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Abstract. Although video generation has made great progress in ca-
pacity and controllability and is gaining increasing attention, currently
available video generation models still make minimal progress in the
video length they can generate. Due to the lack of well-annotated long
video data, high training/inference cost, and flaws in the model designs,
current video generation models can only generate videos of 2 ∼ 4 sec-
onds, greatly limiting their applications and the creativity of users. We
present ZoLA, a zero-shot method for creative long animation generation
with short video diffusion models and even with short video consistency
models (a new family of generative models known for the fast genera-
tion with high quality). In addition to the extension for long animation
generation (dozens of seconds), ZoLA as a zero-shot method, can be
easily combined with existing community adapters (developed only for
image or short video models) for more innovative generation results, in-
cluding control-guided animation generation/editing, motion customiza-
tion/alternation, and multi-prompt conditioned animation generation,
etc. And, importantly, all of these can be done with commonly afford-
able GPU (12 GB for 32-second animations) and inference time (90
seconds for denoising 32-second animations with consistency models).
Experiments validate the effectiveness of ZoLA, bringing great poten-
tial for creative long animation generation. More details are available at
https://gen-l-2.github.io/.

1 Introduction

Sora [7], released by OpenAI, achieves video generation of 20 to 60 seconds with
ultra-high visual quality and spatiotemporal consistency. It shows video genera-
tion capabilities that far exceed all previous open source models, and has greatly
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Fig. 1: ZoLA is a versatile zero-shot method for creative long animation generation. It
can be combined with common video diffusion and even consistency models to achieve
long animation generation, control-guided generation, motion customization/alterna-
tion, and multi-prompt conditioned animation generation with commonly affordable
GPU memory and inference time.

attracted attention and discussion. Video generation models are considered to
have the potential to become world simulators for understanding the physical
laws of the world, and have become a crucial area of generative model research.
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In contrast, the currently available mainstream video models (e.g ., Stable
Video Diffusion) [5,6,9,10,16,24,25,31,34,41], although their visual quality and
controllability are also improving, can usually only generate videos of 2 to 4
seconds, which limits their applications and the creativity of users. There are
three main challenges that limit their generation length: 1) Low-quality text an-
notation of training data. Some video data only use the subtitles of the video as
text annotations, which fail to reflect the real content of the video. High-quality
annotation has been widely proven to be necessary to achieve high-fidelity gen-
erative models [1, 3, 5, 39]. 2) Training is expensive. For example, even though
models with more parameters and larger capacity are constantly proposed, the
current mainstream video models are usually developed based on Latent Diffu-
sion Models (a.k.a, Stable Diffusion) [23] with 0.9B parameters, and decouple
the space and time dimensional interactions to reduce the amount of computa-
tion [6, 25]. Even with such efforts, a GPU with 80GB memory can only allow
one 4-second 576× 320p video to be trained (with necessary optimization, e.g .,
flash attention, mixed-precision). 3) Unreasonable model designs. Current video
generation models usually only regard the video as a stack of image frames and
neglect the temporal redundancy. This not only wastes the amount of compu-
tation but also leads to a large signal-to-noise ratio [5,8], resulting in expensive
training and inference costs and training difficulty.

These difficulties of long video generation show that it is barely affordable
for most researchers or users (local usage), and therefore we propose an interest-
ing zero-shot long animation generation scheme, termed as ZoLA (Zero-ShOt
Creative Long Animation), which can be combined with current short video
generation models (including diffusion models and consistency models) without
training, and achieve creative long animations with commonly affordable infer-
ence time and computation resources. The core of our method lies in the length
expansion at two dimensions: the spatiotemporal attention dimension and the
denoising path dimension, achieving a good balance between the inference time
and GPU memory cost. Besides, we show that the initialization of noise is im-
portant for the balance of freedom and stability of generation. In addition, we
propose a noise travel strategy, which can effectively alleviate the degradation
of visual quality and consistency caused by denoising conflicts. More details will
be explicitly illustrated in the method section.

As shown in Fig. 1, our advantages include: 1) ZoLA can generate animations
that are much longer but still maintain good temporal consistency and visual
quality. 2) ZoLA supports more creative animation generation. 2.a) By combin-
ing editing algorithms (e.g ., SDEdit) [12,20] or layout conditions (optional) [21],
we can achieve controllable video generation/editing. 2.b) Besides, ZoLA can
combine the customized action adapters [18,38,46] of short videos to realize the
motion customization and alternations of several motions in a longer animation.
2.c) We also achieve alternating control of multiple prompts. For example, con-
trolling changes in a person’s facial expression through changes in text prompts
along the time. 3) ZoLA is efficient and commonly affordable. Compared with
the direct generation method, our method has a significant reduction in GPU



4 Fu-Yun Wang et al.

memory. For example, using the same mainstream video model structure, di-
rectly generating a 32-second 512×512p video usually requires more than 40GB
of GPU memory. ZoLA only requires 12GB of GPU memory. Besides, ZoLA
can be well integrated with various sampling acceleration methods. For exam-
ple, using the video consistency model [34], we can generate videos with only 4
steps of sampling. We only need 26 seconds to generate an 8-second animation.
In contrast, a video diffusion model with the same architecture usually takes 25
seconds to generate a 2-second video (tested on A800).

Although, as a zero-shot generation strategy, the generation quality of ZoLA
is upper-bounded by the base short video models and thus cannot achieve the
same effect as long videos like sora. But on one hand, we hope that this idea
can support creative and longer animation generation to a certain extent in the
era with only short video models available for most. On the other hand, we
consider our method to be relatively versatile and capable of integrating with
different model architectures. This versatility ensures that, even as more powerful
models emerge, our strategy can be applied to harness these advancements for
more creative outcomes. We conducted extensive experimental comparisons with
previous methods. Quantitative experimental metrics and user studies show that
our method achieves better consistency and visual quality.

2 Related Works

Diffusion models. Diffusion models (a.k.a., score-based models) [14,15,19,26,
27] have received increasing attention due to their amazing ability to generate
highly detailed images. Currently, video diffusion models [6, 14, 24, 25, 32, 34,
35] generally extend image diffusion models by inserting temporal layers. These
models are either trained by joint image-video tuning [16,25] or by spatial weight
freezing [6] to mitigate the poor annotations and visual quality of raw video data.
Long video generation. Previous works [9–11, 30, 32, 42] for long video gen-
eration commonly follow the auto-regressive mechanism with a temporal mask
modeling technique. NUWA-XL proposes a hierechical way for long video gen-
eration [40]. However, little work validates their success on open-domain text-
to-video generation. Additionally, the auto-regressive mechanism behind them
has inevitable drawbacks: 1) Huge retraining cost. Due to the introduction of
temporal mask modeling, they generally have to retrain the model to accept
additional conditions. The retraining leads to additional training costs and can
potentially cause the generation quality degradation. 2) Training-inference gap
and flaws accumulation. They are trained to predict the next short video clip
utilizing the real former short video clip as conditions, but they have to use short
video clips generated by themselves to predict the next video clip. Flaws caused
by the training-inference gap greatly accumulate in the auto-regressive process,
leading to dramatic degradation. 3) Looping and inauthenticity. Due to the ca-
pacity, they predict the next video clip only with the information of the very
last video clip they generated (i.e., only one clip is fed as conditional inputs).
This tends to cause looping and inauthenticity in their generated results.
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3 Preliminaries

Diffusion models [15] perturb the data by gradually injecting noise to data
x0 ∼ q(x0), which is formalized by a markov chain:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt|
√
αtxt−1, βtI), (1)

where βt is the noise schedule and αt = 1 − βt. The data can be generated by
reversing this process, i.e. we gradually denoise to restore the original data. The
diffusion model pθ(xt−1|xt) parameterized by θ is trained to approximate the
reverse transition q(xt−1|xt,x0), which is formulated as

q(xt−1|xt,x0) = N (xt−1;
1

√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵ, β̃tI) (2)

where ᾱt =
∏t

s=1 αs, β̃t =
1−ᾱt−1

1−ᾱt
βt, and ϵ is the noise injected to x0.

4 Methodology

4.1 Model Architectures

As we mentioned before, current video models are typically built upon the ex-
tension of pretrained image models (e.g ., Stable Diffusion). Most current open-
source video generation models, follow the idea of adding temporal convolutions
and temporal attention modules to modeling the temporal interactions. The fea-
tures z ∈ Rb×f×h×w×c are first rearranged to move all spatial dimensions into
the batch dimension z′ ∈ R(b×h×w)×f×c and then features at the same spatial
position but different frames will be processed by temporal convolution or at-
tention blocks. The newly added modules are then trained on video data or joint
video-image training to align the denoising path of different frames. This design
has been widely verified to ease the burden of training and achieves acceptable
results [6, 25, 36, 43]. While this tricky design may also limit their performance
upper-bound.

4.2 Problem Formulation

Our goal is to generate creative long animations at a commonly affordable cost,
using only short video models. It is important to note that current video models
generally regard videos as mere stacks of video frames, so we define the length of a
video as the number of its frames. In ZoLA, we expand the length by extending in
both the spatiotemporal attention dimension and the denoising path dimension.
We assume that the given short video model is trained on videos of base length
f (i.e., the model has the capability to denoise videos of base length f). Since
videos can be seen as a stack of video frames, then the model should have the
ability to denoise any set of f images with temporal order and relationships.
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Fig. 2: Workflow of ZoLA. ZoLA extend the video generation length by expansion
at two dimensions: spatiotemporal attention expansion and denoising path expansion.
Special designed noise init strategy and noise init augmented noise travel strategy are
additionally proposed to enhance temporal consistency and visual quality. In the above
figure, we assume the base generation length f = 2 and the expanded length f ′ = 4,
f ′′ = 10. Stride s for set selection is set to 2. Maximum frame skipping R is set to 2.

On this basis, we first adopt an expansion of the spatiotemporal attention
dimension. Specifically, this is a kind of attention approximation operation that
uses local attention interactions to approximate global temporal attention inter-
actions. Through this method, the temporal interaction module still only needs
to process interactions among the f features as the length they are trained with,
thus minimizing the disruption to the model’s generative capabilities. We as-
sume that, based on this, the model is capable of denoising videos of length f ′.
We generally find that it works well when f ′ is not significantly larger than f .
In an abstract sense, we have evolved a model that can only denoise videos of
length f into a model that can denoise videos of length f ′ tolerating a certain
of approximation errors.

Building on this, we continue with the expansion of the denoising path di-
mension. Note that we just mentioned videos can be seen as a series of image
frames with temporal relationships. Assuming the video length we want to de-
noise is f ′′, this is equivalent to a set of f ′′ image frames. Therefore, we just need
to continuously extract sets of f ′ sequentially related images from the f ′′ images
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Fig. 3: Noise travel. Noise travel allows the model to reverse the denoising step after
merging the conflicted denoising directions and re-denoise again. This process enhances
the information transfer between different clips and alleviates potential denoising con-
flicts, thus further promoting global consistency and generation quality. In the figure,
each set has 4 frames (i.e., f ′ = 4) and stride for set selection is 2 (i.e., s = 2). There-
fore, the adjacent sets have two frames overlapped.

for denoising until all image frames have been denoised. Hence, the problem
becomes the Set Cover Problem (SCP).

In summary, ZoLA is built upon two length expansions: spatiotemporal at-
tention dimensional expansion (f → f ′) and denoising path dimensional expan-
sion (f ′ → f ′′), where f ′′ > f ′ > f . Now we have demonstrated the motivations
and high-level ideas. In the following, we will go into the details of their imple-
mentations.

4.3 Length Expansion

Spatiotemporal attention expansion (f → f ′). Inspired by previous work [6],
the core idea of spatiotemporal attention expansion is to extend the video length
by approximating global attention interactions with local attention interactions.
In other words, it can be perceived as applying spatiotemporal attention con-
volutionally at the temporal dimension. To be specific, before attending the
spatiotemporal attention, given the feature z ∈ Rb×f ′×h×w×c, the features are
first split into windows with window size f equal to the base length with slid-
ing stride s (s ≤ f). Hence, the feature z is transformed into a set of features
zi ∈ Rb×f×h×w×c with base length f , namely

zi = z[:, i× s : i× s+ f ], i = 0, 1, . . . (3)

where z[:, i× s : i× s+ f ] is a numpy style notation, representing the slicing of
z from frame i × s to frame i × s + f . Then the split sets of features are sent
to normal spatiotemporal modules for independent processing. After that, the
outputs of these sets of features are merged back into the original shape through
weighted interpolation. We set s = ⌊f/2⌋. To better preserve the consistency
and alleviate the possible sudden changes at the sides of windows, we set the
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merge weights inside the window decays as the deviation from the center frame.
That is,

wi[j] = exp

(
−1

2
|j − ⌊f/2⌋|

)
, (4)

where j = 0, 1, 2, . . . , f − 1 is the frame index inside the window.
Denoising path expansion (f ′ → f ′′). As we discussed before, a video can be
perceived as a set of sequential images, and therefore after the spatiotemporal
attention expansion, we now have a tool to denoise any sets of f ′ images with
temporal relations. To denoising longer videos (f ′′), we just need to solve the Set
Cover Problem that we constantly choose subsets of length f ′ until all f ′′ images
are covered. A normal set selection strategy is following the sliding window. That
is, from 0 to f ′′, we constantly select the set with length f ′ in a sliding way with
stride s (s ≤ f ′). Namely,

vi = v[:, i× s : i× s+ f ′], i = 0, 1, . . . . (5)

However, this kind of set selection strategy confines the information interactions
within the sets. This will cause sudden changes and inconsistency in the corners
of sets. For instance, Gen-L [33] applies a similar idea termed temporal co-
denoising while they have to apply small strides to have more stable results.

Note that the denoising process is an iterative process, with multiple steps
for gradually reconstructing the target video from white noise. Therefore, we
instead of applying the fixed selection of sets, propose to apply different set
selections at different denoising timesteps. To be specific, this can be achieved
through randomly sampling the starting frame index k for set selection. In this
way, the i-th set selected for denoising can be represented as

vi = v[:, k + s× i : k + s× i+ f ′], k ∼ Uniform{0, 1, 2, . . . f ′ − 1} . (6)

Potential indices exceeding f ′′ will be left shifted to satisfy the length condition.
In this way, frames will interact in a more flexible way, and we can apply larger
strides to reduce the inference cost (since the number of sets is ⌈ f ′′−f ′

s ⌉+ 1 ).
To allow for more interactions of long-range frames and thus enhance long-

term consistency, we additionally propose to allow for set selections with skipping
frames. That is, to select an ordered subset from a large set, we could sequentially
sample one element (image) by skipping several elements. This is reasonable if
we consider the concept of frames-per-second (fps) in videos. Larger fps cause
the video to have a more dense frame distribution and lower fps cause the video
to have a more sparse frame distribution. However, as long as the fps belongs to
reasonable intervals, it will not affect the viewing experience. To be specific, the
i-th set selected for denoising can be represented as,

vi = v[:, k + s× i : k + s× i+ f ′ × r : r], i = 0, 1, 2, . . .

k ∼ Uniform{0, 1, . . . , f ′ − 1}, r ∼ Uniform{1, . . . , R} ,
(7)

where v[:, k+s× i : k+s× i+f ′×r : r] is a numpy style notation of slicing with
stride r. R ∈ N+ is the maximum number of frames allowing for skipping. The
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potential indices exceeding f ′′ will also be left shifted to satisfy the length limit.
We conduct this set selection strategy to denoise selected sets independently
until all frames are denoised at a specific timestep. The denoising results for
those frames being selected more than once will be averaged as the actual results.
Following the proof in previous work [2,33], as long as the denoising results are
close enough, we can approximate the longer video denoising path with short
video denoising ability.

4.4 Noise Design

Noise init. The initial noise for generation contains crucial information for
generating videos, as it determines the basic structures and motions in videos.
The spatiotemporal modules in the video generation models are trained to align
a fixed number of frames f . Therefore, when extended to longer videos with
length f ′′, we empirically find that they may fail to align the much longer noises
due to too much flexibility in higher dimensional space even above proposed
length expansion strategies are employed. Therefore, it is essential to reduce the
flexibility of the initial noise. A vanilla way is to repeatedly concatenate the noise
with length f along the time axis until it reaches f ′′. In this way, the initial noises,
though constructed as a high-dimensional white noise, are actually confined in a
low-dimensional manifold. However, we find that this typically causes the model
to generate repeated motions. To this end, we propose to simultaneously sample
a random noise with extended length f ′′ and a base noise with the base length
f . We denote them as ϵ′′ ∈ Rf ′′×h×w×clatent and ϵ ∈ Rf×h××clatent . The random
noise is randomly replaced by the base noise in the frame level. Specifically,
we repeatedly concatenate the base noise at the frame level to extend it to the
length of f ′′ and add it to the random nose ϵ′′ with mask m ∈ Rf×1×1×1. Then,
the noise is initialized as

vT = (1−m)⊙ ϵ′′ +m⊙ repeat(ϵ), (8)

In this way, the mask ratio controls the generation flexibility and stability. Larger
mask ratios allow for more generation stability, but too large mask ratios cause
the motion corrupted, which we will show in the ablation study (Fig. 5).
Noise travel (augmented with noise init). As we mentioned following Eq. 7,
the denoising path expansion achieves good results if and only if the denoising
directions of overlapped frames in different sets are close enough. However, this
is usually not the case. Let us consider a random initialized noise where the sets
selected have no information about each other at the beginning of denoising.
Therefore, it is typical for them to have denoising results conflicts. Although
many conflicts could be alleviated at the later denoising steps, heavy conflicts
could lead to the noisy state wrongly entering into the low-density region of
score manifold [27], which would further corrupt the denoising process, causing
generation failure or degraded generation quality. As shown in Fig. 3, due to the
incomplete perception of the whole video, the denoising directions of the two
different sets for the same frames (frames in the middle) are actually pointing to
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two different results, thus corrupting the denoising results. The corrupted results
would even further corrupt the whole denoising process. However, it should be
noted that although corrupted, the overlapped frames now contain information
from both sets as illustrated in Fig. 3. To this end, we propose to reverse the
denoising step back and hence provide a second chance for the model to denoise
the noisy state at the same timestep. In this way, the denoising directions of
both sets are now influenced by each other, making them more likely to achieve
compatible denoising results. Assume we have obtained the denoising result vt−1

from vt. To implement the noise travel, we sample a noise ϵ′′ and add it with
vt−1. We also find that applying our proposed noise init strategy for sampling
the noise ϵ at later denoising steps can further enhance the generation color
consistency. Besides, in practice, we would typically let the denoising continue
several steps (denoted as jump length L) instead of one step for more global
information integration before noise travel, namely

v̂t =

√√√√ t∏
i=t−L+1

αivt−L +

√√√√1−
t∏

i=t−L+1

αi [(1−m)⊙ ϵ′′ +m⊙ repeat(ϵ)] .

(9)
We only apply the noise travel at early denoising steps since they are more
likely to cause denoising conflicts. We show that the nature of noise travel is
equivalent to the score distillation sampling (SDS) [22] widely applied in 3D
generation (supplementary).

4.5 Application: Creative Long Animation

Control-guided generation/edit. For achieving control-guided video gener-
ation, we norm the extracted control sequences (e.g ., pose sequences) and then
feed them into the ControlNet [44] trained on images. For editing, we follow
the SDEdit [20], perturbing the input video with white noise into certain noisy
timesteps and then denoise it with the new prompt. We find that extracting con-
trol sequences and then applying ControlNet with SDEdit can better preserve
the layout of the source video. For the noise added for editing, we find that it
also works to apply the noise init strategy instead of pure white noise.
Motion customization/alternation. Motion customization [18, 46] has been
vastly tested on short video generations. That is, several short videos with similar
motions are firstly collected to train plug-and-play adapters (e.g ., LoRA [17]).
Then, the model can generate videos with similar motions. When the user pro-
vides motion intervals (e.g ., which motion to use at which time interval), ZoLA
achieve motion customization/alternation through pre-loading the adapters into
memory and conditionally adjusting the insertion weights depending on the set
of frames selected for denoising. Take the camera pan as an example, when the
selected set of frames contains half the number of frames tagged with ‘left’ and
half frames tagged with ‘up’, then insertion weights for the ‘left’ adapter and
‘up’ adapter are all 1

2α, where α is the hyper-parameter scale factor.
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Fig. 4: Qualitative comparison. All videos are 256 frames (about 32 seconds). To
better presentation in the paper, we sample one frame every 32 frames. Our method
achieves much better long-term consistency compared to other methods, which suffer
from background sudden changes or even foreground identity changes.

Multi-prompt transition. Except for the global prompt to determine the
main content of the long animation, ZoLA can also accept a sets of local-prompt
and their corresponding intervals. Note that previous work [33] also proposes
multi-prompt transition through text embedding interpolations, we find that
interpolation will potentially corrupt the text embedding. For a selected set of
frames, we simply choose the interval containing most same frames with the
selected set, and apply its corresponding prompt as the prompt for denoising.

5 Experiments

5.1 Experimental Setup

Protocols. For quantitative experiments, We selected ten foundational mod-
els from Civitai 7. For each, we collect 10 prompts for generation. To stabilize
the metric computation, we generate 10 videos for each prompt. This is reason-
able. Considering that in the class-conditioned generation, we typically generate
dozens of samples for each class. Thus, we generate 1,000 videos in total. Each

7 https://civitai.com/

https://civitai.com/
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Table 1: Quantitative comparison of long video generation method. ↑ indicates
“higher is better” and ↓ indicates “lower is better”.

Method Metrics User study
CLIP-SIM ↑ SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ Consistency ↑ Visual Quality↑

Short 0.9693 0.6255 17.79 0.2499 / / /
Conv-Attn [6] 0.8895 0.4330 12.64 0.5892 526.1 10.2% 20.9%
Gen-L [33] 0.8891 0.4391 12.58 0.5897 440.3 21.5% 30.2%
ZoLA 0.9443 0.6091 15.44 0.3374 387.1 68.3% 48.9%

video contains 256 frames (32 seconds). The detailed models and prompts are
listed in the supplementary.
Metrics. We apply FVD [29] to measure the distribution distance between the
long animations and the short animations. We apply SSIM [37], CLIP-SIM [13],
and LPIPS [45] to measure the long animation consistency in three levels: per-
ceived quality, semantic similarity, and perceptual similarity. We also conduct a
user study to measure the animation consistency and visual quality. For FVD,
we uniformly sample 16 frames from long animations to match the short ani-
mations with the length of 16. For SSIM, LPIPS, and CLIP-SIM, we evaluated
the longer videos for quality, perceptual detail, and semantic similarity by ran-
domly comparing adjacent frames. Details of the user study are listed in the
supplementary.

5.2 Qualitative Comparison.

We present a qualitative comparison in Fig. 4, which includes a relatively static
close-up video of a person and a relatively dynamic motorcycle racing scene. Both
videos consist of 256 frames, and we extract one frame every 32 frames to better
showcase the results. The Conv-Attn captures short-range visual consistency in
scenes, but it is evident that there are many inconsistencies in the background
and even in the identity and movements of the foreground characters. The Gen-L
better captures information from adjacent segments and maintains the consis-
tency of the main character in relatively distant frames. However, we still observe
many abrupt changes and long-distance inconsistencies. Our method achieved
the best results, maintaining the best long-range consistency of the characters,
movements, and backgrounds.

5.3 Quantitative Results.

Table 1 illustrates the quantitative experimental results. ZoLA demonstrated
superior performance, closely approaching the upper bound set by Short (which
denotes the original generation ability of the short video model for short videos),
with a CLIP-SIM score of 0.9443, SSIM of 0.6091, and PSNR of 15.44. ZoLA also
achieved the best in LPIPS (0.3374) and FVD (387.1), indicating higher visual
fidelity and temporal consistency. User study further supports these findings,
with ZoLA leading in Consistency (68.3%) [4, 28] and Visual Quality (48.9%).
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Table 2: Quantitative ablation study onthe key
components of ZoLA.

CLIPSIM ↑ LPIPS ↓ Consistency ↑ Motion Quality ↑
TCD 0.880 0.533 14.2% 22.2%
LE 0.912 0.423 17.8% 23.8%
LE+NI 0.961 0.212 33.2% 18.4%
LE+NI+NT 0.953 0.249 34.8% 35.6%

Table 3: Computation com-
plexity comparison.

VRAM (GB) Time (Sec)
Video Length (Sec) 8 32 8 32

Conv-Attn 11.7 45.4 189.6 712.6
Gen-L 5.1 5.1 312.9 1284.4
ZoLA 7.3 11.8 275.2 934.5

ZoLA-CM 7.3 11.8 26.1 82.3
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Fig. 5: Visual examples of ablation study
on noise init.
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Fig. 6: Visual examples of ablation study
on noise travel.

These results underscore the effectiveness of our method in generating high-
quality long animation.

5.4 Ablation Study.

Effectiveness of each component. We conduct the quantitative ablation
study with the same prompt set to generate 500 videos (5 videos for each)
with 64 frames for each baseline. A user study with 500 comparison sets is
conducted to evaluate the consistency and motion quality. Since the temporal
co-denoising (TCD) from previous work [33] is an important baseline, we begin
with it as the baseline. As shown in the table, the length expansion (LE) from
ZoLA improves significantly against it in generation consistency. Additionally,
ZoLA noise designs also contribute to the generation consistency and motion
quality. Specifically, noise init (NI) contributes most to the consistency but can
potentially degrade the motion quality. Noise travel (NT) works to both en-
hance consistency and visual/motion quality. Note that although the LPIPS
and CLIPSIM indicate that adding NT to NI the consistency is lower, but our
user study and subjective observation show its positive impact for consistency
and motion/visual quality.
Visual examples of ablation study on the importance of noise. Fig. 5
illustrates the results of our ablation study focusing on noise init. Videos are
generated using mask ratios of 0.0, 0.5, and 1.0, respectively. The lower mask
ratios correspond to increased frame-to-frame flexibility, whereas higher ratios
result in greater frame stability. As depicted, a mask ratio of 0.5 yielded the
most favorable outcome. The 0.0 ratio lacked sufficient consistency, and a ratio
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Fig. 7: Long animation generation (8 seconds) results comparison of ZoLA with mod-
elscope and the official API. The left is to show the consistency. The right is to show
the visual quality.

of 1.0 led to noticeably constrained motion. Fig. 6 illustrates an ablation study
on the impact of noise travel in a multi-prompt generation example. Without
noise travel, the generated results showed color degradation and noticeable flaws,
especially evident in the top right corner of the image. Conversely, employing
noise travel significantly enhanced the video quality.

5.5 Discussion

Computation complexity. We report the inference time and peak GPU mem-
ory (VRAM) usage of different methods for generating 512 × 512p animations
with 8 and 32 seconds. All experiments are tested on a single A800. We exclude
the decoding process (reconstruct the frames from latents) and only compare
the denoising process. The results are shown in Table. 3, it indicates that ZoLA
achieves a great balance in inference time and GPU memory compared with
other methods. The combination with consistency models makes it significantly
more efficient for the generation with commonly affordable GPU usage.
Other models with ZoLA (Versatility of ZoLA). To show the versatility of
ZoLA, we additionally test ZoLA on modelscope [36]. As shown in Fig, 7, results
with ZoLA are significantly better than the official API. Dealing with little with
the architecture, ZoLA can be combined with various video models. Even when
stronger models are proposed in the future, we believe they can benefit from
ZoLA for longer creative animation generation.

6 Conclusion

We propose a novel inference strategy ZoLA, achieving high-quality long video
generation with video diffusion models only trained to generate short videos.
We first introduce quadratic temporal expansion for extending the length of
video generation. Then we introduce the temporal consistent noise scheduler for
alleviating potential approximation errors caused by quadratic expansion and
better global consistency. Qualitative comparisons and quantitative experiments
validate the effectiveness of ZoLA.
Limitations: Due to the zero-shot nature of ZoLA and generation stochasticity,
it is difficult to align very long animations. ZoLA might encounter inconsistency
or abrupt changes in partial details.
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