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In this document, we provide additional information that complements our
main manuscript, serving as supplementary material.

1 Projection Function π(·)

The projection function π(·), as presented in Eq. 2 in our main manuscript,
stands as the camera-model projection function that projects the outputs’ model
into Euclidean space. This projection can defined as follows:

yi = π(fΘ(Ii),Ti), (1)

Where, fΘ(Ii) is the estimation of a model with Θ parameters, Ii is the in-
put panoramic image, and Ti is the corresponding camera pose. Note that π(·)
function is defined differently for each layout model since each layout model has
different geometry representations.

In the case of HorizonNet [5], the projection function presented in Eq. (1)
can be described as follows:

fΘ(Ij) = {(ϕi, θi)}i=1:W , (2)

B = {bi} =


hj cotϕi sin θi

hj

hjcotϕi cos θi


i=1:W

, (3)

yj = concat({Rjbi + tj}i=1:W ), yj ∈ R3×W (4)

where (ϕi, θi) represents the layout estimation parametrized in spherical coordi-
nates, B stands as a set of Euclidean points bi computed from each pair (ϕi, θi)
with hj as the camera height to the floor, and Rj ∈ SO(3) with tj ∈ R3 as he
rigid transformation in world coordinates.

In the case of LGTNet, the layout prediction as a set of horizon-depth values
can be presented as follows:

fΘ(Ij) = {di}i=1:W , (5)
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R = {ri}i=1:W , ri ∈ R3 , |ri| = 1, (6)

yj = concat({diRjri + tj}i=1:W ) + [0, hj , 0]
⊤, (7)

where {di} is a set of scalar values that represent the distance from the camera
view to the layout geometry, R is a set of ray vectors ri in BEV, hj is the
camera height to the floor, and Rj ∈ SO(3) with tj ∈ R3 represent the rigid
transformation in world coordinates.

2 Impact of the Layout Model Backbone

In this section, we present evidence that our proposed self-training framework
can effectively leverage a better backbone model unlike the baseline 360-MLC [4].

To be specific, when adopting a stronger model for room layout estimation,
e.g., LGTNet [2], the pseudo-label errors computed by 360-MLC produce less de-
sirable estimations than the ones using HorizonNet [5], particularly for occluded
geometries. This evidence can be verified in Tab. 2 and Tab. 3 in our main
manuscript, where 360-MLC shows a drastic drop in performance in the occlu-
sion subset when using the LGTNet backbone, e.g., from 79.19% 2D IoU using
HorizonNet (Tab. 2, row 2, column 6) to 71.29% in the case of using LGTNet
(Tab. 3, row 2, column 5).

To further corroborate this evidence, in Fig. 1, we present qualitative results
of 360-MLC using both proposed backbone models, HorizonNet and LGTNet.
Notably, we observe that 360-MLC drastically decreases performance when using
the LGTNet model. In contrast, our proposed self-training framework effectively
leverage the stronger LGTNet model showing substantial difference to the base-
line and corroborating our finding in Tab. 2 and Tab. 3 in our main manuscript.
Based on these results, we assert that our proposed formulation can generalize
well and achieve consistently better results when using a stronger base model in
compassion to the 360-MLC [4] approach.

3 Cross-domain Evaluation

Table 1: Cross-domain Evaluation Experiment.

Testing set Occlusion Subset
Method 2D IoU ↑ 3D IoU ↑ 2D IoU ↑ 3D IoU ↑

pre-trained on ZIND 67.66 63.95 70.75 69.38
Ours 73.55 70.01 78.45 77.20

In Tab. 1, we evaluate our solution under a cross-domain setting by using a
pre-trained HorizonNet [5] on the ZInD dataset [1] to create pseudo-labels and
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then self-train on HM3D-MVL. We find that our proposed strategy still improves
over the pre-trained model and reduces domain gaps despite the severe difference
in the data domain.

4 Evaluations on Occluded Geometries

To evaluate our claim that our solution particularly addresses occluded geome-
tries, we compute 2D-IoU only for occluded regions per image view. Results show
that our solution significantly outperforms the baseline 360-MLC [4] across all
datasets. These results are presented in Tab. 2.

Table 2: Evaluation on Occluded Geometries.

Only on occluded regions - 2D IoU (%)
Method HM3D-MVL MP3D-FPE ZInD

360-MLC [17] 76.03 75.97 74.88
Ours 84.31 83.18 79.63

5 Extended Ablation Study

We extend the ablation study presented in our manuscript by evaluating several
pseudo-labels using different δr values in the HM3D-MVL testing split. Results
show that our ray-casting is robust to a large δr range using the median function
as a sampler. We argue that sampling along several positions and directions
across the scene is the key component to handling the influence of the occluded
casting points. Results are presented in Tab. 3.

Table 3: Ablation Study over δr hyper-parameter.

2D IoU (%)
Sampler δr = 10 δr = 20 δr = 30 δr = 50

Mean 77.39 78.39 78.11 78.07
Median 81.04 82.76 82.16 82.16

Additionally, to complement the ablation study presented in Table 4 of our
manuscript, we present results using 100% of the data with two backbone models.
This ablation validates the effectiveness of the proposed components. Results are
presented in Tab. 4.
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Table 4: Extended Ablation Study.

Testing set Occlusion Subset
Method 2D IoU ↑ 3D IoU ↑ 2D IoU ↑ 3D IoU ↑

HorizonNet [5] - 100% data

pre-trained 76.71 71.79 78.74 75.72
Pseudo-labels 82.72 77.80 81.78 79.84
ω = σ−1 81.98 77.50 81.67 79.95
ω = Eq.(11) 82.99 78.95 83.01 81.38

LGTNet [2] - 100% data

pre-trained 78.90 74.04 80.22 78.10
Pseudo-labels 84.11 79.65 81.96 80.43
ω = σ−1 83.10 78.43 82.01 81.87
ω = Eq.(11) 86.49 81.90 83.75 82.06

6 Layout Results on Panoramic View

To further corroborate the effectiveness of our proposed self-training framework,
we present in Fig. 2 and Fig. 3 qualitative results on MP3D-FPE [3] and HM3D-
MVL datasets, respectively. These results complement the results in Fig. 7 pre-
sented in our main manuscript. Moreover, we show evaluations using both back-
bone models, i.e., HorizonNet [5] in panel (a), and LGTNet [2] in panel (b).

Based on the results of these experiments, we find evidence that the proposed
self-training framework with ray-casting pseudo labels significantly outperforms
360-MLC in both datasets using both backbone models.

7 Pseudo-labels on BEV

In this experiment, we aim to validate our claim that the proposed multi-cycle
ray-casting pseudo-labeling is capable of handling complex geometry scenes. For
this purpose, we significantly extend the qualitative results presented in Fig. 5
in our main manuscript by projecting pseudo-label geometries in BEV of several
complex scenes.

The results are shown in Fig. 4, where the first column displays layout es-
timates from a pre-trained HorizonNet [5] model, the second column shows all
pseudo-labels computed by 360-MLC [4], the third column depicts all pseudo-
labels of our proposed solution using the HorizonNet backbone, the fourth col-
umn shows ours pseudo-labels of using the LGTNet backbone, and the last
column serves as a reference with the point cloud of the scene.

Based on these results, we can assert that our proposed ray-casting pseudo-
labeling significantly outputs a less noisy room geometry compared with 360-
MLC, showing consistency along all pseudo-labels in the scene. Furthermore,
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our proposed solution demonstrates proficiency in handling complex geometries,
showing the versatility of our contribution.
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(a)

(b)

(c)

360-MLC [4] with different backbone models in the MP3D-FPE [3] dataset.

Ours using LGTNet [2] backbone model in the MP3D-FPE [3] dataset.

(a)

(b)

(c)

360-MLC [4] with different backbone models in our HM3D-MVL dataset.

Ours using LGTNet [2] backbone model in our HM3D-MVL dataset.

Fig. 1: Impact of a strong backbone model. We present qualitative results of
self-training using HorizonNet [5] and LGTNet [2] backbone models. Estimations are
presented in magenta, while the ground truth is shown in green. In panels (a) and (b),
we present the baseline 360-MLC [4] using LGTNet [2] and HorizonNet [5] models,
respectively. In panel (c), we show the results of our proposed self-training using LGT-
Net [2]. Note that a strong backbone model like LGTNet hurts 360-MLC performance
significantly. Meanwhile, our proposed self-training framework is capable of exploiting
the benefits of a robust backbone model.
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(a) with HorizonNet [5] backbone (b) with LGTNet [2] backbone

360-MLC [4] Ours 360-MLC Ours

Fig. 2: Qualitative results on the MP3D-FPE dataset. We present results com-
paring 360-MLC [4] and our self-training formulation using different backbone models.
Panel (a) is with HorizonNet [5], and panel (b) is with the LGTNet [2] backbone. The
greed line represents the ground truth label, while the magenta line is the estimated
layout after self-training.
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(a) with HorizonNet [5] backbone (b) with LGTNet [2] backbone

360-MLC [4] Ours 360-MLC Ours

Fig. 3: Qualitative results on the HM3D-MVL dataset. We present results
comparing 360-MLC and our self-training framework using different backbone models.
Panel (a) shows results using HorizonNet. Panel (b) shows results with the LGTNet
backbone. The greed line represents the ground truth label, while the magenta line is
the estimated layout after self-training.
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HorizonNet [5] 360-MLC [4] Ours (a) Ours (b) Point cloud

Fig. 4: Qualitative comparisons of estimated pseudo-labels. We present a
qualitative visualization of layout geometries projected in BEV. In the first column,
we show all layouts estimated from a pre-trained HorizonNet [5] model. In the second
column, all pseudo-labels from the baseline 360-MLC [4] are visualized. In the third
and fourth columns, we present a visualization of our ray-casting pseudo-labels, using
HorizonNet [5] and LGTNet [2] backbones in (a) and (b), respectively. In the last
column, we present the point cloud of the scene, highlighting the room scene in green
for reference purposes. Note that our pseudo-labels do not only present less noisy
geometries than 360-MLC but also is capable of defining complex and not trivial room
geometries.
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