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A Detailed Proof of Equation 8

We can obtain the sample xt−1 with condition label y, according to the sam-
pling with the classifier-free guidance. To get the unrestricted adversarial exam-
ple x∗

t−1, we add adversarial guidance to the conditional sampling process with
Equation 8. With Bayes’ theorem, we want to deduce the adversarial sampling
with adversarial guidance at timestep t by:

p(x∗
t−1|ya) =

p(ya|x∗
t−1)p(x

∗
t−1)

p(ya)
(11)

with Equation 11, we want to sample the adversarial examples with the target
label ya. Starting from xt, the sampling of the reverse generation process with
AdvDiff is:

p(x∗
t−1|xt, ya) =

p(ya|x∗
t−1, xt)p(x

∗
t−1|xt)

p(ya|xt)
(12)

Noted that Equation 12 is the same as the deviation of classifier-guidance in [8]’s
Section 4.1, where they treated p(ya|xt) as a constant. Because p(x∗

t−1|xt) is
the known sampling process by our conditional diffusion sampling, we evaluate
p(ya|x∗

t−1,xt)

p(ya|xt)
by:

log pf (ya|x∗
t−1)− log pf (ya|xt) (13)

We can approximate Equation 13 using a Taylor expansion around x∗
t−1 = µ(xt)

as:

log pf (ya|x∗
t−1)− log pf (ya|xt) ≈ log pf (ya|µ(xt))

+ (x∗
t−1 − µ(xt))∇µ(xt) log pf (ya|µ(xt))

− log pf (ya|xt) + C

= (x∗
t−1 − µ(xt))∇µ(xt) log pf (ya|µ(xt)) + C

(14)
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Assume p(x∗
t−1|xt) = N (x∗

t−1;µ(xt), σ
2
t I) ∝ e−(x∗

t−1−µ(xt))
2/2σ2

t , we have:

p(x∗
t−1|xt, ya) ∝ e−(x∗

t−1−µ(xt))
2/2σ2

t+(x∗
t−1−µ(xt))∇µ(xt)

log pf (ya|µ(xt))

∝ e−(x∗
t−1−µ(xt)−σ2

t∇µ(xt)
log pf (ya|µ(xt)))

2/2σ2
t+(∇µ(xt)

log pf (ya|µ(xt)))
2/2σ2

t

∝ e−(x∗
t−1−µ(xt)−σ2

t∇µ(xt)
log pf (ya|µ(xt)))

2/2σ2
t+C

≈ N (x∗
t−1;µ(xt) + σ2

t∇µ(xt) log pf (ya|µ(xt)), σ
2
t I) (15)

Sampling with Equation 15 should be:

x∗
t−1 = µ(xt, y) + σtε+ σ2

t s∇µ(xt) log pf (ya|µ(xt)) (16)

where µ(xt, y) is the conditional mean value and ε is sampled from ε ∼ N (0, I).
Note that µ(xt, y)+σtε is the normal sampling process that we will get xt−1. In
practice, in each diffusion step, the difference between xt−1 and µ(xt) should be
small enough [8, 12] for a reasonable and stable diffusion sampling. Therefore,
we adopt xt−1 to calculate the adversarial gradient after the sampling with the
conditional diffusion model, and we have:

x∗
t−1 = µ(xt, y)+σtε+σ2

t s∇µ(xt) log pf (ya|µ(xt)) ≈ xt−1+σ2
t s∇xt−1 log pf (ya|xt−1)

(17)
where s is the adversarial guidance scale. □

B Detailed Proof of Equation 10

The deviation of Equation 10 is similar to Equation 8, where the noise sampling
guidance is added with the forward diffusion process. Similarly, we have Equation
9:

p(xT |ya) =
p(ya|xT )p(xT )

p(ya)
=

p(ya|xT , x0)p(xT |x0)

p(ya|x0)
(18)

And Taylor expansion around xT = x0 to evaluate p(ya|xT ,x0)
p(ya|x0)

.

log pf (ya|xT )− log pf (ya|x0) = (xT − x0)∇x0
log pf (ya|x0) + C (19)

From x0 to xT , we gradually add the Gaussian noise with the predefined schedule
[12]:

p(xT |x0) = N (xT ;
√
ᾱTx0, (1− ᾱT )I) (20)

The noise sampling guidance is as follows:

xT ≈ (µ̄(x0, y) + σ̄T ε) + σ̄2
Ta∇x0 log pf (ya|x0)

= xT + σ̄2
Ta∇x0

log pf (ya|x0) (21)

where µ̄(x0, y) + σ̄T ε is the forward diffusion process to get xT with x0 and a is
the noise sampling guidance scale. □
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Algorithm 2 DDIM Adversarial Diffusion Sampling
Require: ya: target label for adversarial attack
Require: y: ground truth class label
Require: s, a: adversarial guidance scale
Require: w: classification guidance scale
Require: N : noise sampling guidance steps
Require: T : reverse generation process timestep
1: xT ∼ N (0, I)
2: xadv = ∅
3: for i = 1 . . . N do
4: for t = T, . . . , 1 do
5: ϵ̃t = (1 + w)ϵθ(xt, y)− wϵθ(xt)
6: ϵ̂t = ϵ̃t −

√
1− ᾱt∇xt log pf (ya|xt)

7: Classifier-free DDIM sampling xt−1 with ϵ̂t
8: end for
9: Obtain classification result from f(x0)

10: Compute the gradient with log pf (ya|x0)
11: Update xT by xT = xT + a∇x0 log pf (ya|x0)
12: xadv ← x0 if f(x0) = ya
13: end for
14: return xadv

C AdvDiff for DDIM

We give the derivation for AdvDiff for DDIM followed with [8]. The score function
for the DDIM diffusion model is:

∇x log pf (x|y) = ∇x log pf (x) +∇x log pf (y|x) (22)

We set y as our adversarial guidance ya:

∇x log pf (x|ya) = ∇x log pf (x) +∇x log pf (ya|x)

= − 1√
1− ᾱ

ϵθ(x) +∇x log pf (ya|x) (23)

Finally, the new epsilon prediction ϵ̂θ(xt) is defined as follows:

ϵ̂θ(xt) = ϵθ(xt)−
√
1− ᾱt∇xt

log pf (ya|xt) (24)

Then the DDIM with AdvDiff is Algorithm 2 over the trained classifier-free
diffusion model ϵθ(·).

We can further deduce the DDIM with ϵ̂θ(xt) by:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ̂θ√
ᾱt

)
+
√
1− ᾱt−1ϵ̂θ

=
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ√
ᾱt

)
+
√
1− ᾱt−1ϵθ + C · ∇xt

log pf (ya|xt) (25)

where we can replace C with our adversarial guidance scale.
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D Related Work

Since Szegedy et al. [30] had proved that DL models are extremely vulnerable
to adversarial attacks, researchers have been digging into improving the model’s
adversarial robustness by proposing stronger adversarial attack methods and
their counter-measurements.

Perturbation-based adversarial examples with generative models:
Most related works performed adversarial attacks by perturbing a subset of
clean data to fool the target classifier. These attacks [3, 16, 20] attempted to
generate better perturbations with higher attack success rates and smaller per-
turbations. With the emergence of generative models, end-to-end adversarial
attacks [1,24,33] have greatly improved the generation efficiency by pre-training
the generative module. These methods integrate the advertorial loss into the
training of generative models and generate adversarial examples by trained gen-
erators with clean data.

Unrestricted adversarial examples with generative models: Perturbation-
based adversarial examples require insignificant norm distance to the given clean
data in order to guarantee the indistinguishability, which only covers a small frac-
tion of all possible adversarial examples [28]. To remove such restrictions, Song
et al. [28] proposed an unrestricted adversarial attack method that searches over
the latent space of the input noise vector with an adversarial loss function and
a well-trained AC-GAN [22]. Inspired by Song’s work [28], recent works [23, 32]
made improvements in the generation quality and generation efficiency of UAEs.
Diffusion model based adversarial attacks [4, 5, 7] also achieve satisfying attack
performance against deep learning models. However, the performance of existing
approaches suffers from the unstable training of GAN models as well as the lack
of theoretical support for injecting PGD-based gradients. Therefore, we provide
an effective and theoretically analyzed solution with the diffusion model in this
paper.

D.1 Conditional Diffusion Model for Image Generation

Diffusion models have shown great generation quality and diversity in the im-
age synthesis task since Ho et al. [12] proposed a probabilistic diffusion model
for image generation that greatly improved the performance of diffusion models.
Diffusion models for conditional image generation are extensively developed for
more usable and flexible image synthesis. Dhariwal & Nichol [8] proposed a con-
ditional diffusion model that adopted classifier-guidance for incorporating label
information into the diffusion model. They separately trained an additional clas-
sifier and utilized the gradient of the classifier for conditional image generation.
Jonathan Ho & Tim Salimans [13] performed the conditional guidance with-
out an extra classifier to a diffusion model. They trained a conditional diffusion
model together with a standard diffusion model. During sampling, they adopted
the combination of these two models for image generation. Their idea is moti-
vated by an implicit classifier with the Bayes rule. Followed by [8, 13]’s works,
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many research [10,19,21,25] have been proposed to achieve state-of-the-art per-
formance on image generation, image inpainting, and text-to-image generation
tasks. Despite utilizing diffusion models for image generation has been widely
discussed, none of these works have discovered the adversarial examples gener-
ation method with the diffusion model. Also, it is a new challenge to defend
against the adversarial examples generated by the diffusion model.

E Implementation Details

As AdvDiff supports both DDPM and DDIM sampling, we adopt LDM 1 with
DDIM sampler for the experiment on ImageNet for reproducibility and poor
performance of simple DDPM on ImageNet. We adopt 500 sampling steps for
DDPM on MNIST and 200 sampling steps for LDM on ImageNet. For conditional
sampling, we use one-hot label information for both DDPM and DDIM sampling
for a fair comparison with GAN. The noise sampling step is set as (0, 0.5] for
the MNIST dataset and (0, 0.2] for the ImageNet dataset. We follow the default
settings in DiffAttack and AdvDiffuser in the experiments.

F More Experiment Results

We give more experiment results in Figure 2 to demonstrate the generation
quality on the ImageNet dataset. We also provide some failure cases of our
AdvDiff, which happens when we set the adversarial guidance scale s and a
extremely large. Figure 3 shows that a large s (10.0) tends to generate images
with noisy textures while a large a (10.0) can generate noisy images. Figure 4
shows that modifying the initial noise with a can disturb the noise distribution
if we add the gradient in an irrational manner.

G AdvDiff against Adversarial Training with Diffusion
Models

Table 1: Performance under AdvDiff attack against adversarial training on
the ResNet18 model.

Method Clean PGD AdvDiff Attack AT-UAE PGD AdvDiff Attack AT-PGD PGD AdvDiff Attack
Accuracy (%) 99.0 0.7 7.9 99.2 16.8 32.6 95.2 79.2 13.5

Adversarial training is an effective way to improve classification accuracy
against adversarial attacks. Thus, it should be an effective way to defend against
1 https://github.com/CompVis/latent-diffusion

https://github.com/CompVis/latent-diffusion
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U-GAN AdvDiff

Fig. 1: User study on MNIST datast. Flipped-label UAEs are tagged with a red
box. MNIST dataset is robust against UAEs because each image only contains 28× 28
pixels.

UAEs. However, UAEs are generated from random noise latents rather than fixed
gradient perturbations by given input images. Therefore, adversarial training
with UAEs is not as effective as it is with perturbation-based attacks. We test
the AT-UAE with UAEs generated by AdvDiff on the MNIST dataset with 1000
images per class. The results are given in Table 1. The result shows that AT
with UAEs improves the robust accuracy against AdvDiff, but the performance
is limited as there is an infinite number of random latents to generate UAEs.

H Improving Attack Transferability

AdvDiff achieves overwhelmingly better generation quality and attack success
rate against white-box target models by adversarial diffusion sampling with a
given target label y. However, the attack transferability is limited due to different
decision boundaries from black-box models. Normally, black-box attackers use
the gradient of the original label to generate perturbations. Therefore, we adopt
the same settings to improve the attack transferability of AdvDiff (denoted as
AdvDiff-Untargeted), i.e., −∇xt−1 log pf (y|xt−1), where y is the ground truth
label to generate samples. However, such sampling will decrease the generation
quality as sampling from the negative distribution does not follow the benign
diffusion process. Table 2 shows that the attack transferability significantly im-
proved with a decrease in generation quality. We leave a better design of attack
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Fig. 2: More unrestricted adversarial examples generated by AdvDiff on the
ImageNet dataset.
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Fig. 3: Failure cases when s = 10.0.

Fig. 4: Failure cases when a = 10.0.

transferability for future work. Additional experiments against transformers are
also given in Table 2.

I User Study

We further perform a user study to justify the performance of AdvDiff, where
we ask 20 participants to identify flipped label images on the MNIST dataset
with 5 images on each class by U-GAN and AdvDiff. The results are given in
Table 3. We also give the tagged examples on UAEs generated by U-GAN and
AdvDiff in Figure 1, where AdvDiff’s UAEs are remarkably better in generation
quality and harder to identify flipped label images than U-GAN.

J Improving the Generation Quality

AdvDiff crafts adversarial examples with imperceptible perturbations, making
the generation quality of our methods largely reliant on the benign diffusion
model’s performance. Figure 5 shows that AdvDiff produces higher-quality im-
ages when using StableDiffusion as the benign diffusion model. Moreover, we can
set the adversarial guidance to a smaller value for better quality with a decrease
in the generation speed. The guidance in the paper on the MNIST dataset aims
at high ASR per batch for a fair comparison with previous attacks, while the
visual quality can be affected by its limited 28 × 28 grey pixel space. We can
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Benign LDM
“Tractor”

AdvDiff Benign StableDiffusion
“Tractor”

AdvDiff

Benign 
AdvDiff w/

smaller adversarial guidance

Fig. 5: The improvements for better generation quality.

also achieve stable AE generation by using latents obtained by conducting the
forward diffusion process from the training dataset’s clean images.

K Comparing with Existing Diffusion Model Attacks

DiffAttack AdvDiffuser AdvDiffBenign

Fig. 6: The generated adversarial examples (mushroom) from different diffusion-based
attacks and corresponding perturbations.

There are several diffusion model adversarial attacks [4, 5, 7] achieve state-
of-the-art performance. However, most of them did not release the official code
which makes it difficult to compare with these methods. All these works adopt
the optimization over given loss functions (i.e., PGD-like gradient) to generate
UAEs with the diffusion models. Figure 6 provides a direct comparison of ad-
versarial examples from different methods. Our findings indicate that PGD-like
adversarial guidance perturbations significantly alter the texture of benign im-
ages from AdvDiffuser. Similarly, the perturbations from DiffAttack are also very
similar to standard PGD perturbations, where the perturbations are uniformly
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applied across the entire image. In contrast, our perturbations mainly target
the mushroom’s contour and are substantially less noticeable than those from
existing attacks.

Our work can easily be combined with some exciting works by replacing
the gradient with AdvDiff’s adversarial guidance (especially for AdvDiffuser [5]
which directly adopts the PGD gradient to conduct the adversarial attack).
We hope our work can gain new insight for designing adversarial attacks using
diffusion models.

L Comparing with 2021 CVPR Competition Winner

We compare with the 1st winner [18] of 2021 CVPR unrestricted adversarial
attack competition [6] follows their official implementation on ImageNet. Two
variants of [18]’s attacks are compared, which are GA-IFGSM and GA-FSA. The
results are given in Table 4. The proposed AdvDiff outperforms [18]’s attack
in terms of generation quality and attack performance. It may not be a fair
comparison as [18]’s attack is not a synthetic attack.

M Discussion about perturbations, flipped-label, and
diffusion adversarial examples

Perturbation-based adversarial attacks typically generate adversarial examples
by iteratively adding adversarial gradients to clean images, which inevitably
introduces noisy patterns. These patterns create visible defects that can be de-
tected by humans. However, these perturbations are applied at the pixel level,
leaving the content of the clean image unchanged. In contrast, GAN-based un-
restricted adversarial attacks create Unrestricted Adversarial Examples (UAEs)
by perturbing the latents. The generator then produces images based on these
GAN latents. This method introduces perturbations at the content level, as
GAN-based techniques do not directly add noise to the final images. Given the
generator’s sensitivity to changes in low-dimensional latents, adversarial latents
can result in images with entirely different content. This can even lead to a change
in the label of the adversarial images, creating what we refer to as flipped-label
images.

Adversarial examples generated by diffusion models follow a diffusion gener-
ation process, which can be seen as a denoising process. As a result, the noisy
gradients injected are removed during the generation process. This necessitates a
larger Projected Gradient Descent (PGD) gradient in previous works to success-
fully generate a UAE, often resulting in a decrease in image quality. In our work,
we inject the adversarial objective in an interpretable manner by increasing the
conditional likelihood on the target attack label, following the diffusion process.
We provide detailed proof of the effectiveness of our adversarial guidance in Ap-
pendix A and B. Consequently, our proposed AdvDiff method is more reliable in
generating high-quality adversarial examples than simply conducting the PGD
attack on the sampled images of the diffusion model.
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N Ethics Concerns

AdvDiff can bring security problems to existing DL-based applications, and
it generates visually indistinguishable adversarial examples to humans while
deceiving the target DL model. This characteristic makes the AdvDiff’s im-
ages hard to detect by current defense mechanisms, even with human experts.
However, our unrestricted adversarial examples can be adopted for adversarial
training because our adversarial examples are generated close to the decision
boundary of the target classifier. Another critical reason for achieving adver-
sarial training is that the generated adversarial examples have high fidelity and
high diversity on the large-scale dataset. Therefore, AdvDiff can have positive
social impacts on improving the AI model robustness.

O Limitations

Although AdvDiff shows superior performance on the unrestricted adversarial
attack with large-scale datasets, the generation speed of adversarial examples
with diffusion models is relatively slower than GAN-based models. This limita-
tion makes AdvDiff hard to perform a real-time attack. However, the unrestricted
adversarial attack does not have a real-time attack scenario. And we can also
adopt a fast-sampling method to improve the sampling speed of the AdvDiff,
which we aim to improve in future work. Another limitation is that AdvDiff is
sensitive to the parameter settings of two adversarial guidance scales a and s.
The reason is that AdvDiff can deploy in any conditional diffusion model, which
has different sampling mechanisms in other datasets. Therefore, we should set
the adversarial guidance scales accordingly, but the attack performances are not
vastly changed if the scales are in an appropriate range.
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Table 2: The attack success rates (%) of ResNet50 examples for transfer
attack and attack against defenses on the ImagetNet dataset.

Method ResNet-152 [11] Inception v3 [29] DenseNet-121 [15]
AutoAttack 32.5 38.6 43.8
U-BigGAN 30.8 35.3 16.8
AdvDiffuser 18.3 20.0 24.8
DiffAttack 21.1 43.9 23.8
AdvDiff 20.5 14.9 35.8

AdvDiff-Untargeted 52.0 42.7 60.9
Method MobileNet v2 [26] PNASNet [17] MNASNet [31]

AutoAttack 41.6 38.5 42.5
U-BigGAN 18.4 22.1 16.8
AdvDiffuser 30.3 15.2 26.7
DiffAttack 22.3 26.9 30.4
AdvDiff 15.4 23.2 38.9

AdvDiff-Untargeted 49.5 53.0 47.6
Method VGG-19 [27] SENet [14] WRN [35]

AutoAttack 48.3 23.7 29.5
U-BigGAN 18.4 22.1 16.8
AdvDiffuser 28.7 18.8 22.0
DiffAttack 30.0 22.1 23.6
AdvDiff 16.8 10.0 11.8

AdvDifftransfer 58.5 51.2 57.4
Method ViT-B [9] DeiT-B [34] BEiT [2]

AutoAttack 9.3 8.9 45.3
U-BigGAN 30.1 27.7 69.4
AdvDiffuser 18.5 12.5 79.4
DiffAttack 17.4 17.5 38.6
AdvDiff 17.8 17.6 78.8

AdvDiff-Untargeted 36.0 58.5 81.5

Table 3: User Study about flipped label problem on MNIST.

Method U-GAN AdvDiff
User Study 425/1000 102/1000
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Table 4: The attack performance on the ImagetNet dataset.

ASR PGD-AT FID LPIPS SSIM BRISQUE TRES
AdvDiff-Untargeted 99.5 94.5 22.8 0.14 0.85 16.2 76.8

AdvDiff 99.8 92.4 16.2 0.03 0.96 18.1 82.1
GA-IFGSM 99.8 82.6 50.4 0.24 0.78 40.4 62.0
GA-FSA 99.9 91.4 70.6 0.32 0.56 50.8 58.4


	Supplementary Materials for  AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models

