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Abstract. In this work, we present a novel method to tackle the token
generation challenge in Vision Language Models (VLMs) for video and
image understanding, called LLaMA-VID. Current VLMs, while profi-
cient in tasks like image captioning and visual question answering, face
computational burdens when processing long videos due to the exces-
sive visual tokens. LLaMA-VID addresses this issue by representing each
frame with two distinct tokens, namely context token and content token.
The context token encodes the overall image context based on user in-
put, whereas the content token encapsulates visual cues in each frame.
This dual-token strategy significantly reduces the overload of long videos
while preserving critical information. Generally, LLaMA-VID empowers
existing frameworks to support hour-long videos and pushes their upper
limit with an extra context token. It is demonstrated to surpass previous
methods on most of video- or image-based benchmarks. Code and models
are available at https://github.com/dvlab-research /LLaMA-VID.

1 Introduction

Large Language Models (LLMs) [44, 54, 66], through their capacity to gener-
ate contextually accurate responses, have significantly advanced the field of Al
Drawing from the strengths of LLMs, Vision Language Models (VLMs) [13,33,45]
have been developed to extend these capabilities to visual data, demonstrating
their adeptness in tasks like image captioning and visual question answering.
However, a substantial challenge emerges in the context of long video, where an
excessive number of tokens are required to represent consecutive frames. The
computational demands escalate with the video length, thereby constraining the
practical application of VLMs for extensive videos.

Recently, several approaches have been proposed to handle videos, moving
beyond image-only VLMs. These methods aim to alleviate the token issue by uti-
lizing representative queries [30,64] or applying temporal compression [38,39,52].
Despite these efforts, the challenge of long videos remains unresolved. The pri-
mary obstacle stems from the excessive number of tokens required for each video
frame. For instance, models like BLIP [13,29] and LLaVA [33] require 32 and over
256 tokens respectively for a single image. A video containing 10K frames would
thus necessitate over 320K tokens, exceeding the capacity of current VLMs.
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Fig. 1: The proposed LLaMA-VID achieves leading performance on most of bench-
marks with 7B LLMs. The video-based and image-based benchmarks are noted in blue
and purple color, respectively. Please refer to Tables 1, 2, and 5 for more details.

Furthermore, simple temporal compression can significantly damage the repre-
sentation over long-term intervals. This drawback hampers their performance,
thereby underscoring the need for a robust solution.

In this work, we present LLaMA-VID, a novel approach to effectively man-
age the token generation issue in long videos. Our core idea is to represent
each video frame with two distinct tokens: context token and content token. The
context token is designed to encode the overall context of the image based on
user input, which efficiently condenses the broader picture into a single token.
Simultaneously, the content token captures finer aspects of each frame. Accord-
ing to computational constraints, the length of content token can be extended
to include more details, e.g., 1 token/frame for video input and beyond 256
token/frame for single image. In this way, the overload of long videos can be
significantly reduced without sacrificing critical information.

In particular, our method employs a dual-token generation strategy that is
both efficient and effective. For each frame, we first extract image features us-
ing a pre-trained vision transformer [15], akin to other VLMs [13,33]. The key
question is how to generate the context-related token according to user instruc-
tions. We provide the solution by leveraging the cross-modality design [14,29] for
instruction-guided queries, which carry the interactive intention from users. For
context token, these queries interact with previously generated image features in
the designed attention module, termed as context attention. To generate content
token, the image features are average pooled to formulate tokens that adapt to
different settings. For instance, global pooling is adopted to maintain efficiency
for video input while details are preserved with more tokens for single image in-
put. The context and content tokens are subsequently projected to the space of
LLMs with simple linear layers for final prediction. Furthermore, to better sup-



LLaMA-VID 3

port hour-long videos in VLMs, we construct an instruction dataset that contains
9K movie-level conversations for plot reasoning and detail understanding.

Generally, LLaMA-VID can be distinguished from two aspects. On one hand,
with the dual-token paradigm, each frame can be efficiently encoded with only
two tokens, which empowers existing LLMs to support long videos. On the other
hand, the context token aggregates the most informative feature of each image,
which further extends the upper limit of VLMs with an extra token.

The overall framework, dubbed LLaMA-VID, can be easily instantiated with
various decoders and LLMs, as elaborated in Section 3. Extensive empirical
studies are conducted in Section 4 to reveal the effectiveness of each component.
Remarkably, our model can complete training within 2 days on a single machine
with 8xA100 GPUs, and it outperforms previous leading methods on most of
video- and image-based benchmarks, as shown in Figure 1.

2 Related Work

In this section, we first review large language models and delve into recent
advances in vision language models.

2.1 Large Language Models

The field of Natural Language Processing (NLP) has witnessed tremendous ad-
vancements with the evolution of LLMs. Transformer [55] marked a pivotal mile-
stone, with subsequent language models [14, 35, 66] demonstrating remarkable
capabilities. GPT [6] revolutionized this field by utilizing generative pre-trained
transformers for auto-regressive prediction, which is proved to be a potent lan-
guage modeling paradigm. Recent groundbreaking works, such as ChatGPT [44],
GPT-4 [45], and LLaMA [54], have pushed the boundaries even further. Trained
on vast amounts of text data, these models exhibit exceptional capabilities in
complex linguistic tasks. To leverage the potential of pre-trained LLMs, instruc-
tion tuning [46,57] is a crucial component for high-quality output. This strategy
is widely adopted in open-source models like Alpaca [53] and Vicuna [12], which
improve over LLaMA [54] using specially designed instruction pairs. There are
also researches [58,61] that utilize the reasoning ability of LLMs and invoke
pre-defined tools for visual applications. Different from them, we collect multi-
modality instruction data that contains text, images, and videos in this work,
which is employed to empower LLMs for long video processing.

2.2 Vision Language Models

The advancements in computer vision and NLP have led to the emergence of
vision-language models (VLMSs) that integrate vision models with language mod-
els for cross-modality understanding [10,59] and reasoning [19,27,37]. Pioneering
large-scale VLMs like CLIP [47] and ALIGN [24] have extended language mod-
els to vision-language tasks. The recent progress has seen an increasing focus
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Fig.2: The framework of LLaMA-VID. With user directive, it operates by taking
either a single image or video frames as input, and generates responses from LLM. The
process initiates with a visual encoder that transforms input frames into the visual
embedding. Then, the text decoder produces text queries based on the user input. In
context attention, the text query aggregates text-related visual cues. For efficiency, an
option is provided to downsample the visual embedding to various token sizes, or even
to a single token. The text-guided context token and the visually-enriched content token
are then formulated using a linear projector to represent each frame at time ¢. Finally,
the LLM takes the user directive and all visual tokens as input and gives responses.

on leveraging the power of LLMs. Notably, Flamingo [2] and BLIP-2 [29] uti-
lize web-scale image-text pairs for cross-modality alignment, thereby enhancing
learning performance. To further exploit the potential of such pre-trained models,
InstructBLIP [13] and MiniGPT-4 [67] construct high-quality instruction pairs
based on BLIP-2 and achieve superior results. Simultaneously, LLaVA [33] em-
ploys a simple linear projector with a few learnable parameters to align the image
and text space of LLaMA. Given the tailored instruction data, this straightfor-
ward approach demonstrates strong capabilities. To support video understanding
in LLMs, several studies [30,52,64] attempt to utilize BLIP-2 for video embed-
ding or text-only caption [63]| extraction, while Video-ChatGPT [39] proposes
spatial and temporal pooling for video features. However, given the substantial
number of tokens required for each frame, LLMs encounter significant challenges
when processing extensive video sequences. It prevents previous work from rep-
resenting long video sequences that exceed a duration of one hour in LLMs. To
solve the issue, we propose to efficiently encode each frame with only 2 tokens,
which supports long video understanding in existing LLMs.

3 LLaMA-VID

The framework of LLaMA-VID is conceptually simple: encoder and decoder
are adopted to produce visual embedding and text-guided features, respectively;
context token and content token are transformed with the tailored token gener-
ation strategy; instruction tuning is designed to unleash the potential of LLMs
for image and video.
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3.1 Encoder and Decoder

The proposed LLaMA-VID can be utilized to interact with single image or
long videos. For clarity, we assume the input image is captured from a video
sequence, as presented in Figure 2. Given a video frame V; € REXWX3 at time
t, a transformer-based visual encoder is first employed to produce the visual
embedding X; € RVXC. Here, N = H/p x W/p and C indicate the number of
image patches and embedding channels, respectively. The patch size p is typically
set to 14 for ViT-based backbones [15, 16, 47]. Meanwhile, we take the user
instruction as input and generate the text-guided query Q; € RM*C with the
produced X;, where M denotes the number of queries. As depicted in Figure 2,
this cross-modality interaction predominantly occurs in the text decoder, which
can be easily instantiated with BERT [14] or QFormer [13], as compared in
Table 8. In this way, the text query Q; contains highlighted visual cues that are
most related to the user instruction.

3.2 Token Generation

With the text query Q; and visual embedding X;, we can easily generate
representative tokens for LLMs. Specifically, context attention is designed to
aggregate text-related visual features and condense them to a single context
token. As shown in Figure 2, it takes Q; and X; as input and formulates the
context-related embedding E; € R as

E, = Mean(Softmax((Q; x X[ )/VC) x X,), (1)

where the Softmax function and Mean operation are conducted along the N and
M dimensions, respectively. Unlike QFormer [13] that adopts 32 visual queries as
LLMs tokens, we only utilize the text query Q; to aggregate the visual features
with high-response scores to input instructions. As a result, the most crucial
visual cues related to user input are efficiently preserved in the condensed em-
bedding E;. The effectiveness of this context-related token generation is demon-
strated in Table 6 and Figure 6. Subsequently, a linear projector is utilized to
transform the embedding E; into the context token EI € R which aligns
with the language space of LLMs. Meanwhile, we employ an adaptive pooling
strategy for the visual embedding according to computational constraints to pro-
duce the content token E} € R"*“ where n € [1, N|. For instance, we maintain
the original resolution of visual embedding X; when input single image, while
we downsample X; to 1 token for long videos. This approach significantly re-
duces the overload of LLLMs for each frame, thereby supporting hour-long videos
effectively. Finally, the generated context token E! and the content token E}
are concatenated to represent the frame at time t. Along with frames at other
timestamps, the entire video sequence is translated into the language space in
token format, which is then used to generate responses from LLMs. The whole
process is summarized in Algorithm 1.
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Algorithm 1 Pseudo Code for Token Generation.

# B: batch size; C: channel size; n: content shape

# M: query length; N: shape of flatten image pacthes;
# text_q: text query in shape (B, M, C)

# vis_embed: visual embedding in shape (B, N, C)

# Key part 1: calculate context-related embedding
ctx_embed = text_q @ vis_embed.transpose(-1,-2)
ctx_embed = ctx_embed / (vis_embed.shape[-1]#%*0.5)
ctx_embed = (ctx_embed.softmax(-1)@vis_embed) .mean(1)
ctx_embed = self.ctxproj(ctx_embed[:,Nonel)

# Key part 2: calculate visual embedding

cur_shape = int(vis_embed.shape[1]**0.5)

vis_embed = vis_embed.reshape(B, cur_shape, -1, C)

vis_embed = F.avg_pool2d(vis_embed.permute(0,3,1,2), kernel_size=cur_shape//n,
stride=cur_shape//n)

vis_embed = vis_embed.permute(0,2,3,1).flatten(1,2)

vis_embed = self.visproj(vis_embed)

# concat token in shape (B, n+l, C), n in [1,N]
final_token = torch.cat([ctx_embed, vis_embed], dim=1)

F: torch.nn.functional; ctxproj, visproj: predefined linear projectors.

3.3 Training Strategy

Training strategy, particularly instruction tuning, has proven to be crucial in
LLMs [12,53,54] and VLMs [13,32, 33]. Considering training efficiency, in this
work, we divide the training procedure into three stages, i.e., modality alignment,
instruction tuning, and long video tuning.

Modality Alignment. As shown in Figure 2, each video frame is projected into
the space of LLMs in each forward pass. Therefore, it is crucial to ensure visual
features are well aligned with the language space. To this end, we construct a
compact dataset that contains 790K high-quality image- and video-caption pairs.

Stage 1: Modality Alignment Stage 3: Long Video Tuning (Optional)

[ 8 2% | 558K 5

'@ﬂ User: <image-0>,... <image-i>, Assistant: <caption> %ﬂ User: <prompt>\n<image-O><subtitle-0>,... <image-i><subtitle-i>,
User: <image>, Assistant: <caption> Assistant: <answer>

% User: <prompt>, Assistant: <answer>
Stage 2: Instruction Tuning

£ o8k | 625K [ B aox

'ﬁﬂ User: <prompt>\n<image-0>,... <image-i>, Assistant: <answer>

User: <prompt>\n<image>, Assistant: <answer>,.....(multi-turn)

User: <prompt>, Assistant: <answer>,.....(multi-turn)

Fig. 3: Multimodal data distribution and instruction format for each model training
stage. <image> and <image-i> denote the token for single image and the i-th video
frame, respectively.
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Script for the whole movie

Script: Rose runs along the B deck promenade. She is dishevelled, he
r hair flying. She is crying, her cheeks streaked with tears. But also
angry, furious! Shaking with emotions she doesn't understand... hatre
d, self-hatred......

Instruction pairs for movie reasoning and details

A User: <prompt> Create 5 complex questions about plot reasoning r
ather than simply describe the plot. Create 5 complex questions abo
ut detail scene and activity description....

A\ Claude-2: Question:Why doesn't Rose get in the lifeboat with her
mother when she has a chance. Answer: ...
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Synopsis for the whole movie

Synopsis: Young Rose, angry and distraught that her mother has app
arently arranged the marriage, considers committing suicide by jumpi
ng from the stern; Jack manages to pull her back over the rail after
she loses her footing......

Instruction pairs for movie summary

&, User: <prompt> Create 2 plot summary of this movie. The first on
e should be a brief summary written in one paragraph. The second on
e should be a detail summary written in multiple paragraphs.......

© 6PT-4: Brief Summary:....., Detail Summary:.....

Instruction pairs for movie plot and characters

A&, User: <prompt> Create 5 questions about the movie plot, including
plot understanding, plot description, plot analysis, efc. Create 5 quest
ions about characters, including relationship, personality, behavior......
@ GPT-4: Question: What ultimately happens to the Heart of the O
cean necklace?. Answer:

7

Fig.4: An example to construct instruction pairs for the movie Titanic. Given the
movie synopsis and script, we utilize the developed LLMs like GPT-4 [45] and Claude-
2 [3] to generate movie summaries, plot-related QA pairs, and general reasoning pairs.

As illustrated in Figure 3, it mainly consists of 558K image-caption pairs from
the LLaVA-filtered CC3M dataset [49] and 232K video-caption pairs sampled
from the WebVid 2.5M dataset [5]. The instruction format for each modality is
presented in Figure 3. In this stage, we optimize the projectors in Figure 2, while
freezing the pre-trained modules like the visual encoder and text decoder.

Instruction Tuning. To enhance the multi-modality understanding of LLMs,
we build the instruction pairs from [32] and [39]. In particular, the constructed
dataset mainly involves content from three sources, i.e., 40K text conversations
from ShareGPT [1], 625K single- or multi-turn visual QA pairs from [19, 22, 25,
206, 33,41-43,48,50], and 98K video QA pairs from [7]. For the instruction, we
adopt different formats for text, image, and video input, as shown in Figure 3.
The input prompt <prompt> and answer <answer> vary with datasets. Please
refer to [32] and [39] for more details. Meanwhile, the image token <image-i> is
randomly inserted at the beginning or end of the user input during our training.
In instruction tuning, all the modules are optimized except the visual encoder.

Long Video Tuning. To further unleash the potential for hour-long videos, we
construct 15K long QA pairs, including 9K conversions in movie scenes and 6K
data sampled from LongLoRA [11] for token expanding. Specifically, we utilize
more than 400 long movies and corresponding scripts in MovieNet [21] to build
the training set. The key components for instruction generation are visualized in
Figure 4. Generally, the generated dataset includes QA pairs from three aspects:
video summary, movie plot, and detail reasoning. For video summaries, we collect
movie synopses to produce brief and detailed summaries for each movie using
developed LLMs like GPT-4 [45]. It brings about 1K summary-level instruction
pairs in total. For plot-level data, we take the entire movie synopsis as input and
leverage GPT-4 [45] to generate plot-related and character-related QA pairs.
These include plot understanding, description, analysis, character relationship,
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personality, and behavior. In particular, we generate 5 plot-related pairs and 5
character-related pairs for each movie, resulting in 4K plot-level QA data. As for
detail-level data, we feed the long movie script into Claude-2 [3] and generate
5 plot-related reasoning pairs and 5 detail-related descriptions for each movie,
which brings 4K pairs in total. With long videos and the generated pairs, we
perform instruction tuning by concatenating visual tokens and subtitle tokens for
each frame, as depicted in Figure 3. In this way, LLaMA-VID can well support
64K tokens with more than 3-hour video as input.

4 Experiments

In this section, we provide the experimental setup and comparisons with leading
methods on several benchmarks.

4.1 Experimental Setup

Implementation Details. In this work, we instantiate the model with the
pre-trained EVA-G [16] for visual encoder and QFormer [13] for text decoder
by default. During training, we keep the visual encoder fixed in all stages and
freeze the text decoder, as well as the LLM, in the modality alignment stage,
except for the BERT module in Table 8 that is not pre-trained. Following the
strategy in [32], we optimize trainable parameters with the designed data and
instructions in Figure 3, running for 1 epoch in each stage. For video input, we
extract frames at 1 FPS. All models are trained using 8 xNVIDIA A100 GPUs.

Datasets. In this study, we construct the training set mainly from [5,21,32,39],
as illustrated in Section 3.3. Moreover, we report results on several video- and
image-based benchmarks. In particular, for video input, we evaluate the zero-shot
performance on the open-ended QA benchmarks like MSVD [8], MSRVTT [59],
ActivityNet [7], EgoSchema [40], SSv2 (Something-Something v2) [18], and the
newly-proposed generative performance benchmark [39]. As for image-based
evaluation, we conduct experiments on several widely-adopted benchmarks, in-
cluding GQA [22], MMB (MMBench) [36], MME [17], POPE [31], SEED |[2§],
SQA! [37], VQAT (TextVQA) [51], VizWiz [20], and VQAY? (VQA V2) [19].

4.2 Main Results

Results on Video-based Benchmarks. In Table 1, we provide a compara-
tive evaluation of LLaMA-VID against various state-of-the-art methods across
zero-shot video QA benchmarks: MSVD-QA [8], MSRVTT-QA [59], ActivityNet-
QA [7], EgoSchema [40], and SSv2 [18]. Notably, the results are reported with
only two tokens for each frame. It is evident that LLaMA-VID, employing
Vicuna-7B and Vicuna-13B as the LLMs, consistently delivers superior perfor-
mance across all datasets. On the MSVD-QA and MSRVTT-QA datasets, it
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Table 1: Comparison with leading methods on 3 zero-shot video QA datasets. We
report results with 2 tokens for each frame. For fair comparisons, our model is trained
without long video tuning (stage 3) in Figure 3. Res indicates image resolution.

Method . Res | MSVD-QA MSRVTT-QA _ActivityNet-QA
‘ Acc  Score  Acc Score Acc Score
VideoLLaMA [64] Vicuna-7B 224 51.6 2.5 29.6 1.8 12.4 1.1
LLaMA-Adapter [65] LLaMA-7B 224 54.9 3.1 43.8 2.7 34.2 2.7
VideoChat [30] Vicuna-7B 224 | 56.3 2.8 45.0 2.5 26.5 2.2
Video-ChatGPT [39]  Vicuna-7B 224 64.9 3.3 49.3 2.8 35.2 2.7
BT-Adapter [34] Vicuna-7B - 67.5 3.7 57.0 3.2 45.7 3.2
LLaMA-VID Vicuna-7B 224 69.7 3.7 57.7 3.2 47.4 3.3
LLaMA-VID Vicuna-13B 224 70.0 3.7 58.9 3.3 47.5 3.3

Table 2: Comparison with leading methods on the video generative benchmark [39].
We report results with 2 tokens for each frame. For fair comparisons, our model is
trained without long video tuning (stage 3) in Figure 3. Res indicates image resolution.
Correct, Detail, Context, Temporal, and Consist indicate evaluation metrics in [39].

Method LLM Res. ‘ Correct. Detail Context Temporal Consist.
VideoLLaMA [64] Vicuna-7B 224 1.96 2.18 2.16 1.82 1.79
LLaMA-Adapter [65] LLaMA-7B 224 2.03 2.32 2.30 1.98 2.15
VideoChat [30] Vicuna-7B 224 2.23 2.50 2.53 1.94 2.24
Video-ChatGPT [39] Vicuna-7B 224 2.40 2.52 2.62 1.98 2.37
BT-Adapter [34] Vicuna-7B - 2.68 2.69 3.27 2.34 2.46
LLaMA-VID Vicuna-7B 224 2.96 3.00 3.53 2.46 2.51
LLaMA-VID Vicuna-13B 224 3.07 3.05 3.60 2.58 2.63
Table 3: Comparison with leading methods on the zero-shot benchmark

EgoSchema [40]. We report results with 2 tokens for each frame on different settings.

Frame ‘ FrozenBiLM [60] mPLUG-Owl [62] InternVideo [56] LLaMA-VID

10 26.4% 29.6%
30 - 20.0%
90 26.9% -
180 - -

31.4%
31.8%
32.1%

41.2%
41.7%
40.5%
41.7%

achieves the accuracy of 69.7% and 57.7% with Vicuna-7B, surpassing the pre-
vious leading approach [34] with absolute gains of 2.2% and 0.7%, respectively.
For the ActivityNet-QA dataset, LLaMA-VID attains top performance in ac-
curacy and the highest score of 3.3. In Table 2, we also carry out experiments
on the newly proposed video-based generative performance benchmark [39]. As
for the long EgoSchema and SSv2 dataset, the proposed method surpasses other
leading approaches in different frame settings, as presented in Table 3 and Ta-
ble 4. Specifically, we evaluate the model on the SSv2 dataset similar with that
in MSRVTT-QA. Our LLaMA-VID is validated to achieve the best performance
across all the evaluation metrics, surpassing previous approaches by a large mar-
gin. In general, LLaMA-VID is proved to bring robust results on all benchmarks.
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Table 4: Comparisons with zero-shot methods on SSv2 [18] dataset.

Method LLM Res. ‘ Acc  Score
Video-ChatGPT [38] Vicuna-7B 224 ‘ 11.59  2.10
LLaMA-VID Vicuna-7B 224 | 20.12 2.14

Table 5: Comparison with leading methods on 8 benchmarks. Here, we use the same
training and instruction finetuning data as that in LLaVA-1.5. We report results with 1
context token and n content tokens, where n is kept the same with that in LLaVA-1.5,
i.e., n = (336/14)% = 576. Res indicates input image resolution. * and ' denote the
train subset is included for training and the data is not publicly available, respectively.

Method LLM Res.| GQA' MMB MME POPE SEED SQA' VizWiz VQA™2
InstructBLIP [13] Vicuna-7B 224 | 49.2 36.0 534  60.5 345
IDEFICS-9B [23] LLaMA-7B 224 | 384 48.2 - - - - 35.5 50.9
Qwen-VL! [4] Qwen-7B 448 | 59.3* 38.2 - - 56.3  67.1 35.2 78.8%
Qwen-VL-Chat! [1] Qwen-7B 448 | 57.5*  60.6 14875 — 582 682 389  78.2
LLaVA-1.5 [32] Vicuna-7B 336 | 62.0% 64.3 1510.7 85.9 58.6  66.8 50.0 78.5%
LLaMA-VID Vicuna-7B 336 ‘ 64.3* 65.1 1521.4 86.0 59.9 68.3 54.2 79.3*
BLIP-2 [29] Vicuna-13B 224 | 41.0 - 1293.8 85.3 46.4  61.0 19.6 41.0
Instruct BLIP [13] Vicuna-13B 224 | 49.5 - 1212.8 789 - 63.1 334 -
Shikra [9] Vicuna-13B 224 | — 58.8 - - - - - T7.4%
IDEFICS-80B [23] LLaMA-65B 224 | 45.2 54.5 - - - - 36.0 60.0
LLaVA-1.5 [32] Vicuna-13B 336 | 63.3* 67.7 1531.3 85.9 61.6 71.6 53.6 80.0*
LLaMA-VID Vicuna-13B 336 ‘ 65.0% (6.6 1542.3 86.0 62.3 70.0 54.3  80.0*

Results on Image-based Benchmarks. Asillustrated in Section 3.2, LLaMA-
VID not only efficiently represents long video, but also expands the upper limit
of VLMs with an additional context token. In Table 5, we perform compar-
isons with leading VLMs on 8 widely-adopted benchmarks. It should be noted
that we maintain the same training data and image resolution as in LLaVA-
1.5 [32] for fair comparisons. It is evident that LLaMA-VID outperforms other
leading methods across most of benchmarks with different LLMs. In particular,
with Vicuna-7B, LLaMA-VID attains the best results across all the datasets
and surpasses LLaVA-1.5 with significant gains in GQA, MME, and VizWiz,
where the improvement reaches up to 2.3%, 10.7, and 4.2%, respectively. With
a larger Vicuna-13B, LLaMA-VID also outperforms other methods in 6 bench-
marks and achieves top-2 in the other datasets. This demonstrates the generality
of LLaMA-VID, which can be scaled up with a stronger foundation model.

Qualitative Results. In Figure 5, we apply LLaMA-VID to different types of
data, including short videos and long movies. We represent each frame with 2
tokens for videos. LLaMA-VID demonstrates various capabilities with different
inputs. Given a short trailer video, LLaMA-VID summarizes the overall plot
and infers the movie name, producer, and the type of movie. It shows that the
proposed LLaMA-VID can well recognize the typical characters with the pro-
duced tokens. As for a 3-hour movie, the proposed model adeptly describes the
storyline and demonstrates plot-related reasoning and detailed understanding.
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Zootopia Trailer Avatar

User: Please describe this video in detail. (oﬁ User: Summarize the plot of this movie. %
Assistant: The video starts with a carto Assistant: Avatar follows Jake Sully, a
on character standing in front of a castl g disabled former Marine who is recruited
e, which is surrounded by a beautiful lan by the RDA to work on Pandora, a moon r
dscape. The character is holding a bucke ich in a valuable mineral called unobtaniu
t and appears to be observing the surrou m. Jake's twin brother, Tommy, died in a
ndings. The scene then fransitions to a t helmet-cam accident, and Jake is offere
rain, where the character is seen sitting d his place in the Avatar Program, which
inside the train. The train is surrounded allows humans to link with the native Na'
by lush greenery and appears to be movin vi, a humanoid species. Jake is assigned t
g through a scenic route...... o the avatar of his deceased brother-......

User: What's the name of the movie desc rQ' User: How human work on Pandora? (O\

ribed in this video?
% Assistant: Humans work on Pandora by u

ﬁ Assistant: The movie described in this vi sing avatars, which are grown from huma

deo is "Zootopia." ) n DNA mixed with the DNA of the nativ
e Na'vi, to interact with the environment
o and the Na'vi.
User: Who produce the movie? ~

User: Why Jake Sully decide to fight agai %
Assistant: The movie is produced by Wa nst humanity with the Na'vi?
] I+ Disney Pictures.

& Assistant: Jake Sully decides to fight a

User: What's the type of this movie? % gainst humanity with the Na'vi after he
falls in love with the Na'vi and their way
of life, and after he realizes that the hu

% Assistant: The movie is a Disney anima man military is destroying their home an

ted film. d culture.

Fig. 5: Examples of LLaMA-VID with short video and hour-long video.

4.3 Component-wise Analysis

In this subsection, we conduct ablation studies with input resolution 224 and
2 tokens for each image by default.

Generated Token Types. As illustrated in Figure 2, each image is represented
with a context token and a content token in LLMs. To validate the effectiveness
of each part, we conduct experiments with different types of tokens in Table 6.
Without the context token, the compressed content token, which encodes each
image with 1 token, cannot adjust to input instructions, leading to subpar per-
formance. Compared with a single content token, the instruction-guided context
token results in significant gains across all datasets with only 1 token. With both
tokens for each image, the model achieves the best performance across all image-
and video-based benchmarks. It shows that both instruction cues in the context
token and the image content itself in the content token are important.
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Table 6: Comparison with different token types. We report results with 1 context token
(if exists) and 1 content token on image-based and video-based benchmarks (MSVD).

context  content ‘ GQA POPE SQA! VQAT ‘ MSVD

X v 53.3 80.9 66.1 46.5 65.9
v X 54.3 82.4 67.7 48.3 69.3
v v 55.5 83.1 68.8 49.0 69.7

Table 7: Comparison with different token numbers. We report results with various
numbers of contezt token and content token on image-based benchmarks for efficiency.

context  content ‘ GQA POPE SQA! VQAT

0 256 ‘ 61.9 85.5 67.5 53.0
1 256 63.0 86.6 67.7 53.8
1 64 60.8 85.1 68.7 52.3
1 16 58.2 83.1 67.4 50.8
1 4 56.2 83.5 68.7 49.1
1 1 55.5 83.1 68.8 49.0

Generated Token Numbers. In Table 7, we conduct experiments with differ-
ent numbers of tokens for further investigation. With an image size 224 x224, we
set up experiments with n content tokens, where n = (224/14)? = 256 for uncom-
pressed settings in the first two rows. The results clearly show that the context
token consistently improves performance across different benchmarks with only
1 extra token. When we compress the content token to 1/4 with n = 64, the per-
formance drops about 1% to 2% but increases 1% in SQA!. Considering the extra
efficient setting for hour-long videos, we compress the content token to 1/256
with n = 1 by default. Compared to the original setting without context token,
we can reduce the computational cost to 1/128 with about 2%-6% performance
drop, which is generally acceptable. The linear increase in performance presents
significant potential for token compression. For instance, we can dynamically
compress the content token to different numbers according to resource budget
and content importance. Interestingly, the model achieves peak performance in
SQAT with only 2 tokens. This could be attributed to the fact that problems in
ScienceQA [37] focus more on visual-based reasoning rather than image details.
As demonstrated in Tables 1 and 2, with only 2 tokens for each image, LLaMA-
VID still outperforms all previous work in different video-based benchmarks.
This makes it feasible to enable LLMs for hour-long video processing.

Text Decoder. As depicted in Figure 2, the text decoder plays an essential role
in producing instruction-guided context cues. Here, we further perform compar-
isons with different text decoders in Table 8. We mainly instantiate the text
decoder with two types of modules, namely BERT [14] and QFormer [13]. For
BERT, we randomly initialize it as a cross-modality decoder and only retain the
first two layers. As for QFormer, we utilize the pre-trained modules and fix them
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Table 8: Comparison with different text decoders. We report results with 1 context
token (if exists) and 1 content token on image-based benchmarks for efficiency.

teet | GQA POPE SQA' VQAT

53.3 80.9 66.1 46.5
54.1 80.8 67.9 48.1
55.5 83.1 68.8 49.0

BERT
QFormer

Table 9: Average module latency of video frame on a A100 GPU. Encoder, Content,
Decoder, and Context denote the latency for text-free visual encoder and content token,
text-related text decoder and context token generation, respectively.

text ‘ Text-free Text-related Total (ms)
’ ‘ Encoder Content Decoder Context
BERT 4.89 0.01 0.25 0.02 5.17
QFormer 4.87 0.01 1.08 0.02 5.98

for modality alignment. Even with a simple 2-layer BERT, as shown in Table 8,
the generated context token achieves significant gains in most of benchmarks.
This proves the effectiveness of the paradigm for context token generation. With
a pre-trained text decoder like QFormer, the model can be further enhanced and
attains peak performance in all datasets with 2.2% to 2.7% significant gain.

Latency Analysis. To further analyse the module latency, we keep the original
setting in Table 8 and report average module latency over 100 videos in Table 9.
Here, we divide the modules for generation into two types, namely text-free and
text-related. In particular, we generate visual tokens one time for each frame with
text-free modules. And text-related modules are required to produce different
context tokens according to user inputs. It is clear that the text-free tokens
account for the most computation, while the text-related modules only cost 5%
to 18.3% for each user instruction. That means the total cost will not increase
greatly given variant user questions because of the efficient text-related modules.

Response in Context Attention. To more vividly explore the context atten-
tion, we visualize the high response areas with the top 20 scores in Figure 6.
Specifically, we draw the normalized heatmap for the first four queries in Qq
before applying the Softmax function, which is used to formulate context token
in Equation 1. As shown in Figure 6, the text-guided query Q; effectively focuses
on important areas relevant to the input questions. For example, in the second
row, when inquiring whether the image depicts a fishing village, the query Q.
focuses more on buildings along the river and a seagull. These are all typical
characteristics to distinguish a fishing village in common sense. Other examples
also confirm that the designed context attention successfully achieves its goal of
formulating the context token under instruction guidance.
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Input Query 1 Query 2 Query 3 Query 4
Question: Are the elephants fighting?

Input Query 1 Query 2 Query 3 Query 4
Question: Is this a fishing village?

Query 1 Query 2 Query 3

Question: What tall animals are displayed in the background?

Fig. 6: High response areas with top scores to input question in Equation 1. We present
the response of first four queries in Q.. Images are sampled from VQA V2 test-dev set.

5 Discussion and Conclusion

We have introduced LLaMA-VID, a simple yet effective token generation ap-
proach for VLMs. The central concept behind LLaMA-VID is to represent an
image with the context token and the content token. In particular, the context
token is generated according to input instructions, and the content token is pro-
duced based on the image content. Depending on the budget, the content token
can be compressed to one token or expressed without compression. It allows us
to represent a single image with preserved details and efficiently encode each
video frame with only two tokens. Moreover, we have constructed an instruction
dataset for hour-long video understanding. Our experiments on several video-
and image-based benchmarks prove the superiority of our method. We hope that
LLaMA-VID can serve as a strong benchmark for efficient visual representation.

There still exists certain limitations in the current method. Although LLaMA-
VID succeeds to represent hour-long videos in LLMs, it focuses more on temporal
consistency and may lose spatial details in each frame. In the future work, we
plan to maintain dense spatial information for each frame outside the LLM and
conduct the visual token fusion within LLMs to avoid such detail loss.

Acknowledgement. This work was supported in part by the Research Grants
Council under the Areas of Excellence scheme grant AoE/E-601/22-R.
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