, A., Dellaert, F., Funkhouser, T.: Panoptic neural fields: A semantic object-
aware neural scene representation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12871–12881 (2022)

25. Kurz, A., Neff, T., Lv, Z., Zollhöfer, M., Steinberger, M.: Adanerf: Adaptive sam-
pling for real-time rendering of neural radiance fields. In: Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part XVII. pp. 254–270. Springer (2022)

26. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
(TOG) 39(6), 1–14 (2020)

27. Li, C., Li, S., Zhao, Y., Zhu, W., Lin, Y.: Rt-nerf: Real-time on-device neural
radiance fields towards immersive ar/vr rendering. In: Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design. pp. 1–9 (2022)

28. Li, S., Li, H., Wang, Y., Liao, Y., Yu, L.: Steernerf: Accelerating nerf rendering
via smooth viewpoint trajectory. arXiv preprint arXiv:2212.08476 (2022)

29. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-fidelity neural surface reconstruction. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8456–
8465 (2023)

30. Liang, R., Chen, H., Li, C., Chen, F., Panneer, S., Vijaykumar, N.: Envidr:
Implicit differentiable renderer with neural environment lighting. arXiv preprint
arXiv:2303.13022 (2023)

31. Lin, H., Peng, S., Xu, Z., Yan, Y., Shuai, Q., Bao, H., Zhou, X.: Efficient neu-
ral radiance fields for interactive free-viewpoint video. In: SIGGRAPH Asia 2022
Conference Papers. pp. 1–9 (2022)

32. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

REFRAME 17

33. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

34. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–
15 (2022)

35. Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W., Evans, A., Müller, T.,
Fidler, S.: Extracting triangular 3d models, materials, and lighting from images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8280–8290 (2022)

36. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5865–5874 (2021)

37. Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-
Brualla, R., Seitz, S.M.: Hypernerf: A higher-dimensional representation for topo-
logically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

38. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural ra-
diance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10318–10327 (2021)

39. Rakotosaona, M.J., Manhardt, F., Arroyo, D.M., Niemeyer, M., Kundu, A.,
Tombari, F.: Nerfmeshing: Distilling neural radiance fields into geometrically-
accurate 3d meshes. arXiv preprint arXiv:2303.09431 (2023)

40. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14335–14345 (2021)

41. Rematas, K., Liu, A., Srinivasan, P.P., Barron, J.T., Tagliasacchi, A., Funkhouser,
T., Ferrari, V.: Urban radiance fields. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12932–12942 (2022)

42. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields
for 3d-aware image synthesis. Advances in Neural Information Processing Systems
33, 20154–20166 (2020)

43. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.:
Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 7495–7504 (June 2021)

44. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Bar-
ron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8248–8258 (2022)

45. Tang, J., Zhou, H., Chen, X., Hu, T., Ding, E., Wang, J., Zeng, G.: Delicate
textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint
arXiv:2303.02091 (2023)

46. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.:
Ref-nerf: Structured view-dependent appearance for neural radiance fields. In: 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
5481–5490. IEEE (2022)

47. Walker, T., Mariotti, O., Vaxman, A., Bilen, H.: Explicit neural surfaces: Learn-
ing continuous geometry with deformation fields. arXiv preprint arXiv:2306.02956
(2023)

18 C.Ji et al.

48. Wang, H., Ren, J., Huang, Z., Olszewski, K., Chai, M., Fu, Y., Tulyakov, S.: R2l:
Distilling neural radiance field to neural light field for efficient novel view synthesis.
In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXI. pp. 612–629. Springer (2022)

49. Wang, L., Zhang, J., Liu, X., Zhao, F., Zhang, Y., Zhang, Y., Wu, M., Yu, J., Xu, L.:
Fourier plenoctrees for dynamic radiance field rendering in real-time. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 13524–13534 (2022)

50. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689 (2021)

51. Wang, Z., Li, L., Shen, Z., Shen, L., Bo, L.: 4k-nerf: High fidelity neural radiance
fields at ultra high resolutions. arXiv preprint arXiv:2212.04701 (2022)

52. Wang, Z., Shen, T., Gao, J., Huang, S., Munkberg, J., Hasselgren, J., Gojcic,
Z., Chen, W., Fidler, S.: Neural fields meet explicit geometric representations for
inverse rendering of urban scenes. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 8370–8380 (2023)

53. Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman,
I.: Humannerf: Free-viewpoint rendering of moving people from monocular video.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
Recognition. pp. 16210–16220 (2022)

54. Worchel, M., Diaz, R., Hu, W., Schreer, O., Feldmann, I., Eisert, P.: Multi-
view mesh reconstruction with neural deferred shading. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6187–
6197 (2022)

55. Wu, L., Lee, J.Y., Bhattad, A., Wang, Y.X., Forsyth, D.: Diver: Real-time and
accurate neural radiance fields with deterministic integration for volume rendering.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 16200–16209 (2022)

56. Wu, T., Sun, J.M., Lai, Y.K., Gao, L.: De-nerf: Decoupled neural radiance fields for
view-consistent appearance editing and high-frequency environmental relighting.
In: ACM SIGGRAPH 2023 Conference Proceedings. pp. 1–11 (2023)

57. Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T., Mildenhall, B.: Bakedsdf: Meshing neural sdfs for real-time view synthesis.
arXiv preprint arXiv:2302.14859 (2023)

58. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time
rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 5752–5761 (2021)

59. Zhang, J., Yang, G., Tulsiani, S., Ramanan, D.: Ners: Neural reflectance surfaces
for sparse-view 3d reconstruction in the wild. Advances in Neural Information
Processing Systems 34, 29835–29847 (2021)

60. Zhang, J., Yao, Y., Li, S., Liu, J., Fang, T., McKinnon, D., Tsin, Y., Quan, L.:
Neilf++: Inter-reflectable light fields for geometry and material estimation. arXiv
preprint arXiv:2303.17147 (2023)

61. Zhang, K., Luan, F., Li, Z., Snavely, N.: Iron: Inverse rendering by optimizing neu-
ral sdfs and materials from photometric images. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5565–5574 (2022)

62. Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: Physg: Inverse rendering with
spherical gaussians for physics-based material editing and relighting. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 5453–5462 (2021)

REFRAME 19

63. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.:
Nerfactor: Neural factorization of shape and reflectance under an unknown illumi-
nation. ACM Transactions on Graphics (ToG) 40(6), 1–18 (2021)

64. Zhang, Y., Sun, J., He, X., Fu, H., Jia, R., Zhou, X.: Modeling indirect illumination
for inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 18643–18652 (June 2022)

65. Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.J.: In-place scene labelling and
understanding with implicit scene representation. In: ICCV (2021)

	REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices

