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Abstract. When deploying a semantic segmentation model into the
real world, it will inevitably encounter semantic classes that were not
seen during training. To ensure a safe deployment of such systems, it
is crucial to accurately evaluate and improve their anomaly segmenta-
tion capabilities. However, acquiring and labelling semantic segmenta-
tion data is expensive and unanticipated conditions are long-tail and
potentially hazardous. Indeed, existing anomaly segmentation datasets
capture a limited number of anomalies, lack realism or have strong
domain shifts. In this paper, we propose the Placing Objects in Con-
text (POC) pipeline to realistically add any object into any image via
diffusion models. POC can be used to easily extend any dataset with
an arbitrary number of objects. In our experiments, we present differ-
ent anomaly segmentation datasets based on POC-generated data and
show that POC can improve the performance of recent state-of-the-art
anomaly fine-tuning methods across several standardized benchmarks.
POC is also effective for learning new classes. For example, we utilize
it to augment Cityscapes samples by incorporating a subset of Pascal
classes and demonstrate that models trained on such data achieve com-
parable performance to the Pascal-trained baseline. This corroborates
the low synth2real gap of models trained on POC-generated images.
Code: https://github.com/naver/poc

Keywords: Anomaly segmentation · OOD segmentation · Inpainting

1 Introduction

When we deploy autonomous agents such as robots or self-driving cars, we ex-
pose them to the unpredictable nature of the real world. Inevitably, they will
encounter visual conditions that were not anticipated during training. In par-
ticular, the presence of unseen objects in the scene poses a significant safety
hazard. For example, consider an unknown wild animal crossing the street and
being classified by the model as “road”. To tackle this issue, it is important to dis-
tinguish out-of-distribution (OOD) categories—i.e., novel objects unseen during
training—from the in-distribution (ID) ones. In the context of semantic image
segmentation, this task is often referred to as anomaly segmentation.

https://europe.naverlabs.com/
https://github.com/naver/poc
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Fig. 1: Samples from previous OOD
datasets. FS Static has unrealistic OOD
objects while RoadAnomaly and SMIYC
datasets have strong domain shifts from
Cityscapes. FS L&F (which manually in-
serts OOD objects) and StreetHazards (full
simulation) have large set-up costs.

No OOD LowDataset shift realism Dynamic cost

FS Static [3] ✓ ✘ (✓) (✓)
FS L&F [47] (✓) ✓ ✘ ✘
SMIYC O. [5] ✘ ✓ ✘ ✘
SMIYC A. [5] ✘ ✓ ✘ ✘
RoadAn. [36] ✘ ✓ ✘ ✘
StreetHaz. [21] ✘ (✓) (✓) ✘
POC (ours) ✓ (✓) ✓ ✓

Table 1: Comparison of anomaly
test sets. We qualitatively compare
datasets on four main axes. We score
them as either good (✓), medium ((✓))
or bad (✘). Further discussion in Sec. 2.

Although several methods have been proposed that allow for segmenting
anomalies [2, 12, 16, 27, 32, 35], accurately evaluating the performance of such
methods is a challenge in itself. Given a model trained on a particular dataset,
the aim is to test its ability to distinguish OOD categories in conditions that
resemble the training domain. For example, to test a model trained for semantic
segmentation of urban scenes, the ideal test set would be constituted by images
showing OOD categories within an urban environment similar to the training
one. Yet, potential anomalies follow a long-tailed distribution and it is inefficient,
or even hazardous, to acquire and label images with arbitrary OOD objects.

Previous approaches to generating anomaly segmentation datasets can be
grouped into three families: Stitching and blending OOD objects from other
sources into images from the original dataset [3]; Collecting images from driv-
ing scenes and annotating OOD objects [5, 36, 47]; Full simulation of urban
scenes with anomalies [21]. Stitching and blending is relatively inexpensive if
OOD objects are segmented elsewhere, yet it often leads to unrealistic insertions
(e.g., object’s size or illumination). Collected images contain real anomalies, but
are expensive to acquire and have a significant distribution shift from the original
dataset (it is not easy to find or replicate images following the original setup).
Full simulation allows for perfectly blended objects but bears a high setup cost
and results in severe drifts from the training distribution. See examples in Fig. 1.

Ideally, methods to generate anomaly segmentation datasets should satisfy
four main desiderata: i) Minimal domain shift with respect to the training set—
since large domain shifts may lead to underestimating anomaly segmentation
capabilities; ii) Generating realistic images; iii) Allowing for a dynamic genera-
tion of new images with arbitrary OOD objects; iv) Incurring low setup costs.

This motivates us to introduce the Placing Objects in Context pipeline
(POC), which enables practitioners to generate anomaly segmentation test sets
by realistically inserting any object (OOD or ID) into any image on the fly. See
a comparison of approaches followed to generate previous benchmarks and the
proposed POC along our desiderata in Tab. 1.
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Fig. 2: Left: Samples of our POC-generated datasets. Top to bottom, inserted anoma-
lies are “sheep”, “dumped furniture” and “carton box”. Middle: AUPRC on different
anomaly segmentation datasets. We evaluate RbA [44] prior to fine-tuning, and after
fine-tuning with COCO objects or POC-generated images. Fine-tuning with POC im-
proves results on several benchmarks. Right: Beyond road scenes, POC can be applied
seamlessly in diverse scenes. Clockwise, inserted objects are: “sea turtle”, “person ski-
ing”, “white porcelain mug”, “inflatable flamingo”, “polar bear” and “rubber duck”.

To realistically insert new objects, we control the location of the added object
and apply only local changes to preserve the overall scene semantics. We utilize
open-vocabulary segmentation [17] to select valid regions where the object can
be placed, such as “the road”. We then feed the selected region to an inpainting
model [50] with a conditioning prompt, such as “a cat”. After inpainting, we apply
again the segmentation model to the modified area to automatically annotate
the added object and detect generation failures, i.e., when the object was not
properly generated.

In our experiments, we show that fine-tuning on POC-generated data can
significantly improve the performance of state-of-the-art anomaly segmentation
methods—outperforming models fine-tuned via the standard practice of stitching
COCO objects. We also present three POC-generated evaluation sets based on
urban scene segmentation datasets [10,54,59], and benchmark different anomaly
segmentation methods on them (see Fig. 2 (middle) for a first glimpse of results).

Finally, since POC can add arbitrary objects, we show it can be used to learn
new classes. For instance, augmenting Cityscapes [10] images with animal classes
leads to 93.14 mIoU on Pascal’s test set [14] (using the same classes) without
seeing any real animal, while directly training on Pascal yields 94.75—namely,
models trained on POC-edited images exhibit a rather small synth2real gap.

2 Related work

We cover the relevant literature on methods and datasets for anomaly segmen-
tation and on diffusion models—the research areas most related to our work.

Anomaly segmentation methods. Early works relied on approximating un-
certainty via softmax probabilities [22, 33], model ensembles [30] or dropout
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[15, 43]. Yet, models tend to be overconfident, resulting in high confidence also
for OOD samples [18,25,45]. Alternative confidence measures have been proposed
that either rely on logits [9, 21, 27, 38] or density estimators [31]. Another body
of works reconstruct images with generative models and detect anomalies as
discrepancies between original images and their reconstructions [19, 35, 36, 60].
Currently, the most promising methods use OOD data to fine-tune the mod-
els [6, 16, 58]. In particular, they crop OOD objects from COCO [34] and stitch
them in Cityscapes images. In this work, we build on three state-of-the-art OOD
fine-tuning methods [39,44,48] and combine them with POC.

Anomaly segmentation datasets. We compare existing anomaly segmen-
tation datasets across four axes (Domain shift, OOD realism, Dynamism and
Set up cost)—see Tab. 1 for a summary and Fig. 1 for sample images. The
Fishyscapes Static [3] approach involves randomly stitching OOD objects from
Pascal [14] onto Cityscapes images. While this method avoids domain shift, the
stitched OOD objects lack realism. If OOD object images and masks are avail-
able, datasets can be generated dynamically. However, if new objects are re-
quired, they must be obtained from additional datasets or from the web incurring
moderate setup costs. At the other end of the spectrum, RoadAnomaly [36]
and Segment-me-if-you-can (SMIYC) datasets [5] contain real images with
anomalies downloaded from the web. While this ensures OOD realism, it of-
ten leads to a large domain shift. Moreover, manual labelling of OOD objects
has a significant setup cost and is not dynamic, i.e., new images would need to
be acquired and labelled to generate new samples. Lost & Found [47] mim-
ics the Cityscapes setup to reduce domain shift, but OOD objects have been
inserted artificially, leading to low variability and difficulty in scaling. Street
Hazards [21] shows a fully simulated dataset that allows for dynamic genera-
tion of images while the simulation engine inserts OOD objects realistically in
terms of lighting. Yet, pose and size of the object are pseudo-random, which is
not always realistic and leads to a strong domain shift from simulation to real
images. Moreover, it requires an accurate 3D model of all objects, which bears
a significant setup cost and hinders scalability.

In contrast to prior art, our proposed pipeline is plug-and-play and allows for
adding objects into images with no setup costs. Built on top of open-vocabulary
models, it can dynamically insert any object by changing the text prompts. We
observe both qualitatively and quantitatively that our pipeline leads to greater
OOD realism and applying inpainting also helps to mitigate domain shift.

Diffusion models. Introduced by Sohl-Dickstein et al. [55], diffusion models
have led to unprecedented quality in image generation [11, 23, 52, 56]. In par-
ticular, text-to-image models condition the image generation or image editing
process on a given text prompt [46,49,50,53]. Image inpainting methods, which
insert objects locally by only modifying masked regions of an image [1, 49, 50],
are particularly relevant to our goal. General-purpose editing models that can
edit images based on text prompts [4, 42] are also related to our work. Among
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Fig. 3: Illustratation of our POC pipeline and applications. Our pipeline builds
on top of inpainting and open-vocabulary segmentation models to insert arbitrary
objects into images realistically. The resulting images can be used for different tasks.

the latter, InstructPix2Pix [4] has recently shown very realistic results following
text instructions, e.g., “make the photo look like it was taken at sunset”. Yet, we
found that it often fails to add new objects to the scene e.g., “add a dog on the
street” (see more details and illustrative images in Appendix C). In our work,
we build on Stable Diffusion [50], demonstrating its ability to realistically insert
objects into an image without requiring further training when combined with
other components (our POC pipeline).

Other works have explored the usage of Stable Diffusion [50] to handle OOD
classes. Similar to us, Du et al. [13] use text-to-image models to generate OOD
images for classification and Karazija et al. [28] for zero-shot semantic segmen-
tation. While the latter [28] relies on a frozen feature extractor and focuses on
zero-shot segmentation, we extend an existing dataset with new classes. Different
from the former [13], we target OOD in segmentation and rather than generating
fully OOD images, we insert OOD objects into images realistically. Concurrent
to our work, Loiseau et al. [41] also propose to leverage generative models to
evaluate the reliability of semantic segmentation models, while their work fo-
cuses more broadly on evaluating different aspects of uncertainty estimation, we
focus on anomaly segmentation and dataset extension.

3 Placing Objects in Context (POC)

We now present our proposed pipeline, Placing Objects in Context (POC). To
recap, our desiderata to generate OOD datasets are i) minimal shift with respect
to the training set, ii) realism, iii) dynamic generation and iv) low set-up costs.

3.1 The POC pipeline

Our pipeline builds on top of two open-source models with permissive licenses
(an important detail towards open research): an inpainting model from Stable
Diffusion (SD [50]) and an open-vocabulary segmentation model (GSAM) [17]
based on SAM [29] and GroundingDINO [37]. In the following, we detail the
main stages of our pipeline. See Fig. 3 for a comprehensive overview.
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Selecting a region for inpainting. To realistically insert objects, it’s crucial
to find suitable locations for them (i.e., a cat should not appear to be levitating).
We use GSAM [17] to segment a suitable area for inserting the object based on
a location prompt sl, e.g., “the road”. Within this valid area, we select a region
r with random size and location based on user-specified limits. To assess the
gain in realism obtained by guiding the object location vs. picking a random
location, we conducted a human study where participants were asked to choose
between image pairs with/without guided location. We find that 43% of times
the guided location was preferred vs. 18% for the random location; 39% of cases
the preference was unclear—which is reasonable, since the road category tends to
occupy a large percentage of the image. Additionally, note that generated objects
differ when inpainting in different locations, which makes the comparison harder.
We refer to Appendix D for more details and illustrative images.

Object inpainting. After selecting r, we crop a square around it (xr) and apply
SD to obtain x̃r. The strong vision grounding from SD allows adding objects
more realistically. For instance, we observe that the inpainting model tends to
adjust the size of the object (e.g., a bird will be much smaller than a garbage
bin for the same region) although there is a tendency to fill all the inpainting
area. We also observe that the illumination of the added object is adapted to the
image. This is particularly noticeable in night images from ACDC (see Fig. 2).

Automated annotation. In most downstream applications, we need the corre-
sponding mask of the added object for training or evaluation. Again, we rely on
open-vocabulary segmentation to obtain m̃ based on an object prompt so. We
observed that applying GSAM to the full image often leads to false positives; we
obtain better results by applying it only to the inpainted region. Note that, by
relying on open-vocabulary segmentation, we can provide more accurate labels
than simpler methods like foreground/background segmentation [28] that can-
not distinguish between a bicycle and its rider. During this step, we also reject
images with generation failures (e.g., the object was not generated or it was very
unrealistic) if GSAM does not detect the generated object.

Object blending. While SD tends to preserve the details of the original im-
age, it introduces slight modifications to the textures and sometimes noticeable
changes, e.g., in lane markings. To reduce undesired edits, we blend the original
image x and the inpainted one x̃ as: x̃ := (1−m)⊙x+m⊙ x̃ where := indicates
an update operation, ⊙ is the element-wise product and m = G(m̃) is the ob-
ject mask convolved with a Gaussian kernel. This allows for a smooth transition
between the inpainted object and the rest of the image while preserving some
realistic local modifications, like shadows or reflections. We also considered ap-
plying an image2image (I2I) [24] generative model with an empty prompt after
inpainting, but a human study showed that in 71% of the cases I2I blending did
not improve results significantly, in 25% it introduced artifacts that significantly
reduced realism and only in 4% of the cases participants preferred I2I blending
(see Appendix E). In light of this, we only used the gaussian blending.
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3.2 Generating datasets with POC

Although our pipeline can be used for multiple applications, we consider two
main ones: i) extending datasets for anomaly segmentation and ii) learning new
classes. In both cases, we use Cityscapes classes as the known one; regardless of
the number of added classes, all POC-datasets have 3× the size of Cityscapes—
i.e., we augment each image three times with randomly sampled prompts. Note
that this does not lead to any imbalance in terms of fine-tuning steps, since all
training schedules have the same total amount of iterations.

Generation prompts. In all datasets we follow a similar approach. Each object
class has an object prompt so, or several for diversity (e.g., “car”, “suv”, “van”
all belong to the Cityscapes class “car”). Then, we build the inpainting prompt
as si = “A good photo of {so}”. Given that the datasets we use are all for
autonomous driving applications, we use the location prompt sl = “the road” for
all objects except the class “bird”, which has unconstrained location. We found
this simple approach to yield good results without further prompt engineering.

Generating OOD test sets. To evaluate anomaly segmentation methods, we
generate three new test sets, namely CS-POC, IDD-POC and ACDC-POC.
We start from the Cityscapes [10], IDD [59], and ACDC [54] test sets (which
have increasing domain shift w.r.t. Cityscapes [26]) and use the same list of
OOD objects to augment the images within the test set. Our motivation is to
disentangle the difficulty in detecting OOD objects vs. the difficulty caused by
a large distribution shift on the ID classes (while the OOD classes remain the
same). Another goal is to showcase that POC can be used with different datasets
seamlessly. All POC datasets contain 25 different OOD classes arbitrarily chosen
to be plausible anomalies in an urban environment (e.g., wild animals, garbage
bags and bins, etc. ). Given our OOD objects are all synthetic, following [3] we
also add ID objects (e.g., cars or persons) to ensure the model is not “simply”
performing synth vs. real discrimination. See the full list in Appendix A.

Note that, while we focus on urban segmentation datasets for consistency
with previous work, POC can be applied to arbitrary datasets (see Fig. 2, right)

Generating OOD fine-tuning sets. Recent OOD fine-tuning methods [39,
44,48] use COCO classes not present in Cityscapes to extract OOD objects. For
consistency, we generate POC coco using the names of COCO classes used in pre-
vious works as prompts to inpaint them with POC (as opposed to cropping and
stitching from COCO images). Moreover, we generate POC alt., an alternative
fine-tuning dataset with different OOD classes (the ones used in our evaluation
sets) to assess the dependence of the fine-tuning methods on the OOD objects.

Extending datasets to learn new classes. Given a dataset D with a set
of classes K, we consider the task of generating an extended dataset D̃ with a
set of classes K̃ = K ∪ U . This dataset can be used to train models that may
perform well on both D and on samples containing the additional classes from
U . Following the autonomous driving use-case, we extend the Cityscapes dataset
with the 6 animal classes present in the PASCAL dataset (which we use for
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evaluation). Our motivation is that wild animals cause accidents [51] and being
able to segment them individually (not just as anomalies) might help preventing
collisions. We call this dataset POC-A. We further add the same classes on the
CS test set which we refer to as CS extended. Additionally, we generate POC-
CS+A, where we inpaint both animal classes and Cityscapes classes.

OOD FS Static FS Lost&Found SMIYC Anomaly SMIYC ObstacleFT data F1↑ AuPRC↑FPR↓ F1↑ AuPRC↑FPR↓ F1↑ AuPRC↑FPR↓ F1↑ AuPRC↑FPR↓

No ft. 65.4 60.1 7.4 45.5 36.8 13.9 88.6 93.0 3.9 69.3 73.6 6.9
COCO 82.7 88.4 2.2 70.9 64.5 13.1 90.5 94.7 3.3 90.0 94.8 0.4
POC alt. 82.6 87.4 3.1 74.5 68.8 11.4 92.2 93.8 2.1 90.8 95.3 0.3

M2A
[48]

POC c. 82.0 87.0 2.1 76.5 73.0 9.2 88.8 92.1 8.4 91.4 96.0 0.1

No ft. 21.0 13.9 38.5 5.4 1.6 66.3 50.2 53.0 39.6 46.0 45.2 3.2
COCO 83.8 89.6 1.2 58.0 58.4 3.2 73.4 78.3 18.1 89.7 94.3 0.3
POC alt. 88.4 94.4 0.7 70.3 74.2 2.7 69.4 78.2 26.9 89.8 93.6 0.9

RPL
[39]

POC c. 88.5 95.1 0.5 69.5 69.2 1.6 62.7 68.0 46.8 87.8 92.3 0.9

No ft. 58.2 59.2 17.7 63.7 61.0 10.6 86.5 86.9 86.4 92.8 95.9 0.2
COCO 67.0 72.2 4.0 69.7 70.9 8.7 84.7 91.1 5.4 94.9 98.2 .04
POC alt. 68.3 77.2 3.4 74.0 76.7 5.4 86.5 90.5 4.4 94.9 98.4 .04

RbA
[44]

POC c. 68.6 77.6 3.3 76.5 78.9 3.3 85.2 89.4 5.0 94.6 98.4 .04

OOD RoadAnomaly Cityscapes–POC IDD–POC ACDC–POCFT data F1↑ AuPRC↑FPR↓ F1↑ AuPRC↑FPR↓ F1↑ AuPRC↑FPR↓ F1↑ AuPRC↑FPR↓

No ft. 54.8 55.7 52.2 40.9 35.4 13.1 45.6 42.9 12.0 18.6 10.3 26.7
COCO 77.2 78.9 18.5 88.3 93.9 0.5 81.0 85.5 1.0 70.8 72.8 6.2
POC alt. 81.5 82.3 36.7 91.4 95.8 0.4 82.8 87.7 1.1 74.0 74.5 7.6

M2A
[48]

POC c. 78.9 78.0 24.6 89.1 94.7 0.4 83.1 89.1 1.3 72.8 72.0 8.4

No ft. 24.4 15.0 70.4 22.7 13.8 44.9 8.0 3.5 61.4 3.3 1.3 79.0
COCO 60.1 59.2 27.1 82.1 88.4 0.7 72.4 78.7 1.8 63.6 65.4 2.6
POC alt. 66.4 69.4 21.7 86.1 93.2 0.5 79.7 85.8 1.0 79.4 85.7 0.8

RPL
[39]

POC c. 61.4 64.2 21.4 87.6 94.3 0.4 82.8 90.0 0.7 76.0 81.2 1.3

No ft. 72.8 78.4 11.8 73.5 77.9 3.7 65.5 65.1 78.9 24.2 18.7 90.0
COCO 78.5 83.4 8.3 87.2 92.9 0.5 79.2 85.3 1.2 33.4 32.0 11.2
POC alt. 78.3 84.1 8.3 89.3 95.0 0.4 83.7 89.1 0.7 55.0 58.4 8.4

RbA
[44]

POC c. 77.3 83.0 8.8 90.5 95.8 0.3 83.8 89.1 0.9 57.6 61.1 9.1

Table 2: Anomaly segmentation results after OOD finetuning. We use three
recent OOD fine-tuning methods (FT) and report results prior to fine-tuning (No ft.),
after fine-tuning with COCO objects and using our POC pipeline to inpaint COCO
objects (POC c.) or an alternative set of 25 objects likely to be found on the street
(POC alt.). Best and second best numbers for each method are highlighted in bold
and underlined, respectively. The best number over all methods is shaded in gray.
Our pipeline improves performance in most cases. Moreover, COCO fine-tuning leads
to significant improvements in our POC eval sets, consistent with previous benchmarks.

4 POC for anomaly segmentation

As already discussed, to reliably evaluate the risk of deploying a model in a cer-
tain scenario, we need to test on images with minimal distribution shift w.r.t. the
original distribution and with realistic OOD objects. Similarly, we hypothesize
that fine-tuning anomaly segmentation models with more realistic anomalies
will improve results. To test this hypothesis, we take three recent methods for
OOD fine-tuning that rely on stitching COCO objects into CS images; instead
of stitching, we use our POC pipeline to generate the anomalies for fine-tuning.
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4.1 Experimental setting

Anomaly segmentation methods. RPL [39] learns a module to detect anoma-
lies via contrastive learning, on top of a segmentation network that is kept frozen.
This allows improving OOD detection with minimal degradation to the closed-
set performance. Mask2Anomaly (M2A) [48] and RbA [44] are both based on the
novel Mask2Former architecture [8] which performs segmentation at the mask
level, i.e., by grouping pixels into “masks” and classifying the whole masks into
the closed-set categories. This significantly reduces the pixel-level noise on the
anomaly scores. RbA [44] performs OOD fine-tuning with a squared hinge loss
while M2A [48] also uses contrastive learning. We use the original code with
default settings for each method and only modify the fine-tuning dataset.

OOD fine-tuning data. For each method, we consider different ways of gen-
erating the anomaly fine-tuning datasets. First, we consider a baseline where no
fine-tuning occurs (No ft. in our tables). Then, we consider fine-tuning on COCO
stitching [6]. When we fine-tune using our POC-generate images, we consider two
cases: POC coco (inpainting the same classes as COCO stitching) and POC alt.
(inpainting alternative classes, more likely to be found on the street).

Anomaly datasets and metrics. For evaluation, we employ five commonly
used datasets, namely Fishyscapes [3], Segment Me If You Can (object and
anomaly) [5], Road Anomaly [36] and Lost and Found [47] already discussed
in Sec. 2. Additionally, we evaluate on our POC-generated test sets. Following
previous work [6, 39], we compute three different metrics: maximum F1 score
over all thresholds (F1∗), Area under the Precision-Recall Curve (AuPRC) and
False Positive Rate at 95% recall (FPR).

4.2 Results

POC improves OOD detection. In Tab. 2, we show that fine-tuning with
POC coco is remarkably better than the No ft. baseline despite only using
synthetic anomalies. Moreover, POC coco brings important improvements over
COCO fine-tuning in some settings. For instance, in FS Static (for RPL or RbA),
in SMIYC Obstacle (for M2A or RbA) and in FS Lost & Found (for all methods).
In other settings, it is competitive with COCO fine-tuning—except in SMIYC
Anomaly (for RPL), where we observe a significant drop. One reason may be
the strong domain shift in SMIYC Anomaly, limiting the benefits of using more
realistic data. On the other hand, in FS Lost & Found, which has the closest
setting to Cityscapes and real OOD objects, we carry the largest improvements.

Robustness to the choice of OOD classes. We observe that fine-tuning
with POC alt., with different OOD classes than COCO, leads to strong results,
improving over the COCO baseline in several settings and sometimes surpassing
POC coco. This shows that these methods are somewhat robust to the choice
of the OOD classes. The flexibility of the POC pipeline allows studying which
classes are best depending on the use-case, a possible direction for future work.
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Fig. 4: Anomaly score maps. Per-pixel anomaly scores on POC-generated images
obtained with M2A [48], before and after fine-tuning with COCO and POC data.
COCO and POC fine-tuning have notable improvements over the No ft. baseline,
e.g., note the garbage bag or matress in second and third images.

Finally, note that the best score of all methods (highlighted with gray back-
ground) corresponds to one of the POC fine-tuning in most settings.
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Fig. 5: Boxplots of anomaly scores. All
datasets have consistently very high scores
for OOD pixels while ID pixels of datasets
with strong distribution shifts also have shifted
scores. Thus, distribution shifts may lead to un-
derestimated performance.

Performance on POC test
sets. As expected, POC fine-
tuning performs best on our
POC-generated test sets (see
Cityscapes-POC, ACDC-POC and
IDD-POC in Tab. 2). Yet, fine-
tuning with COCO also leads
to notable improvements, similar
to the ones observed in previ-
ous datasets. This suggests that
POC datasets accurately reflect
anomaly segmentation capabili-
ties and can be used to efficiently
build test sets. Interestingly, we also observe that POC alt. does not always out-
perform POC coco despite sharing the same OOD classes as the POC test sets.
One explanation could be that POC coco has more OOD classes (80 compared
to 25 in POC alt.), hence, more diversity.
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Domain shifts hinder anomaly segmentation. Considering our synthetic
evaluation datasets, moving from POC-CS to POC-IDD and POC-ACDC we
observe a drop in performance in all methods. Since the sets contain the same
anomaly classes, the drop is due to the domain shift between train and evaluation
rather than hard-to-detect anomalies. Additionally, in Fig. 5 we show boxplots
of the predicted anomaly scores (higher numbers reflecting higher chance of
anomaly) for ID vs.OOD pixels. OOD pixels have very high scores independently
of the dataset, while ID scores vary significantly between datasets. Datasets with
strong domain shifts (i.e., SMIYC Anomaly, RoadAnomaly and POC-ACDC)
carry larger ID anomaly scores. While anomaly segmentation under domain shift
might also be an interesting task, we argue that, in practice, agents will be
deployed in areas well represented by the training set. To accurately evaluate
the risk represented by anomalies, there should be no domain shift.

POC Pipeline T2I Full T2I Crop

Fig. 6: Training image samples. Text2Image
(T2I) compositions are often unrealistic. Moreover,
sometimes they are misaligned with the caption,
e.g., “an image of a dog” leading to a collage of dog
images. More samples in Appendix G.

Anomaly segmentation maps.
In Fig. 4 we show per-
pixel anomaly scores on POC-
generated images computed
with Mask2Anomaly [48] prior
to fine-tuning and after fine-
tuning either with COCO or
POC data. Aside from the
inpainted anomalies (labelled
in gray), we observe that in
ACDC (Top) the night sky
has a particularly high score
and in IDD (Middle) a pe-
culiar instance of a known
class (the all-road car) is
also highlighted, potentially
misleading anomaly segmen-
tation. More examples can be
found in Appendix H.

5 POC to learn new classes

Besides anomaly segmentation, another natural application of our POC pipeline
is dataset extension. In this final experimental section, we study this task in two
dimensions: i) adding novel objects to learn new classes and ii) adding instances
of existing classes to improve generalization.

5.1 Experimental settings

Extended datasets. Like in our previous experiments, we use Cityscapes as our
base dataset. Motivated by autonomous driving, we are interested in learning
new classes that could potentially cause road accidents if left undetected.
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Pascal PascalArch. Train set CS CS ext. (A) (CS)

Pascal(b) – – 80.6 85.8
CS(b) 79.1 – – 42.2
T2IFull 77.1 73.2 28.3 23.5
T2ICrop 78.2 81.5 26.2 25.1
POCA 80.0 84.1 30.4 35.8

DLV3+

POCCS+A 79.9 83.8 28.1 53.6

Pascal(b) – – 94.4 93.9
CS(b) 81.6 – – 70.5
T2IFull 82.3 83.0 60.4 65.6
T2ICrop 82.4 86.0 61.1 67.6
POCA 82.9 86.7 65.5 70.9

CNXT

POCCS+A 82.5 86.1 69.8 82.4

Pascal(b) – – 94.8 91.4
CS(b) 76.2 – – 79.9
T2IFull 77.2 79.5 82.0 74.3
T2ICrop 77.6 81.3 76.0 75.4
POCA 78.5 82.3 92.4 79.1

Segm.

POCCS+A 78.4 81.9 93.1 89.6

GSAM (*) 42.0 41.1 75.1 76.1

Table 3: mIoU evaluation. We train three
different models on Pascal and Cityscapes as
baselines (b), and compare two Text2Image
(T2I) generation methods with our POC. CS
and A indicate Cityscapes and Pascal’s ani-
mals classes, respectively. (*) We also compare
with GSAM, the open vocabulary model used to
automatically generate the masks of inpainted
objects in POC, for completeness. GSAM is
trained on multiple datasets [17].

Thus, we add animal classes to
obtain POC A and POC CS+A
(animal and Cityscapes classes).
Similar to OOD detection, find-
ing a test set is challenging
(i.e., Cityscapes images with an-
imals). Inspired by Karazija et
al. [28], we use Pascal [14] ani-
mal classes to assess performance
of POC-trained models. For com-
pleteness, we also evaluate on the
test set of Cityscapes extended
with POC (CS ext.).

T2I baseline. Karazija et al. [28]
use text2image diffusion models
to cluster the features of a frozen
model for zero-shot segmentation.
As this work closely relates to
our task, for completeness we in-
clude two augmented datasets in
our experiments: T2I Full and
T2I Crop where we take the Full
(or cropped) image generated by
a T2I model and stitch it into
Cityscapes images (we use the
text2image model from the same
work used in our POC [50]). Fig. 6
shows a comparison of the synthetic datasets. T2I baselines often lead to un-
realistic object size and position. Moreover, T2I models often generate images
misaligned with our goal (e.g., a composition of many small dog images). We gen-
erate labels with the same open-vocabulary model as our POC pipeline, which
is more flexible than foreground/background segmentation—suggested in [28].

Architectures. We perform experiments using three different architectures:
DLV3+ [7] with a ResNet101 backbone [20]; ConvNext [40], a recent convolu-
tional architecture with UPerNet [61]; and Segmenter [57], a recent transformer
architecture designed for segmentation. We use the default training settings for
each model. Note that our goal is not to compare architectures, but rather to
evaluate the various methods employed to expand the datasets.

5.2 Results

POC performs better than T2I baselines. In Tab. 3 we show the mIoU for
each model after training using our different datasets, as well as two baselines
trained on Cityscapes and Pascal. For all architectures, we find that training
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Fig. 7: Qualitative results. We present results on web images of road scenes with
animals that have a milder domain shift from Cityscapes compared to Pascal images.
Qualitatively, we observe less notable differences between CNXT and Segmenter but
DLV3+ is still significantly worse. More results in Appendix I.

with POC datasets leads to better results than their T2I counterparts on CS
extended and Pascal (A)—that is, Pascal’s animal classes. We argue that this is
due to the more realistic generated images (see Fig. 6). Interestingly, POC also
improves performance on the original Cityscapes. Extending the set of classes
might act as a form of regularization, but this requires further investigation.

Generalization is key to learn from synthetic data. We observe that
the performance of DLV3+ trained on POC A—Cityscapes images with POC-
inpainted animal classes—when evaluated on Pascal’s animal classes (30.43 mIoU)
is much lower than that of Segmenter (92.4 mIoU), which achieves an mIoU
competitive with the baseline trained directly on Pascal (94.75). In order to un-
derstand that gap, we evaluate the performance of these models on the Pascal
classes that are present on Cityscapes (i.e., car, motorcycle, bike, person, train
and bus). Interestingly, we observe that when trained on Cityscapes (without
any inpainted classes) DLV3+ still has a much lower mIoU than Segmenter.
This shows that DLV3+ has much less generalization capability independently
of the synthetic classes. One could argue that perhaps the low performance of
DLV3+ on Pascal is due to the large domain shift, however, in Fig. 7 we show
qualitative results on web images of driving scenes, closer to the Cityscapes
domain, and still observe that DLV3+ is notably worse than the other methods.

We hypothesize that, in order to learn transferable features from synthetic
data, the generalization capability of the model plays a key role. Indeed, although
generative models have improved the realism of generated content remarkably,
there is still a synth2real gap. Thus, more robust models (i.e., with strong trans-
ferability of learned features) may be able to extract more useful features rather
than overfitting to brittle patterns in generated data.

We also note that the ResNet backbone in DLV3+ is pre-trained on the
smaller Imagenet 1k, while ConvNeXt and Segmenter use Imagenet 21k; this
might play a role, too. Nevertheless, there is also a gap between ConvNeXt and
Segmenter in generalization, which cannot be explained by pre-training alone.
Perhaps self-attention or image tokenization are relevant, but this would require
a more in-depth analysis which is out of the scope of this work.
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POC to augment existing classes. When evaluating the performance of Seg-
menter trained on POC A (containing the original Cityscapes classes extended
with POC-added animal classes) we see a gap between Pascal (A) and Pascal
(CS). This compels us to also inpaint Cityscapes classes with POC, obtaining
POC CS+A. Training with the latter dataset, leads to remarkable improvements
in Pascal (CS classes) in all three networks, significantly outperforming the base-
line that was only trained on Cityscapes. Coupled with the milder but consistent
improvement on the original Cityscapes, this indicates that our pipeline could
also be helpful in improving in-distribution generalization.

Open vocabulary baseline. Since we rely on a open-vocabulary segmentation
method (GSAM [17]) to label objects inserted with POC, we also evaluate its per-
formance as a baseline. Interestingly, although we find the performance on Pascal
reasonable, GSAM significantly underperforms other models on Cityscapes. We
hypothesize this may be due to the one-vs-all nature of open-vocabulary predic-
tors (where each class is predicted individually with a prompt) that does not
perform well on complex images with many classes. Interestingly, the Segmenter
model trained with POC significantly outperforms GSAM on Pascal.

Our dataset extension can be interpreted as a form of knowledge distillation
from a teacher model (GSAM), which has been used to label the new classes in
POC-extended datasets, while significantly improving its performance. On the
other hand, note that the test setting is very different from the context in which
we use GSAM in the POC pipeline, since in the latter we know the object that
is being inpainted and only apply GSAM to the cropped region.

6 Concluding remarks

To accurately assess anomaly segmentation capabilities of models deployed in
open-world settings, we argue that datasets should be realistic and carry a small
domain shift with respect to the training distribution, as we show it can hinder
OOD detection. Towards this goal, we introduce the Placing Object in Context
(POC) pipeline, that allows adding any object into any image based on simple
text prompting. POC uses diffusion models and open-vocabulary segmentation
to achieve high realism and versatility.

We showcase POC’s flexibility by generating three anomaly segmentation
test sets: POC-CS, POC-IDD and POC-ACDC. Moreover, we observe that gen-
erating data for OOD fine-tuning with POC brings significant improvements
in standard anomaly segmentation benchmarks. Beyond anomaly segmentation,
we use POC-generated datasets to learn new classes without any real example.
Interestingly, we observe that the combination of more realistic synthetic data
with recent segmentation models with strong generalization capabilities can lead
to a remarkable performance, competitive with training on real data.

In future work, we hope to better understand how to select the optimal set
of anomalies for fine-tuning and how modern architectures can effectively rely
on synthetic data to learn new classes.



Placing Objects in Context via Inpainting 15

Acknowledgements

This work is supported by the UKRI grant: Turing AI Fellowship EP / W002981
/ 1. We would also like to thank the Royal Academy of Engineering.

References

1. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of
natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 18208–18218 (2022)

2. Besnier, V., Bursuc, A., Picard, D., Briot, A.: Triggering failures: Out-of-
distribution detection by learning from local adversarial attacks in semantic seg-
mentation. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 15701–15710 (2021)

3. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: Fishyscapes: A bench-
mark for safe semantic segmentation in autonomous driving. In: proceedings of the
IEEE/CVF international conference on computer vision workshops. pp. 0–0 (2019)

4. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 18392–18402 (2023)

5. Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R., Fua, P.,
Salzmann, M., Rottmann, M.: Segmentmeifyoucan: A benchmark for anomaly seg-
mentation. arXiv preprint arXiv:2104.14812 (2021)

6. Chan, R., Rottmann, M., Gottschalk, H.: Entropy maximization and meta classifi-
cation for out-of-distribution detection in semantic segmentation. In: Proceedings
of the ieee/cvf international conference on computer vision. pp. 5128–5137 (2021)

7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelli-
gence 40(4), 834–848 (2017)

8. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
mask transformer for universal image segmentation. In: Proceedings of the IEEE
International Conference on Computer Vision (2022)

9. Corbière, C., Thome, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure pre-
diction by learning model confidence. Advances in Neural Information Processing
Systems 32 (2019)

10. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016)

11. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in neural information processing systems 34, 8780–8794 (2021)

12. Di Biase, G., Blum, H., Siegwart, R., Cadena, C.: Pixel-wise anomaly detection in
complex driving scenes. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 16918–16927 (2021)

13. Du, X., Sun, Y., Zhu, X., Li, Y.: Dream the impossible: Outlier imagination with
diffusion models. arXiv preprint arXiv:2309.13415 (2023)



16 de Jorge et al.

14. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
(2012)

15. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: international conference on machine learn-
ing. pp. 1050–1059. PMLR (2016)

16. Grcić, M., Bevandić, P., Šegvić, S.: Densehybrid: Hybrid anomaly detection for
dense open-set recognition. In: European Conference on Computer Vision. pp.
500–517. Springer (2022)

17. Grounded-SAM Contributors: Grounded-Segment-Anything. LICENSE Apache-
2.0. https://github.com/IDEA-Research/Grounded-Segment-Anything (Apr
2023)

18. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: International conference on machine learning. pp. 1321–1330. PMLR
(2017)

19. Haldimann, D., Blum, H., Siegwart, R., Cadena, C.: This is not what i imag-
ined: Error detection for semantic segmentation through visual dissimilarity. arXiv
preprint arXiv:1909.00676 (2019)

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

21. Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Kwon, J., Mostajabi, M., Stein-
hardt, J., Song, D.: Scaling out-of-distribution detection for real-world settings.
arXiv preprint arXiv:1911.11132 (2019)

22. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

23. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

24. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

25. Jiang, H., Kim, B., Guan, M., Gupta, M.: To trust or not to trust a classifier.
Advances in neural information processing systems 31 (2018)

26. de Jorge, P., Volpi, R., Torr, P.H., Rogez, G.: Reliability in semantic segmenta-
tion: Are we on the right track? In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 7173–7182 (2023)

27. Jung, S., Lee, J., Gwak, D., Choi, S., Choo, J.: Standardized max logits: A sim-
ple yet effective approach for identifying unexpected road obstacles in urban-scene
segmentation. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 15425–15434 (2021)

28. Karazija, L., Laina, I., Vedaldi, A., Rupprecht, C.: Diffusion models for zero-shot
open-vocabulary segmentation. arXiv preprint arXiv:2306.09316 (2023)

29. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint
arXiv:2304.02643 (2023)

30. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information pro-
cessing systems 30 (2017)

https://github.com/IDEA-Research/Grounded-Segment-Anything


Placing Objects in Context via Inpainting 17

31. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Advances in neural information
processing systems 31 (2018)

32. Liang, C., Wang, W., Miao, J., Yang, Y.: Gmmseg: Gaussian mixture based gen-
erative semantic segmentation models. Advances in Neural Information Processing
Systems 35, 31360–31375 (2022)

33. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

34. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

35. Lis, K., Honari, S., Fua, P., Salzmann, M.: Detecting road obstacles by erasing
them. arXiv preprint arXiv:2012.13633 (2020)

36. Lis, K., Nakka, K., Fua, P., Salzmann, M.: Detecting the unexpected via image
resynthesis. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 2152–2161 (2019)

37. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu,
J., et al.: Grounding dino: Marrying dino with grounded pre-training for open-set
object detection. arXiv preprint arXiv:2303.05499 (2023)

38. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection.
Advances in neural information processing systems 33, 21464–21475 (2020)

39. Liu, Y., Ding, C., Tian, Y., Pang, G., Belagiannis, V., Reid, I., Carneiro, G.:
Residual pattern learning for pixel-wise out-of-distribution detection in seman-
tic segmentation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 1151–1161 (2023)

40. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11976–11986 (2022)

41. Loiseau, T., Vu, T.H., Chen, M., Pérez, P., Cord, M.: Reliability in semantic seg-
mentation: Can we use synthetic data? arXiv preprint arXiv:2312.09231 (2023)

42. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Guided
image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073 (2021)

43. Mukhoti, J., Gal, Y.: Evaluating bayesian deep learning methods for semantic
segmentation. arXiv preprint arXiv:1811.12709 (2018)

44. Nayal, N., Yavuz, M., Henriques, J.F., Güney, F.: Rba: Segmenting unknown re-
gions rejected by all. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 711–722 (2023)

45. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp. 427–436 (2015)

46. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

47. Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., Mester, R.: Lost and
found: detecting small road hazards for self-driving vehicles. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 1099–
1106. IEEE (2016)



18 de Jorge et al.

48. Rai, S.N., Cermelli, F., Fontanel, D., Masone, C., Caputo, B.: Unmasking anoma-
lies in road-scene segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 4037–4046 (2023)

49. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
1(2), 3 (2022)

50. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

51. Saad, W., Alsayyari, A.: Loose animal-vehicle accidents mitigation: Vision and
challenges. In: 2019 International Conference on Innovative Trends in Computer
Engineering (ITCE). pp. 359–364. IEEE (2019)

52. Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., Norouzi,
M.: Palette: Image-to-image diffusion models. In: ACM SIGGRAPH 2022 Confer-
ence Proceedings. pp. 1–10 (2022)

53. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35, 36479–36494 (2022)

54. Sakaridis, C., Dai, D., Van Gool, L.: Acdc: The adverse conditions dataset with
correspondences for semantic driving scene understanding. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 10765–10775 (2021)

55. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: International conference
on machine learning. pp. 2256–2265. PMLR (2015)

56. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems 32 (2019)

57. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: Transformer for seman-
tic segmentation. In: Proceedings of the IEEE/CVF international conference on
computer vision. pp. 7262–7272 (2021)

58. Tian, Y., Liu, Y., Pang, G., Liu, F., Chen, Y., Carneiro, G.: Pixel-wise energy-
biased abstention learning for anomaly segmentation on complex urban driving
scenes. In: European Conference on Computer Vision. pp. 246–263. Springer (2022)

59. Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M., Jawahar, C.: Idd:
A dataset for exploring problems of autonomous navigation in unconstrained envi-
ronments. In: 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV). pp. 1743–1751. IEEE (2019)

60. Xia, Y., Zhang, Y., Liu, F., Shen, W., Yuille, A.L.: Synthesize then compare:
Detecting failures and anomalies for semantic segmentation. In: Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part I 16. pp. 145–161. Springer (2020)

61. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene
understanding. In: Proceedings of the European conference on computer vision
(ECCV). pp. 418–434 (2018)


	Placing Objects in Context via Inpainting for Out-of-distribution Segmentation

