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A Appendix

In this appendix, we use lowercase letters, lowercase boldface letters, and upper-
case boldface letters to respectively denote scalars (a), vectors (v), and matrices
(W). The appendix is organized as follows:

• Sec. A.1 presents the preliminary knowledge underpinning our interpretation
in Sec. A.2.

• Sec. A.2 presents a theoretical interpretation to further support our choice
of preserving data that receives correct attention to enhance core feature
learning.

• Sec. A.3 presents the theorem that grounds our interpretation in Sec. A.2.
• Sec. A.4 provides a more detailed description of the datasets we used for the

experiments.
• Sec. A.5 presents the training setting for our experiments.
• Sec. A.6 provides the interface and instructions for our crowdsourcing tasks.
• Sec. A.7 provides the definition of AIoU score.
• Sec. A.8 offers more examples to evaluate attention consistency in the orig-

inal feature space, our constructed attention space, and the environmental
feature spaces. Additionally, we provide further examples to validate SLIM ’s
enhanced attention accuracy.

• Sec. A.9 discusses the limitations of our solution.

A.1 Proof Preliminaries

To simplify the complex real-world issue of spurious correlations into a formal
framework, in alignment with previous works [2,4,6], we adopt a two-layer non-
linear convolutional neural network (CNN) based on a data model that captures
spurious correlations. The two-layer CNN is defined as follows:

f(x;W) =
∑
j∈[J]

P∑
p=1

σ(⟨wj , x(p)⟩), (A1)

where wj ∈ Rd is the weight vector of the j-th filter, J is the number of
filters (neurons) of the network, and σ(z) = z3 is the activation function.
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W = [w1, . . . ,wJ ] ∈ Rd×J denotes the weight matrix of the CNN. In [1, 4, 6],
they assume a mild overparameterization of the CNN with J = polylog(d) and
initialize W(0) ∼ N(0, σ2

0), where = polylog(d)/d.
To understand the underlying dynamics in feature learning, we introduce

the following data model where the input consists of a core feature, a spurious
feature, and noise patches.

Definition 1 (Data model. [4]). A data point (x, y, s) ∈ (Rd)P×{±1}×{±1}
is generated from the distribution D as follows.

• Randomly generate the true label y ∈ {±1}.
• Generate spuriousness label s ∈ {±y}, where s = y with probability α > 0.5.
• Generate x as a collection of P patches: x = (x(1),x(2), . . . ,x(P )) ∈ (Rd)P ,

where
- Core Feature. One and only one patch is given by βc ·y·vc with ||vc||2 = 1.
βc is the core feature strength.

- Spurious Feature. One and only one patch is given by βs · s · vs with
||vs||2 = 1 and ⟨vc, vc⟩ = 0. βs is the spurious feature strength.

- Random noise. The rest P -2 patches are Gaussian noises ξ independently
drawn from N(0, (σ2

p/d) · Id) with σp as an absolute constant.

With the given data model, considering the training dataset S = {(xi, yi, ai)}Ni=1

and let S be partitioned into large group S1 and small group S2 such that S1

contains all the data that can be correctly classified by the spurious feature, i.e.,
si = yi, and S2 contains all the data that can only be correctly classified by the
core feature, i.e., si = −yi. Denote α̂ = |S1|

N and therefore 1− α̂ = |S2|
N .

Remark. Different from the original definition in [4], we do not make assump-
tions about the relative strengths of βc and βs. Rather, our approach estimates
the relative strengths of βc and βs through attention correctness annotations, as
the saliency map can reflect the features learned by the model.

A.2 Theoretical Inspiration

In Sec. 5, we have demonstrated the robustness of annotating attention correct-
ness and corroborated that decoupling core and environment features is crucial
for learning core features. In building feature-balanced datasets, our approach
primarily focuses on leveraging data that receives correct attention from the
reference model. One reason for this is that environment features can be more
accurately and efficiently isolated based on the identified core features. Adopt-
ing the Theorem 1 proposed in [4], we interpret it from a different perspective
to further support and justify that preserving data with high attention scores
guarantees the effective learning of core features in a more balanced dataset.

Lemma 1. Under training dataset S, which follows the distribution described
in Definition 1, when the data is trained using gradient descent for T0 =
Θ̃(η)(1/ηβ3

sσ0) iterations on the model as introduced in Eqn. A1, instances re-
ceiving higher attention scores are more likely to have their core features learned
in a new training scenario with a more balanced data distribution (i.e., α̂ → 1/2).
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Proof. Based on Theorem 1, we are implied that in the early T0 iterations

βc ≪ βs
3
√
2α̂− 1 ⇒ Plrc → 0, (A2)

where Plrc is the probability of the model learned the core feature. Thus, the
converse-negative proposition of proposition (A2) is

Plrc > 0 ⇒ βc ̸≪ βs
3
√
2α̂− 1, (A3)

in the initial T0 iterations. For instance, xi, whose core feature has been ef-
fectively learned, there should exist a constant threshold, denoted as Tr(xi).
This threshold ensures that the core feature has the chance to be learned once
βc−βs

3
√
2α̂− 1 > Tr(xi). Intuitively, Plrc(xi) ∝ (βc(xi)−βs(xi)

3
√
2α̂− 1). Since

the strengths of the core feature βc(xi) and spurious feature βs(xi) are natures
of the data itself and do not change, in a more balanced data distribution, as
α̂ → 1/2, (βc(xi) − βs(xi)

3
√
2α̂− 1) is increasing, consequently Plrc(xi) is in-

creasing. Since the learned feature of an instance can be interpreted via saliency
maps, a higher attention score means that its core feature has been learned more
accurately. Therefore, such instances have a higher probability of the core feature
being continuously learned as the data distribution becomes more balanced. ⊓⊔

Although this theoretical insight is built on a simplified binary classification
model, it provides an inspirational hint towards understanding the benefit of
utilizing data with high attention scores in more complex scenarios.

A.3 Auxiliary Theorem

Theorem 1. (Theorem 2.2 in [4].) Consider the training dataset S that follows
the distribution in Definition 1. Consider the two-layer nonlinear CNN model
as in Eqn. (A1) initialized with W(0) ∼ N(0, σ2

0). After training with gradient
decent for T0 = Θ̃(1/ηβ3

sσ0) iterations, for all j ∈ [J ] and t ∈ [0, T0), we have

Θ̃(η)β3
s (2α̂− 1)⟨w(t)

j , vs⟩2 ≤ ⟨w(t+1)
j , vs⟩ − ⟨w(t)

j , vs⟩ ≤ Θ̃(η)β3
s α̂⟨w

(t)
j , vs⟩2,

(A4)

Θ̃(η)β3
c α̂⟨w

(t)
j , vc⟩2 ≤ ⟨w(t+1)

j , vc⟩ − ⟨w(t)
j , vc⟩ ≤ Θ̃(η)β3

c ⟨w
(t)
j , vc⟩2.

(A5)

With the updates of the spurious and core feature in the early iterations, The-
orem 1 gives the condition-if β3

c < β3
s (2α̂ − 1)-that GD will learn the spurious

feature very quickly while hardly learning the core feature.

A.4 Datasets

Waterbirds [11]. It is constructed to study the spurious correlation between the
image background and the object. To this end, bird images in Caltech-UCSD
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Birds-200-2011 (CUB-200-2011) dataset [12] are grouped into waterbirds and
landbirds. All birds are then cut and pasted onto new background images from
the Places dataset [19], with waterbirds having a higher probability on water and
landbirds having a higher probability on land. The training set contains 4,795
images in total, 3,498 for landbirds with land background, 184 for landbirds
with water background, 56 for waterbirds with land background, and 1,057 for
waterbirds with water background. The validation set contains 1,199 images
in total, 467 for landbirds with land background, 466 for landbirds with water
background, 133 for waterbirds with land background, and 133 for waterbirds
with water background.
CelebA [8]. It is a large-scale face attribute dataset comprised of photos of
celebrities. Each image is annotated with 40 binary attributes. Aligned with
other works focusing on spuriousness mitigation, we chose “blond hair” or “non-
blond hair” as the target attributes, and gender as the spurious feature for hair
color classification. The training set contains 162,770 images in total, 71,629
for non-blond haired female, 66,874 for non-blond haired male, 22,880 for blond
haired female, and 1,387 for blond haired male. The validation set contains 19,867
images in total, 8,535 for non-blond haired female, 8,276 for non-blond haired
male, 2,874 for blond haired female, and 182 for blond haired male.
ISIC [3]. It contains images of a skin lesion, categorized into (1) benign lesions
or (2) malignant lesions. In a real-life task, this would be done to determine
whether a biopsy should be taken. Aligning with previous studies [10], we target
colorful patches as spurious features, and also follow the same strategy to obtain
data from its official platform.
NICO. Derived from NICO++ [18], this dataset features various object cate-
gories in shifted contexts to probe spurious correlations. It is a multi-class image
dataset presenting a diverse set of objects in varied contextual scenarios, allow-
ing convenient adjustment of the distributions of object and context labels. We
randomly sample eight animal categories with eight different contextual labels.
To challenge the model with spurious correlations, the training set distribution
follows three rules: (a) each object class is distributed across various contexts;
(b) there is one dominant context for each single class; (c) the dominant context
for each class is unique. For instance, most “sheep” images have context “grass”
and “grass” context is only dominant in “sheep”. The detailed distribution is
shown in Fig. A1.
ImagetNet9 (IN9) [14]. This dataset is a curated subset extracted from the
larger ImageNet collection, specifically designed to scrutinize and address the
model bias towards object backgrounds. To evaluate our framework for spurious
correlation mitigation, we adopt the “Mixed-Rand” setup, which is a particular
data arrangement where images are organized to have a randomized correlation
between the object and its background. This setup aims to challenge models to
focus on the object itself rather than the background, helping to test and improve
the robustness of models against spurious correlations. We utilize the training
and validation splits provided by ImageNet9, ensuring that our experiments are
aligned with established benchmarks for consistency and comparability. More-
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Fig.A1: Data distribution in the combination of training and validation set of NICO,
with respect to object and context categories.

over, their provided model trained on IN-9L is used as our reference model. The
outcomes of our experiments are then evaluated on the Mixed-Rand.

A.5 Training Setting

In Table 4, we present the amount of data required for attention annotation
and the size of the constructed data used for model training. In this section,
we provide additional details on the training settings. To maintain consistency
with existing methods, we use SGD as the optimization algorithm. The hyper-
parameter ranges, batch sizes, and training epochs used in our experiments are
tuned according to these methods [4, 7, 11, 15, 17], as listed in Table A1. The
training setups corresponding SLIMV al are following DFR [7]. The experiments
were conducted on two NVIDIA RTX 4090 GPUs with 24GB memory.

Table A1: Hyperparameters used for the SLIMTr’s results in Sec. 5.2 on different
datasets.

Dataset Waterbirds CelebA ISIC NICO ImageNet 9
Initial lr 1E-3 1E-4 0.002 1E-6 1E-6

Weight Decay 0.1 0.1 0.1 0.5 0.1
Batch Size 128 128 128 128 128

Training Epochs 50 30 30 50 10
Core Cluster 2 2 2 8 9
Env Cluster 3 3 2 10 9

A.6 Crowdsourcing Instruction

In Sec. 5.3, we employed crowdsourcing tasks with the Waterbirds and NICO
datasets to compare the consistency of annotating spuriousness versus atten-
tion correctness. For this study, we selected a random set of 120 images from
each dataset and established two separate tasks: one for spuriousness labeling
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and another for attention correctness labeling. For each task, we recruited 60
participants who are native English speakers, independently from the Prolific
platform, to prevent learning biases from cross-task participation. Participants
received an hourly fee for their participation. In ensuring ethical research stan-
dards, our study refrained from collecting personally identifiable information and
excluded any potentially offensive content.

We provided the following instruction to the spuriousness labeling task par-
ticipants: “This study focuses on evaluating the image annotation tasks. Partic-
ipants will be presented with a series of 120 images featuring different animals.
For each image, the task involves selecting the most accurate description of
the primary background from the provided options. There are no specific pre-
requisites for participation. Simply make selections based on your observation.
Notice: This study ensures the confidentiality of your participation, as it neither
collects personally identifiable information nor contains any offensive content.
Your feedback will exclusively be utilized for academic research purposes.”

We provided the following instruction to the participants for the attention
correctness labeling task: “This study aims to evaluate a Machine Learning
Model’s attention correctness. Participants will review 120 image pairs. Each
pair includes an original bird image and a version with a highlighted overlay
indicating the model’s focus area. The task is to choose the more accurate de-
scription of the highlighted region from two options. No special skills are required
for participation. Simply make selections based on your observation. Notice: This
study ensures the confidentiality of your participation, as it neither collects per-
sonally identifiable information nor contains any offensive content. Your feedback
will exclusively be utilized for academic research purposes.”

The interfaces for spuriousness labeling task are listed in Fig. A2.(a) and
Fig. A3.(a). And the interfaces for attention correctness labeling task are listed
in Fig. A2.(b) and Fig. A3.(b).

Fig.A2: Crowdsourcing interface for (a) spuriousness labeling and (b) attention cor-
rectness annotation on Waterbirds dataset.

For the results provided in Secs. 5.2 and 5.4, we utilized a similar attention
correctness labeling instruction and interface. The differences are as follows: (1)
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Fig.A3: Crowdsourcing interface for (a) spuriousness labeling and (b) attention cor-
rectness annotation on NICO dataset.

the instances selected for annotation are based on our proposed sampling strat-
egy, as introduced in Sec. 4.2; (2) in the attention correctness labeling interface,
option (a) is “some part of the {∗},” where {∗} represents the specific prediction
corresponding to the image. In the case of ISIC dataset, we collaborated with
domain experts to obtain annotation. For the other datasets, our participants
were sourced from the Prolific platform.

A.7 AIoU

Previous research has often employed binary attribute maps to calculate the
Intersection-over-Union (IoU) score against the ground-truth bounding box [9].

IoU(M,B) =

∑
j,k min(Mjk, Bjk)∑
j,k max(Mjk, Bjk)

, (A6)

However, the conventional IoU’s reliability for assessing attribute map quality is
compromised by its sensitivity to the chosen binarization threshold. To overcome
this limitation, the revised approach [16] replaces the binary intersection with a
minimum operator between a bounding box By and an explanation map My of
ground truth calss y. AIoU employs a maximum operator in place of the binary
union, facilitating a more consistent evaluation that is less susceptible to thresh-
olding variations. Eqn.(A6) assesses the alignment between an explanation map
and the ground-truth bounding box; however, it overlooks the possibility that,
despite precise alignment for the correct class, explanation maps for alternative
classes might overlap with the bounding box of the true class.

AIoU =
IoU(My, By)

IoU(My, By) + maxy′∈[C/y] IoU(My′, By)
, (A7)

Consequently, AIoU is a modified IoU metric that refines its denominator to
account for the class with the explanation map exhibiting the maximum inter-
section with the ground-truth bounding box. In our evaluation, we use GradCAM
as the explanation map.
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Table A2: Ablation study on the dimensionality of attention space.

Annotation Amounts Dim = 2 Dim = 3 Dim = 5 Dim = 10

60 (1.3%) 78.21±0.52 78.43±0.44 78.91±0.41 79.73±0.43

90 (1.9%) 85.93±0.92 86.24±0.96 86.18±0.91 86.20±0.94

120 (2.5%) 89.12±0.64 89.12±0.72 89.13±0.72 89.12±0.74

A.8 Additional Experiment Results

Table A3: Results with additional model architectures and datasets.

Waterbirds (ViT) MetaShift (ResNet50) FMoW (DenseNet121)
Method Worst Avg Worst Avg Worst Avg
ERM 85.5±1.2 96.3±0.5 62.1±4.8 72.9±1.4 32.3±1.3 53.0±0.6

JTT 86.7±1.5 95.3±0.7 64.6±2.3 74.4±0.6 33.4±0.9 52.5±0.3

DISC 91.5±1.3 95.3±1.1 73.5±1.4 75.5±1.1 36.1±1.8 53.9±0.4

SLIMTr 92.1±0.6 96.4±0.3 75.7±1.0 76.4±0.8 37.4±1.1 54.1±0.4

GDRO 91.3±0.8 94.9±0.3 66.0±3.8 73.6±2.1 30.8±0.8 52.1±0.5

Influence of the attention space’s dimension. Table A2 shows SLIMTr’s
ablation study results on Waterbirds, where for each annotation amount (N),
we only vary the attention space’s dim and measure worst-group acc. Results
reveal a slight performance improvement with higher dims when N=60, but it is
much less than the performance boosting caused by increasing N . When N=120
(same as Table 2 setting), we observe stable performance when varying dims. As
120 is a modest annotation amount, 2 dim is preferred.
Results with additional model architectures and datasets. Table A3
includes results: (1) on Waterbirds using a reference model matching ViT-S/16
in [5]; and (2) on MetaShift and FMoW, using reference models matching the
corresponding ones in DISC [13]. Table A3 again confirms SLIM ’s outstanding
performance over the baselines.
Attention Consistency. In Sec. 5.3, we have quantitatively compared how sim-
ilar neighbors are in the original feature space versus the attention space created
by SLIM. In this section, we provide qualitative comparison by randomly select-
ing three points and examining the GradCAMs of their 10 nearest neighbors in
the original representation space and our proposed attention space as showcased
in Figs. A4 and A5. We can observe that, unlike the original space, the atten-
tion space aptly groups instances with coherent attributions. This facilitates the
attention annotation and expansion with consistent attribution patterns.
Environment Feature Space. After disentangling core and environment fea-
tures, we construct environment feature sets based on the inverse-attention-
weighted features vectors FÂ. Here, we provide some intuitive examples to verify
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Fig.A4: Comparison of attention consistency between the original representation and
attention spaces on the Waterbirds dataset. Examples in each group represent nearest
neighbors within the corresponding space.
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Fig.A5: Comparison of attention consistency between the original representation and
attention spaces on the CelebA dataset. Examples in each group represent nearest
neighbors within the corresponding space.
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the consistency of the environment feature within clusters and the diversity of
the environment feature between clusters in the environment feature space. We
randomly select points from different clusters in environment feature space and
examine the GradCAMs of their 10 nearest neighbors, the results as showcased
in Figs. A6 and A7. As illustrated in Fig. A6, each group of data has a high
consistency in environment features, such as land and sea backgrounds, ocean
backgrounds, and forest backgrounds. This example demonstrates that we can
effectively estimate the environment features by weighting F with inverse atten-
tion masks Ā (visualized as GradCAMs in Fig. A6) after identifying the core
attention mask A. Furthermore, we find that compared to manually labeling
spurious features, this proposed method allows us to identify different types of
environment features more accurately and in greater detail. This paves the way
for our ultimate goal: ensuring a balanced representation of core features across
various environment features. In Fig. A7, we observe a similar situation: after
isolating the core feature, namely hair, the first group exhibits a consistent en-
vironment feature, such as wearing glasses, while the second group consistently
appears as white individuals.

Fig.A6: Three groups of examples from the environment feature space on the Water-
bird dataset.

Qualitative Evaluation of Enhanced Attention Accuracy. We provide
more GradCAM examples showcase SLIM ’s capability of correcting model’s wrong
attention in Fig. A8.
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Fig.A7: Two groups of examples from the environment feature space on the CelebA
dataset.

Fig.A8: GradCAM qualitative evaluation on Waterbirds and ImageNet-9. Dark red
highlighted regions correspond to the attributions that are weighed more in the pre-
diction. SLIM allows learning the core features instead of spuriousness.
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A.9 Limitations

A limitation of our method is its reliance on attention-based spuriousness de-
tection. Despite its effectiveness in handling spurious features that can be rep-
resented by a certain image region, it overlooks some types of spurious features,
such as color or lighting. Such features are hard to be disentangled by attention-
based model attributions. In the future, we plan to study how to mitigate other
formats of spurious features.



14 X. Xuan et al.

References

1. Cao, Y., Chen, Z., Belkin, M., Gu, Q.: Benign overfitting in two-layer convolutional
neural networks. Advances in neural information processing systems 35, 25237–
25250 (2022)

2. Chen, Z., Deng, Y., Wu, Y., Gu, Q., Li, Y.: Towards understanding the mixture-of-
experts layer in deep learning. Advances in neural information processing systems
35, 23049–23062 (2022)

3. Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza,
S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., Halpern, A.: Skin lesion
analysis toward melanoma detection: A challenge at the 2017 international sympo-
sium on biomedical imaging (isbi), hosted by the international skin imaging collab-
oration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018). pp. 168–172 (2018). https://doi.org/10.1109/ISBI.2018.8363547

4. Deng, Y., Yang, Y., Mirzasoleiman, B., Gu, Q.: Robust learning with progressive
data expansion against spurious correlation. In: Thirty-seventh Conference on Neu-
ral Information Processing Systems (2023), https://openreview.net/forum?id=
9QEVJ9qm46

5. Ghosal, S.S., et al.: Are vision transformers robust to spurious correlations? IJCV
132(3), 689–709 (2024)

6. Jelassi, S., Li, Y.: Towards understanding how momentum improves generalization
in deep learning. In: International Conference on Machine Learning. pp. 9965–
10040. PMLR (2022)

7. Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for
robustness to spurious correlations. arXiv preprint arXiv:2204.02937 (2022)

8. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of the IEEE international conference on computer vision. pp. 3730–
3738 (2015)

9. Nguyen, G., Kim, D., Nguyen, A.: The effectiveness of feature attribution methods
and its correlation with automatic evaluation scores. In: Beygelzimer, A., Dauphin,
Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing
Systems (2021), https://openreview.net/forum?id=OKPS9YdZ8Va

10. Rieger, L., Singh, C., Murdoch, W.J., Yu, B.: Interpretations are useful: Penalizing
explanations to align neural networks with prior knowledge. In: Proceedings of the
37th International Conference on Machine Learning. ICML’20, JMLR.org (2020)

11. Sagawa*, S., Koh*, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neu-
ral networks. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=ryxGuJrFvS

12. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

13. Wu, S., Yuksekgonul, M., Zhang, L., Zou, J.: Discover and cure: Concept-aware
mitigation of spurious correlation. In: Proceedings of the 40th International Con-
ference on Machine Learning. ICML’23, JMLR.org (2023)

14. Xiao, K., Engstrom, L., Ilyas, A., Madry, A.: Noise or signal: The role of image
backgrounds in object recognition. ArXiv preprint arXiv:2006.09994 (2020)

15. Yang, Y., Gan, E., Karolina Dziugaite, G., Mirzasoleiman, B.: Identifying spurious
biases early in training through the lens of simplicity bias. In: Proceedings of The
27th International Conference on Artificial Intelligence and Statistics. Proceedings
of Machine Learning Research, vol. 238, pp. 2953–2961. PMLR (02–04 May 2024)

https://doi.org/10.1109/ISBI.2018.8363547
https://doi.org/10.1109/ISBI.2018.8363547
https://openreview.net/forum?id=9QEVJ9qm46
https://openreview.net/forum?id=9QEVJ9qm46
https://openreview.net/forum?id=OKPS9YdZ8Va
https://openreview.net/forum?id=ryxGuJrFvS


SLIM : Spuriousness Mitigation with Minimal Human Annotations 15

16. Yang, Y., Nushi, B., Palangi, H., Mirzasoleiman, B.: Mitigating spurious correla-
tions in multi-modal models during fine-tuning. In: Proceedings of the 40th Inter-
national Conference on Machine Learning. ICML’23, JMLR.org (2023)

17. Zhang, M., Sohoni, N.S., Zhang, H.R., Finn, C., Ré, C.: Correct-n-contrast: A con-
trastive approach for improving robustness to spurious correlations. arXiv preprint
arXiv:2203.01517 (2022)

18. Zhang, X., He, Y., Xu, R., Yu, H., Shen, Z., Cui, P.: Nico++: Towards better
benchmarking for domain generalization. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 16036–16047 (2023)

19. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million
image database for scene recognition. IEEE transactions on pattern analysis and
machine intelligence 40(6), 1452–1464 (2017)


	SLIM: Spuriousness Mitigationwith Minimal Human Annotations

