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Abstract. In this paper, we introduce a novel geometry-aware self-
training framework for room layout estimation models on unseen scenes
with unlabeled data. Our approach utilizes a ray-casting formulation to
aggregate multiple estimates from different viewing positions, enabling
the computation of reliable pseudo-labels for self-training. In particular,
our ray-casting approach enforces multi-view consistency along all ray
directions and prioritizes spatial proximity to the camera view for geom-
etry reasoning. As a result, our geometry-aware pseudo-labels effectively
handle complex room geometries and occluded walls without relying on
assumptions such as Manhattan World or planar room walls. Evaluation
on publicly available datasets, including synthetic and real-world sce-
narios, demonstrates significant improvements in current state-of-the-art
layout models without using any human annotation.

Keywords: Self-training · Room Layout Estimation · Multi-view Lay-
out Consistency

1 Introduction

While significant progress has been made in room layout estimation, current
state-of-the-art solutions predominantly rely on supervised frameworks, utiliz-
ing either monocular panoramic images [9, 21, 22,27] or direct geometry sensors
like depth cameras or LiDAR [2,23]. However, this reliance presents a significant
challenge for real-world applications due to variations in geometry complexity
and scene conditions, thereby making data collection and manual labeling par-
ticularly cumbersome.

A practical solution for self-training a geometry-based model in unseen envi-
ronments is by exploiting the multi-view consistency from multiple noisy estima-
tions [7, 12]. However, applying multi-view consistency for room layout estima-
tion has been poorly explored in the literature. For instance, recent approaches
in multi-view layout estimation [8, 13, 19] particularly rely on ground truth an-
notations to define important concepts such as wall occlusion and wall match
correspondences. Other solutions avoid partial dependency on label annotation
by leveraging a semi-supervised approach [25]. To the best of our knowledge,
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(a) Multi-view estimations (b) Ours Pseudo-labels (c) 360-MLC [18]

Fig. 1: By leveraging multiple estimates from a pre-trained model as presented in panel
(a), Our solution leverages a ray-casting data aggregation process to estimate geometry-
aware pseudo-labels for self-training, as depicted in panel (b), i.e., pseudo-labels that
encompass a comprehensive representation of the room geometry. In comparison with
previous solutions, as presented in (c), where multiple estimations are processed on
the image domain without geometry reasoning, our approach excels in defining better
pseudo-labels, especially for occluded geometries, highlighting the significance of our
contribution.

only the recent self-training approach, 360-MLC [18], is capable of exploiting
multi-view layout consistency (MLC) without human label annotations. Never-
theless, 360-MLC lacks any geometry reasoning and treats all layout estimates
from every view equally, leading to noisy pseudo labels, especially for occluded
regions. See Fig. 1-(c).

In this paper, we present a self-training framework for room layout estimation
that leverages a pre-trained model to compute geometry-aware pseudo-labels for
unseen environments. Our approach utilizes a ray-casting formulation to aggre-
gate multiple noisy estimations along several ray directions for geometry reason-
ing. Our hypothesis is based on the idea that sampling layout estimates along a
ray can locally approximate the probability distribution of the underlying geom-
etry by considering their proximity to the camera view and mutual consistency
between views. This simple yet effective approach yields remarkable room geom-
etry definitions, including shapes with circular and non-planar walls, as well as
effectively handling occluded geometries. See Fig. 1-(b).

To further exploit our proposed solution, we present a Weighted Distance
Loss formulation that prioritizes the farthest geometry in the scene during self-
training. This stems from the intuition that estimating distant geometries is
typically challenging from a single view, suggesting that a multi-view setting
may help overcome this issue by considering several complementary views along
the scene.

To validate our proposed solution, we collect and label a new dataset (re-
ferred to as HM3D-MVL) from HM3D [15], particularly addressing occluded,
complex, and ample room geometries. We validate the benefits of the proposed
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self-training solution through an extensive evaluation in different settings and
publicly available datasets [4,17], using synthetic and real-world data. Our con-
tributions are as follows:

1. We propose a novel geometry-aware ray-casting formulation for pseudo-
labeling unseen scenes directly from the multiple noisy estimations of a pre-
trained model.

2. We propose a Weighted Distance Loss that exploits the benefits of a multi-
view setting by prioritizing distant geometry during self-training.

3. We collect and label a new dataset (HM3D-MVL) from [15], particularly
addressing occluded, complex, and ample room geometry for more diverse
scenarios. The dataset and code will be released with this publication.

2 Related Work
Room Layout Estimation. Estimating the room layout geometry is a long-
standing problem, where earlier works [3, 26, 28] mainly rely on key features,
semantic cues, and prior geometries to reason about the underlying geometry.
While deep learning solutions for this task have brought robustness in the esti-
mation by leveraging supervision from labeled data [6, 10, 29, 31], most of these
solutions define the problem as a regression map task. An outstanding solution
that changes this paradigm is HorizonNet [21], which redefines the optimization
as an 1D boundary regression problem, simplifying the definition for the lay-
out geometry. Upon this solution, approaches like [22] have impressive results
by leveraging a simple layout definition. Another advance is LED2Net [27] and
LGTNet [9], which introduces a horizon-depth vector definition, constraining
the layout geometry directly on Euclidean space. Upon this solution, recent ap-
proaches [5,30] present further constrains during training, none of them targeting
multi-view consistency.
Multi-view Layout. Recent approaches in multi-view setting [8,13,19] define
the multi-view layout estimation problem jointly with camera pose registration.
In particular, [8] introduces important concepts for geometry reasoning, such as
layout occlusion and layout match correspondences strictly relying on ground
truth annotations. An outstanding solution in this manner is Graph-Covis [13],
which is built upon [8] to define a multi-view setting capable of estimating lay-
out and camera pose from multi-views using a graph neural network approach.
Nevertheless, these solutions rely on ground truth annotations for reasoning the
underlying geometry.
Semi-Supervised and Self-training Layout Estimation. Semi-supervision
and self-training methods aim to define a reliable reference to constrain the
learning optimization without ground truth annotations [11]. Along this line,
SSLayout360 [25] utilizes a Mean Teacher framework [24] to train a layout esti-
mation model using pseudo-labels from a exponential-moving-average operation.
However, [25] treats each image in isolation, neglecting valuable geometric in-
formation from alternate camera views. Furthermore, the challenge arises from
the inherent noise in pseudo labels. Existing approaches aim to mitigate this
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Fig. 2: Self-training Pipeline. We use a pre-trained model fΘ to estimate multiple
layouts yi from multiple views Ii in an unseen scene. We aggregate all noisy estimates
Y(0) = concat({yi}i:n) using our proposed Multi-cycle ray-casting process. Then, we
sample our pseudo-label ȳi at the camera position Ti from the filtered set of lay-
outs Y

(m)
i . Finally, we constraint our self-training optimization using our proposed

Weighted-distance loss LWD.

noise through techniques such as assembling predictions across diverse augmen-
tations [1,14] or by selectively retaining only those pseudo-labels with high con-
fidence [16].

On the other hand, a practical solution for self-training models is to leverage
information from a pre-trained model. In 360-MLC [18], multiple estimations of
a pre-trained model [21] are re-projected into a camera view from which pseudo
labels are sampled. However, this formulation does not consider any geometry
prior and treats every geometry estimation equally, which yields noisy labels,
particularly for occluded geometry. To the best of our knowledge, a self-training
formulation that handles geometry in a multi-view setting without relying on
label annotation has not been studied.

3 Proposed Method
The following outlines our proposed self-training framework for room layout
estimation. In Sec. 3.1, we describe the multi-view layout consistency prob-
lem (MLC) as well as the preliminaries for self-training room layout models.
In Sec. 3.2, we present our ray-casting data aggregation process to create geometry-
aware pseudo-labels solely from estimated data. Lastly, in Sec. 3.3, we present
our weighted loss formulation towards leveraging the farthest distant geometry
in a scene. For illustration purposes, an overview of our self-training framework
is depicted in Fig. 2.

3.1 Self-training Room Layout with Multi-view Layout Consistency

In general, self-training a room layout model by multi-view layout consistency
(MLC) aims to fine-tune a pre-trained model with reliable pseudo-labels com-
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puted from multiple estimations along an unseen scene [18]. This scene with n
views can be defined as follows:

S = {(Ii,Ti)}i=1:n , Ii ∈ RH×W , Ti ∈ SE(3) , (1)

where S is the set of inputs views, Ii represents a panoramic image of size H×W
pixels, and Ti is the corresponding camera pose with rotation Ri ∈ SO(3) and
translation ti ∈ R3 defined in world coordinates. For any view in the set S, we
can define an estimated layout geometry as follows:

yi = π(fΘ(Ii),Ti), yi ∈ R3×W , (2)

where fΘ is a layout model parameterized by Θ, π(·) is a projection function
that transforms the model’s prediction into the Euclidean space, and yi is the
estimated layout geometry registered in world coordinates. For simplicity, we
refer to yi as the floor boundary only. For layout models such as [21, 22], π(·)
processes a 1D boundary vector defined in spherical coordinates, while models [9,
27] handle a 1D horizon-depth estimation. A closed-form definition for both is
described in our supplementary material.

By estimating multiple layouts from every view in the scene, we can define
the pseudo labeling process as follows:

Y = concat({y0, · · · ,yn}) , Y ∈ R3×nW ,

Yi = RiY + ti, ȳi = Φ(Yi), ȳi ∈ R3×W ,
(3)

where Y is the concatenation of n layout geometries estimated by Eq. (2),
Yi stands as the rigid transformation of Y into the i−th camera reference, and
Φ(·) is the aggregating function that estimates a pseudo-label ȳi for the i−th
view in the scene.

Note that, in the case of 360-MLC [18], Φ(·) is the function that samples the
median values of re-projected points in the image domain without any geometry
reasoning, see Fig. 1-(c). In Sec. 3.2, we redefine Φ(·) as a ray-casting function
for computing geometry-aware pseudo-labels.

The self-training optimization of fΘ with multiple pseudo-labels ȳi can be
defined as follows:

min
Θ

1

n

n∑
i=1

ωi · L
(
fΘ(Ii), π−1(ȳi

)
), (4)

where π−1(·) is the inverse function presented in Eq. (2), ωi ∈ RW is a weighted
vector associated to the uncertainty in each pseudo-label ȳi, and L(·) is the loss
function that constraints the self-training optimization.

Note that, in the case of 360-MLC [18], The self-training constraint is defined
as a weighted L1 loss with ωi = σ−2

i , where σi is the standard deviation of
re-protected points in the image domain. In Sec. 3.3, we redefine ωi into our
weighted-distance function that prioritizes distance geometries from the camera
view during self-training.
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(a) (b) (c)
Fig. 3: Ray-Casting: In panel (a), different ray directions from different camera views
are shown. Note that due to occluded geometries and different camera positions, the
probability distribution along a ray may vary significantly. In panel (b), one of our
constraints to handle occluded geometries is depicted, i.e., sampling a nearby region
along the ray to define PΩr . In Panel (c), we sample a pseudo-label (magnet contour)
from a filtered layout boundary Y

(m)
j at the camera Tj by using min(·) function to

sample the non-occluded points on the rays (see Sec. 3.2).

3.2 Pseudo-labeling by Ray-casting

Probability distribution on a ray. We hypothesize that the projection of
multiple layout estimates onto a ray can describe a probability distribution of the
underlying geometry. This distribution can then serve as the basis for sampling
reliable pseudo-labels. To this end, we propose a ray-casting formulation that
projects multiple estimates of a pre-trained model into a set of ray directions
defined in the bird-eye-view (BEV), i.e., ray vectors defined in the xz Euclidean
plane. This is motivated by previous works [9, 27] to represent a room layout
geometry directly in the Euclidean space, avoiding distortion and discrete issues
presented in the image domain.

We define a set of ray directions in world coordinates as follows:

R = {rj}j=1:W , rj ∈ R3 , |rj | = 1,

V = {nj}j=1:W , nj ∈ R3 , nj · r⊤j = 0,
(5)

where rj is a ray direction constrained by rj · [0, 1, 0]⊤ = 0 (i.e., on the xz
Euclidean plane), and nj is its corresponding normal vector. Then, a pseudo-
label from a probability function defined on a ray vector can be defined as follows:

ȳi,r = E[Pr(Yi)]r, r ∈ R, (6)

where r is a ray vector introduced by Eq. (5), Yi is the concatenation of all esti-
mated layouts in the i−th camera reference as presented in Eq. (3), ȳi,r stands
for the i−th pseudo label defined on the ray r, and Pr(·) is the unknown proba-
bility function along a ray direction r. For simplicity, we refer to this probability
function as Pr.

Regardless of the noise within the estimated layout geometries, the density
function Pr may vary significantly for every camera view and ray direction, in
particular for occluded geometry. This phenomenon is illustrated in Fig. 3-(a),
where two density functions Pa and Pb for the same underlying geometry (ma-
genta dots) are presented. Note that Pa defines a multi-modal density function
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due to multiple occluded geometries (cyan dots), which may lead to a different
expectation value compared to Pb.

Multi-cycle ray-casting for pseudo-labeling. To tackle occlusions, we con-
dition Pr, presented by Eq. (6), in three ways. First, we increase the sample count
near each ray direction and camera view based on the intuition that a higher sam-
ple count may enhance the representation of non-occluded geometries. Second,
similar to 360-MLC [18], we approximate the expectation of projected samples
to median(·) for filtering out noisy estimates, i.e., the median value of points on
the ray. However, instead of sampling from a unique view (in the image domain),
we sample them from multiple camera locations and ray directions in an itera-
tive process named multi-cycle ray-casting (see Fig. 2). This stems from the fact
that sampling over Pr from multiple camera locations and directions must yield
the same underlying room geometry. Finally, following the noise reduction, we
approximate the expectation of Pr to the closest sample on the ray. This is based
on the understanding that non-occluded geometries must lie at the closest point
along the ray direction. This is illustrated in Fig. 3-(c), where the pseudo-label
for the camera view Tj (magenta contour) is computed by sampling points on
the rays by using the min(·) function.

With a slight notation abuse, the projection of nearby estimates onto a ray
direction can be defined as follows:

Ωr(Yi) = {r · x⊤ | ∀ x ∈ Yi} st.

0 < r · x⊤ ≤ δr, and |n · x⊤| ≤ δn,
(7)

where x is a 3D-point ∈ R3 defined in Yi, r and n are ray-vectors define by
Eq. (5), and {δr, δn} is a set of hyper-parameters that allows us to filter out
non-local points. This projection is illustrated in Fig. 3-(b), where the subset of
points Ωr (magenta dots) is defined along the ray vector r. For simplicity, we
refer to the probability of these projected samples as PΩr .

The multi-cycle ray-casting process to filter out noisy estimates can be de-
scribed as follows:

Y(k+1) = {median(Ωrj (Y
(k)
i ))rj}i=1:n j=1:W , (8)

where Y
(k)
i stands for the layout estimates in the i-th camera reference at the

k-th cycle. Note that this filtering process is evaluated from all camera views i
and all ray directions rj .

Finally, a pseudo label and its uncertainty from a filtered set of layout esti-
mations can be evaluated as follows:

ȳi = {min(Ωrj (Y
(m)
i ))rj}j=1:W ,

σi = {std(Ωrj (Y
(0)
i ))}j=1:W ,

(9)

where Y
(m)
i stands for the filtered layout estimates after applying Eq. (8) in

m−th cycles, and Y
(0)
i is the layout estimates before noise reduction. This is

because σi aims to describe the underlying noise of the initial layout estimates
along the ray directions.
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(a) (b) (c)

Fig. 4: Weighted-distance function: In panel (a), we illustrate our proposed
weighted-distance function ωi that prioritizes the farthest geometries in the scene for
self-training. In panel (b), under the same scale as (a), we show the L1 loss between
our proposed pseudo-label and the model estimation. Note that the L1 loss evaluation
presents a small range w.r.t ωi and does not aim at any particular region in the scene.
In Panel (c), we present our pseudo-label (magenta line) and the model estimation
(green line).

3.3 Weighted Distance Loss
To complement our proposed ray-casting pseudo-labels resented in Sec. 3.2, we
introduce a weighted loss formulation that particularly focuses on the farthest
geometries within a room. This stems from the empirical evidence that pre-
trained layout models tend to estimate more accurately the geometries closer
to the camera view than those farther away. This limitation can be attributed,
in part, to the datasets used for training, e.g., [2, 4], where room scenes are
predominantly captured from the room center, and larger-sized rooms are less
represented. Another contributing factor to this limitation is the difficulty in
capturing accurate details for the farthest regions from a single view [9]. There-
fore, we hypothesize that our pseudo-labels may present the most significant
impact during self-training when targeting the farthest geometries in a scene.

Our weighted formulation can be described as follows:

LWD = ωi||yi − ȳi||1 ωi =
eκ(||ȳi||−dmin)

σ2
i

(10)

where ||ȳi|| is the Euclidean norm of the pseudo labels computed by Eq. (9),
dmin is the distance from which we want to prioritize the self-training, κ is
a hyper-parameter that allows us to control the weighting priority to the far-
thest geometries, and σi represent the standard deviation computed in Eq. (9).
In Fig. 4, we compare our proposed weighted-distance function with traditional
L1 loss [18,21,22,27]. Note that a L1 evaluation does not aim at any particular
geometry in the scene, while our proposed ωi aims at the farthest walls from the
camera view.

4 Experiments
4.1 Experimental Setup

Baseline and Model Backbones. The baseline used in the following experi-
ments is the recent 360-MLC [18] taken from the official implementation provided
by the authors. For a fair comparison with 360-MLC, we use the same layout
model backbone by default, i.e., HorizonNet [21] pre-trained in [2]. To further
compare our proposed solution, we present results using LGTNet [9] pre-trained
on [2] as an additional layout model backbone.
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Table 1: Datasets used in this paper with their statistics, i.e., total frames and average
number of frames per room.

Dataset
Training Testing Occlusion Avg. frames

set set Subset per room

HM3D-MVL 24344 2491 119 56
MP3D-FPE [17] 20126 5254 157 46
ZInD [4] 9514 1157 191 6

Table 2: Quantitative results using the HorizonNet [21] backbone. The symbol ‡ rep-
resents that the model is trained with the available labels in the training set, which
represents the upper-bound performance.

Testing set Occlusion Subset
2D IoU (%) ↑ 3D IoU (%) ↑ 2D IoU (%) ↑ 3D IoU (%) ↑

Method 10% 100% 10% 100% 10% 100% 10% 100%

Our HM3D-MVL dataset

Pre-trained [21] 76.71 71.79 78.74 75.72
360-MLC [18] 81.69 82.71 77.67 78.71 81.66 79.19 80.08 77.72
Ours 81.74 82.99 77.99 78.95 82.05 83.01 80.45 81.38

MP3D-FPE dataset [17]

Pre-trained 77.33 74.07 75.09 73.36
360-MLC 80.84 80.93 77.71 77.69 84.15 84.27 82.27 82.04
Ours 81.25 81.65 78.15 78.21 85.21 85.71 83.16 83.58

ZInD dataset [4]

Pre-trained 68.63 65.54 59.98 53.95
360-MLC 74.09 75.44 71.21 72.28 62.04 63.33 59.29 60.47
Ours 74.51 75.71 72.01 73.04 62.72 64.01 60.12 61.37

Supervised‡ [21] 84.87 81.55 79.44 75.56

Datasets. Similar to 360-MLC [18], we show evaluations in the MP3D-FPE
dataset [17]. We also show results on the real-world ZInD dataset [4]. In addition,
we show results in our newly collected dataset rendered from Habitat-v2 [15],
referred to as HM3D-MVL. In the case of the ZInD dataset, we use the layout
category “visible layout” provided by the authors and select the scenes that con-
tain at least five frames per room. For all the mentioned datasets, we compute
pseudo labels from the training splits, self-train the pre-trained model, and eval-
uate results on the testing splits using ground truth annotations provided by
the authors. To further corroborate our claim of handling occluded geometries,
we also present evaluations on a manually selected subset of the testing split
that contains samples with geometry occlusions only. We refer to this subset as
Occlusion subset. Details of these datasets are present in Tab. 1.

Evaluation Metrics. Following [9, 18, 21, 32], we evaluate results using stan-
dard metrics defined for room layout estimation. For room boundary prediction,
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we evaluate the 2D and 3D intersection-over-union (IoU). For evaluating the
smoothness and consistency of layout depth maps, we evaluate root-mean-square
(RMS) and δ1 errors as defined in [9, 21, 27]. All experiments show the median
results of 10 self-training runs, each consisting of 15 training epochs.

Implementation Details. The layout models’ backbones and their pre-trained
weights used in our experiments are taken from their official implementation
provided by the authors [9, 21]. To train the models, we use common data aug-
mentation techniques for the room layout task, i.e., left-right flipping, panoramic
rotation, and luminance augmentation. We use the Adam optimizer with a batch
size of 4 and a learning rate 1 × 10−4 with a decay ratio of 90%. All models
are trained on a single Nvidia RTX 2080Ti GPU with 12 GB of memory. For
constructing our ray-casting pseudo-labels, we use 15 cycles per room scene,
δr = 20 and δn = 0.01. For our weighted distance loss function, we use κ = 0.5
and dmin = 2.

4.2 Quantitative Results

Evaluation using HorizonNet Backbone. In these experiments, we com-
pare our proposed ray-casting self-training frameworks with the baseline 360-
MLC [18], utilizing the HorizonNet layout model [21] pre-trained in [2]. The
results are presented in Tab. 2 under two main settings: using 10% and 100%
of the training set. Results in the 10% setting show that our proposed solution
outperforms 360-MLC, even with a limited number of samples for self-training.
Results in the 100% setting further demonstrate the improved performance of
our proposed self-training framework.

By comparing results in the occlusion subset, we find evidence that our so-
lution significantly outperforms 360-MLC. Particularly, while our proposed ray-
casting self-training consistently improves performance with increased data, 360-
MLC shows only marginal improvement and in some settings, presents a decline
in performance. For instance, consider the evaluation of the occlusion subset of
the HM3D-MVL dataset. When using only 10% of the data, 360-MLC achieves
81.66% 2D IoU. However, the result on the 100% setting shows a drop in perfor-
mance to 79.19%. This suggests that 360-MLC contains a large amount of noisy
pseudo labels such that increasing the amount of data significantly hurts the
performance. We argue that the general benefit of our ray-casting pseudo-labels
is mainly due to their strong reasoning capability on occluded geometries. Ad-
ditionally, we present a comparison against the fully-supervised HorizonNet [21]
on ZInD [4] as an upper-bound references. Although our proposed ray-casting
framework effectively self-train a pre-trained model into a new domain, we still
found a gap when using manual labels, showing potential direction for future
works.

Evaluation using LGTNet Backbone. In this experiment, we aim to validate
the performance of our proposed solution compared to 360-MLC when utilizing
a state-of-the-art solution for room layout estimation, i.e., LGTNet [9]. The
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Table 3: Quantitative results using the LGTNet [9] backbone. The symbol ‡ represents
that the model is trained with the available labels in the training set, which represents
the upper-bound performance.

Testing set Occlusion Subset
Method 2D IoU ↑ 3D IoU ↑ RMS ↓ δ1 ↑ 2D IoU ↑ 3D IoU ↑ RMS ↓ δ1 ↑

Our HM3D-MVL dataset

pre-trained [9] 78.90 74.04 0.409 0.864 80.22 78.10 0.2784 0.931
360-MLC [18] 84.07 78.85 0.394 0.897 71.29 68.54 0.573 0.884
Ours 86.49 81.90 0.293 0.913 83.75 82.06 0.264 0.950

MP3D-FPE Dataset [17]

pre-trained 79.66 76.32 0.324 0.892 78.22 76.39 0.243 0.949
360-MLC 82.99 77.22 0.358 0.883 79.16 75.07 0.378 0.907
Ours 85.69 81.80 0.242 0.931 86.33 84.27 0.168 0.963

ZInD dataset [4]

pre-trained 72.59 69.67 0.445 0.897 60.30 57.51 0.645 0.846
Ours 76.77 74.42 0.406 0.905 64.76 62.38 0.593 0.857

Supervised‡ [9] 87.64 84.61 0.286 0.931 80.51 77.87 0.393 0.873

(a) 360-MLC [18] (b) Ours (c) Point Cloud reference

Fig. 5: Qualitative comparisons of estimated pseudo-labels. We show a BEV
projection of all pseudo-labels for the scene: (a) pseudo-labels from 360-MLC [18],
(b) pseudo-labels from our proposed multi-cycle ray-casting, and (c) Point cloud for
reference purposes.

results are depicted in Tab. 3. Although a robust backbone model benefits both
models, our self-training framework significantly outperforms 360-MLC across
all evaluations. Hence corroborating the versatility of our solution by leveraging
new room layout formulations. Results of 360-MLC in the ZInD dataset were
omitted due to several failures during self-training, we argue that this is due
to the limitation of 360-MLC to handle a setting with a few number frames
and horizon-depth constrain. Similar to the experiment presented in Tab. 2, We
present upper-bound results that provide evidence of a gap between training on
manual annotations and pseudo-labels, indicating a potential direction for future
work.
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Fig. 6: Qualitative results in real-world scenes. We show layout boundaries es-
timated in real-world data using a hand-handled camera (Insta360). In the first row,
we illustrate all layouts estimated from a pre-trained model [21]. In the second row, we
show the results of our ray-casting pseudo labeling process presented in Sec. 3.2.

4.3 Qualitative Results

Qualitative Results on Panoramic Images. For illustration purposes, we
present in Fig. 7 several qualitative results of our proposed self-training frame-
work compared with 360-MLC. Based on these results, we find that our solution
shows a significant improvement in handling occluded geometries in all datasets.
In addition, we observe that our self-training formulation consistently provides
more accurate estimations of geometries near entrances and gates. We argue
that this is due to the effectiveness of our ray-casting pseudo-labels in defining
reliable room geometry, even for those challenging view locations.

Qualitative Pseudo-labels Results. In this section, we present qualitative
results for our proposed ray-casting pseudo-labeling framework. These results
are presented in Fig. 8 and Fig. 5, where the former presents pseudo-labels pro-
jected on panoramic images and the latter presents pseudo-labels projected in
BEV. Based on the results in Fig. 8, we corroborate our hypothesis that our
ray-casting pseudo-labels can handle occluded geometries better than 360-MLC.
Furthermore, we find evidence that challenging views such as entrance and gates
are better defined by our proposed pseudo-labels. This evidence aligns with our
findings in Fig. 7, where results of a self-trained model using our proposed frame-
work show better estimation for such challenging view locations. Furthermore,
based on the results presented in Fig. 5, we can assert that our ray-casting
pseudo-labels yield a less noisy geometry compared to 360-MLC, as well as it is
capable of defining circular walls directly from multiple estimations.

Qualitative Results on Real-world Data. In Fig. 6, we present two quali-
tative results in two real-world scenes, demonstrating the versatility of our ray-
casting pseudo-labeling in real-world scenarios. For these experiments, we collect
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Table 4: Ablation study for our weighted-distance loss using 10% of data.

Testing set Occlusion Subset
Loss 2D IoU ↑ 3D IoU ↑ 2D Io ↑ 3D IoU ↑

(a) Pre-trained [21] 76.71 71.79 78.74 75.72
(b) Pseudo-labels 81.65 76.99 80.85 78.98
(c) ω=σ−2 81.02 76.58 81.28 79.53
(d) ω = Eq. (10) 81.74 77.99 82.05 80.45

several panoramic images using a commercial camera, Insta3604, and estimate
their camera poses using OpenVSLAM [20]. Subsequently, we register each image
with its corresponding layout estimation (utilizing HorizonNet [21] pre-trained
in [2]) by using the layout registration method outlined in [17]. In the first row,
we present evidence of the domain gap in the pre-trained model showing a signif-
icant level of noise in the boundary layout estimations for both depicted scenes.
In the second row, we present the results of our proposed ray-casting pseudo-
labeling framework presented in Sec. 3.2. Note that our solution is capable of
aggregating multiple noisy estimates to define a reliable underlying geometry for
self-training remarkably.

4.4 Ablation Study for Weighted Distance Loss Formulation

We present an ablation study that validates our weighted distance loss formula-
tion presented in Sec. 3.3. The results of this ablation are shown in Tab. 4. By
comparing rows (a) and (b), we validate the gain in performance of self-training
directly using our proposed ray-casting pseudo-labels without any weighting for-
mulation. By comparing (c) and (b), we verify a weighted formulation based only
on the uncertainty σ computed by Eq. (9). We can appreciate that this weighting
formulation yields better performance on the occlusion subset but not for the
whole testing set. We argue that a weighting formulation based on uncertainty
σ does not consider any geometry information. In contrast, in row (d), we show
the results of our weighted formulation as presented in Eq. (10). Thus we can
assert that a weighting formulation that prioritizes the farthest geometries with
respect to the camera view yields better performance.

5 Conclusions

In this paper, we present a geometry-aware self-training framework for multi-
view room layout estimation that requires only unlabeled images as input. Our
approach utilizes a ray-casting formulation capable of handling occluded ge-
ometries directly from noisy estimations. To further exploit the benefit of the
multi-view setting, we propose a weighted distance loss function that focuses
on the farthest geometries in the scene. Through a comprehensive evaluation
using different datasets, room layout models, and settings, we demonstrate the
state-of-the-art performance of our solution.
4 https://www.insta360.com/
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Fig. 7: Qualitative comparisons on panoramic images.. We present the results
of room layout estimation after self-training using 360-MLC [18] and our proposed
framework. Results are evaluated in three different datasets: 1) at the top on our
proposed HM3D-MVL, 2) in the middle on MP3D-FPE [17], and 3) at the bottom on
the real-world dataset ZInD [4]. The green lines represent the ground truth reference
and the magenta lines represent the layout estimations.
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Fig. 8: Qualitative comparisons of pseudo labels on panoramic images. We
present the qualitative results of estimated pseudo labels (magenta lines) on the
panoramic images: 1) the first row, 360-MLC [18]; 2) the second row, our ray-casting
pseudo labels.
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