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Abstract. Animating a still image offers an engaging visual experience.
Traditional image animation techniques mainly focus on animating nat-
ural scenes with stochastic dynamics (e.g. clouds and fluid) or domain-
specific motions (e.g. human hair or body motions), and thus limits their
applicability to more general visual content. To overcome this limitation,
we explore the synthesis of dynamic content for open-domain images,
converting them into animated videos. The key idea is to utilize the mo-
tion prior of text-to-video diffusion models by incorporating the image
into the generative process as guidance. Given an image, we first project
it into a text-aligned rich image context representation space using a
query Transformer, which facilitates the video model to digest the image
content in a compatible fashion. However, some visual details still strug-
gle to be preserved in the resultant videos. To supplement with more
precise image information, we further feed the full image to the diffusion
model by concatenating it with the initial noises. Experimental results
show that our proposed method can produce visually convincing and
more logical & natural motions, as well as higher conformity to the in-
put image. Comparative evaluation demonstrates the notable superiority
of our approach over existing competitors.

1 Introduction

Image animation has been a longstanding challenge in the field of computer vi-
sion, with the goal of converting still images into video counterparts that display
natural dynamics while preserving the original appearance of the images. Tradi-
tional heuristic approaches primarily concentrate on synthesizing stochastic and
oscillating motions [42, 45] or customizing for specific object categories [31, 39].
However, the strong assumptions imposed on these methods limit their appli-
cability in general scenarios, such as animating open-domain images. Recently,
text-to-video (T2V) generative models have achieved remarkable success in cre-
ating diverse videos from text. This inspires us to investigate the potential of
leveraging such powerful video generation capabilities for image animation.
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Our key idea is to govern the video generation process of T2V diffusion
models by incorporating a conditional image. However, achieving the goal of im-
age animation is still non-trivial, as it requires both visual context understand-
ing (essential for creating dynamics) and detail preservation. Recent studies on
multi-modal controllable video diffusion models, such as VideoComposer [76]
and I2VGen-XL [36], have made preliminary attempts to enable video genera-
tion with visual guidance from an image. Unfortunately, both are incompetent
for image animation due to their less comprehensive image injection mechanisms,
which results in either abrupt temporal changes or low visual conformity to the
input image (see Figure 3). To address this challenge, we propose a dual-stream
image injection paradigm, comprised of text-aligned image context projection
and visual detail guidance, which ensures that the video diffusion model synthe-
sizes detail-preserved dynamic content in a complementary manner. We call this
approach DynamiCrafter.

Given an image, we first project it into the text-aligned rich image con-
text representation space through a specially designed context learning network.
Specifically, it consists of a pre-trained CLIP image encoder to extract text-
aligned image features and a learnable query Transformer to further promote
its adaptation to the pre-trained T2V diffusion models. The rich image context
features are used by the model via cross-attention layers, which will then be
combined with the text-conditioned features through gated fusion. To some ex-
tent, the learned image context representation trades visual details with text
alignment, which helps facilitate semantic understanding of the image so that
reasonable and vivid dynamics can be synthesized. To supplement more precise
visual details, we feed the full image to the diffusion model by concatenating
it with the initial noise. This dual-stream image injection paradigm guarantees
both plausible dynamic content and visual conformity to the input image.

Extensive experiments are conducted to evaluate our proposed method, which
demonstrates notable superiority over existing competitors, including the latest
commercial demos (like Gen-2 [20] and PikaLabs [53]). Furthermore, we offer dis-
cussion and analysis on some insightful designs for diffusion-model-based image
animation, such as the roles of different visual injection streams, the utility of
text prompts and their potential for dynamics control, which may inspire follow-
ups to push forward this line of technique. Besides image animation, Dynami-
Crafter can be easily adapted to support various applications like storytelling
video generation, looping video generation, and generative frame interpolation.
Our contributions are summarized as follows:

– We introduce an innovative approach for animating open-domain images by
leveraging video diffusion prior, significantly outperforming contemporary
competitors.

– We conduct a comprehensive analysis on the conditional space of text-to-
video diffusion models and propose a dual-stream image injection paradigm
to achieve the challenging goal of image animation.

– We pioneer the study of text-based motion control for open-domain image
animation and demonstrate the proof of concept through experiments.
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2 Related Work

2.1 Image Animation

Generating animation from still images is a heavily studied research area. Early
physical simulation-based approaches [12, 38] focus on simulating the motion of
specific objects, resulting in low generalizability due to the independent model-
ing of each object category. To produce more realistic motion, reference-based
methods [11,39,52,54,61–63,79] transfer motion or appearance information from
reference signals, such as videos, to the synthesis process. Although they demon-
strate better temporal coherence, the need for additional guidance limits their
practical application. Additionally, a stream of works based on GAN [26,40,59]
can generate frames by perturbing initial latents or performing random walk in
the latent vector space. However, the generated motion is not plausible since
the animated frames are just a visualization of the possible appearance space
without temporal awareness. Recently, motion prior-based methods [15, 31, 35,
49, 50, 80, 81, 96] animate still images through explicit or implicit image-based
rendering with estimated motion field or geometry priors. Similarly, video pre-
diction [2, 17, 32, 34, 44, 73, 84, 87, 93] predicts future video frames starting from
single images by learning spatio-temporal priors from video data.

Although existing approaches have achieved impressive performance, they
primarily focus on animating motions in curated domains, particularly stochas-
tic [6, 12, 13, 15, 38, 42, 52, 88] and oscillating [45] motion. Furthermore, the an-
imated objects are limited to specific categories, e.g ., fluid [31, 48, 52], natural
scenes [11, 38, 45, 59, 84], human hair [81], portraits [21, 70, 77, 79], and bod-
ies [4,7,33,39,71,80,86]. In contrast, our work proposes a generic framework for
animating open-domain images with a wide range of content and styles, which
is extremely challenging due to the overwhelming complexity and vast diversity.

2.2 Video Diffusion Models

Diffusion models (DMs) [28, 65] have recently shown unprecedented generative
power in text-to-image (T2I) generation [24,51,56–58,95]. To replicate this suc-
cess to video generation, numerous video diffusion models (VDMs) [8,19,25,27,
30,46,64,75,78,82,92,97] are proposed to generate high-quality videos.

Although these models can generate visually pleasing results, they only ac-
cept text prompts as the sole semantic guidance, which can be vague and may not
accurately reflect users’ intentions. Then introducing control signals in T2V, such
as structure [16, 83] and pose [41, 47, 94], has been increasingly receiving much
attention. However, visual conditions in VDMs [69, 90], such as RGB images,
remain under-explored. Most recently, image condition is examined in Seer [23],
VideoGen [43], VideoComposer [76], and I2VGen-XL [36] for (text-)image-to-
video synthesis. However, they either focus on the curated domain, i.e., indoor
objects [23], or fail to generate temporally coherent frames and realistic mo-
tions [43,76] and preserve visual details of the input image [36] due to insufficient
context understanding and loss of information of the input image. Our approach
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Table 1: Comparison among image-to-video generation frameworks. ∗: Concurrent.

Method Image condition injection Text
condition

Pre-trained
T2V

T2V prior
spaceDetail stream Context stream

Seer [23], VideoGen [43] ✓ ✗ ✓ ✗ -
∗I2VGen-XL [36] ✗ ✓ ✗ ✗ -
Vid.Comp. [76], ∗PixelDance [91], ∗SEINE [10],∗EmuVideo [22] ✓ ✗ ✓ ✓ ✓
∗SVD [5] ✓ ✓ ✗ ✓ ✗

DynamiCrafter (Ours) ✓ ✓ ✓ ✓ ✓

is built upon text-conditioned VDMs to leverage their rich dynamic prior for
animating open-domain images, by introducing dual-stream image injection for
better semantic/context understanding and conformity to the input image.
Concurrent works. Considering the rapid development in VDMs, numerous
concurrent works have emerged, tackling similar image animation problems. Ta-
ble 1 compares recent and concurrent frameworks with ours. Although SVD [5]
adopts a similar dual-stream image condition strategy to ours, it discards the
text condition in the underlying pre-trained T2V model, shifting the prior space
significantly, which results in less controllability and unrealistic object motions.

3 Method

Given a still image, we aim at animating it to produce a short video, that
inherits all the visual content from the image and exhibits implicitly suggested
and natural dynamics. Note that the still image can appear in the arbitrary
location of the resultant frame sequence. Technically, it can be formulated as
image-conditioned video generation that requires strict visual conformity. We
tackle this by utilizing the generative priors of pre-trained video diffusion models.

3.1 Preliminary: Video Diffusion Models

Diffusion models [28, 66] are generative models that define a forward diffusion
process to convert data x0 ∼ pdata(x) into Gaussian noises xT ∼ N (0, I) and
learn to reverse this process by denoising. The forward process q(xt|x0, t) con-
tains T timesteps, which gradually adds noise to the data sample x0 to yield xt.
The denoising process pθ(xt−1|xt, t) obtains less noisy data xt−1 from the noisy
input xt through a denoising network ϵθ (xt, t), which is supervised by:

min
θ

Et,x∼pdata,ϵ∼N (0,I)∥ϵ− ϵθ (xt, t) ∥22, (1)

where ϵ is the sampled ground truth noise and θ indicates the learnable network
parameters. Once the model is trained, we can obtain denoised data x0 from a
random noise xT through iteratively denoising.

For video generation tasks, Latent Diffusion Models (LDMs) [27] are com-
monly used to reduce the computation complexity. In this paper, our study
is conducted based on an open-source video LDM VideoCrafter [9]. Given a
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Fig. 1: Flowchart of the proposed DynamiCrafter. During training, we randomly select
a video frame as the image condition of the denoising process through the proposed
dual-stream image injection mechanism to inherit visual details and digest the input
image in a context-aware manner. During inference, our model can generate animation
clips from noise conditioned on the input still image.

video x ∈ RL×3×H×W , we first encode it into a latent representation z =
E(x), z ∈ RL×C×h×w frame-by-frame. Then, both the forward diffusion process
zt = p(z0, t) and backward denoising process zt = pθ(zt−1, c, t) are performed in
this latent space, where c denotes possible denoising conditions like text prompt.
Accordingly, the generated videos are obtained through the decoder x̂ = D(z).

3.2 Image Dynamics from Video Diffusion Priors

An open-domain T2V diffusion model is assumed to have diverse dynamic con-
tent modeled conditioning on text. To animate a still image with the T2V gener-
ative priors, the visual information should be injected into the video generation
process in a comprehensive manner. On the one hand, the image should be di-
gested by the T2V model for context understanding, which is important for
dynamics synthesis. On the other, the visual details should be preserved in the
generated videos. Based on this insight, we propose the dual-stream image in-
jection paradigm, consisting of text-aligned image context projection and visual
detail guidance. The overview diagram is illustrated in Fig. 1.

Text-aligned image context projection. To guide video generation with
image context, we propose to project the image into a text-aligned embedding
space, so that the video model can utilize the image information in a compatible
fashion. Since the text embedding is constructed with pre-trained CLIP [55]
text encoder, we employ the image encoder counterpart to extract image feature
from the input image. Although the global semantic token fcls from the CLIP
image encoder is well-aligned with image captions, it mainly represents the visual
content at semantic level and fails to capture the image’s full extent. To obtain
more faithful information, we use the full visual tokens Fvis = {f i}Ki=1 from
the last layer of the CLIP image ViT [14], which demonstrated high-fidelity in
conditional image generation works [60,89]. To promote the alignment with text



6 J. Xing et al.

Original learned 𝜆

𝜆 ↑ in inter. layers

𝜆 ↓ in inter. layersU-Net layer number

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input layers
Middle layer
Output layers

Input

𝜆

1

0.9

0.8

0.7

0.6

ECCV

Input

“A girl with 
short blue and 
pink hair”

Rich context

+VDG Input

“A brown bear 
walking in a 
zoo enclosure”

w/ text

w/o text

(a) (b) (c)

Fig. 2: (a) Visualization of the learned λ across U-Net layers (left), and visual com-
parisons when manually adjusting λ (right). (b) Comparison of animations produced
using rich image context representation solely, and additionally visual detail guidance
(VDG). (c) Impact of text with image context representation.

embedding, in other words, to obtain an image context representation that can be
interpreted by the denoising U-Net, we utilize a learnable lightweight model P to
translate Fvis into the final context representation Fctx = P(Fvis). Particularly,
P is realized with a query Transformer architecture [1, 37], which comprises N
stacked layers of cross-attention and feed-forward networks (FFN), and is adept
at cross-modal representation learning via the cross-attention mechanism.

Subsequently, Fctx and the text embedding Ftxt are employed to interact with
the U-Net intermediate features Fin through the dual cross-attention layers:

Fout = Softmax(
QK⊤

txt√
d

)Vtxt + λ · Softmax(
QK⊤

ctx√
d

)Vctx, (2)

where Q = FinWQ, Ktxt = FtxtWK, Vtxt = FtxtWV, and Kctx = FctxW
′
K,

Vctx = FctxW
′
V accordingly. In particular, λ denotes the coefficient that fuses

text-conditioned and image-conditioned features, which is achieved through tanh
gating and adaptively learnable for each layers. This design aims to facilitate the
model’s ability to absorb image conditions in a layer-dependent manner. As the
intermediate layers of the U-Net are more associated with object shapes or poses,
and the two-end layers are more linked to appearance [74], we expect that the
image features will primarily influence the videos’ appearance while exerting
relatively less impact on the shape.

Observations and analysis of λ. Fig. 2a (left) illustrates the learned coef-
ficients across different layers, indicating that the image information has a more
significant impact on the two-end layers w.r.t. the intermediate layers. To ex-
plore further, we manually alter λ in the intermediate layers. As depicted in
Fig. 2a (right), increasing λ leads to suppressed cross-frame movements, while
decreasing λ poses challenges in preserving the object’s shape. This observation
not only align with our expectations, but also suggests that in image-conditioned
diffusion models, rich-context information influences certain intermediate layers
(e.g ., layers 7-9) of the U-Net, enabling the model to maintain object shape
similar to the input in the presence of motions.

Visual detail guidance (VDG). The rich-informative image context rep-
resentation enables the video diffusion model to produce videos that closely re-
semble the input image. However, as shown in Fig. 2b, minor discrepancies may
still occur. This is mainly due to the pre-trained CLIP image encoder’s limited
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capability to fully preserve input image information, as it is designed to align vi-
sual and language features. To enhance visual conformity, we propose providing
the video model with additional visual details from the image. Specifically, we
concatenate the conditional image with per-frame initial noise and feed them to
the denoising U-Net as a form of guidance. Therefore, in our dual-stream image
injection paradigm, the video diffusion model integrates both global context and
local details from the input image in a complementary fashion.

Discussion. (i) Why are text prompts necessary when a more informative
image context is provided? The text-aligned image representation carries more
extensive information than text embedding, which may overburden the T2V
model to digest them accurately, e.g ., causing shape distortion. Additional text
prompts can offer a native global context that enables the model to efficiently uti-
lize image information. Fig. 2c demonstrates how incorporating text can address
the issue of shape distortion in the bear’s head. Furthermore, as a still image
typically contains multiple potential dynamic variations, text prompts can ef-
fectively guide the generation of dynamic content tailored to user preferences
(see Sec. 5). (ii) Why is rich image context representation necessary when the
visual guidance provides the complete image? As previously mentioned, the pre-
trained T2V model comprises a semantic control space (text embedding) and a
complementary random space (initial noise). While the random space effectively
integrates low-level information, concatenating the noise of each frame with a
fixed image induces spatial misalignment, which may misguide the model in un-
controllable directions. Regarding this, the precise visual context supplied by the
image embedding can assist in reliably utilizing visual details (See Sec. 4.5).

3.3 Training Paradigm

The conditional image is integrated through two complementary streams, which
play roles in context control and detail guidance, respectively. To modulate them
in a cooperative manner, we devise a dedicated training strategy consisting of
three stages, i.e., (i) training the image context projection network P, (ii) adapt-
ing P to the T2V model, and (iii) joint fine-tuning with VDG.

Specifically, we propose to train a context projection network P to extract
text-aligned visual information from the input image. Considering the fact that
P takes numerous optimization steps to converge, we propose to train it based
on a lightweight T2I model instead of a T2V model, allowing it to focus on
image context learning, and then adapt it to the T2V model by jointly training
P and spatial layers (in contrast to temporal layers) of the T2V model. After
establishing a compatible image context conditioning branch for T2V, we con-
catenate the input image with per-frame noise for joint fine-tuning to enhance
visual conformity. Here we only fine-tune P and the VDM’s spatial layers to
avoid disrupting the pre-trained T2V model’s temporal prior knowledge with
dense image concatenation, which could lead to significant performance degra-
dation and contradict our original intention. Additionally, we randomly select a
video frame as the image condition based on two considerations: (i) to prevent
the network from learning a shortcut that maps the concatenated image to a
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Table 2: Quantitative comparisons with state-of-the-art open-domain image-to-video
generation methods on UCF-101 and MSR-VTT for the zero-shot setting.

Method UCF-101 MSR-VTT

FVD ↓ KVD ↓ PIC ↑ FVD ↓ KVD ↓ PIC ↑

VideoComposer 576.81 65.56 0.5269 377.29 26.34 0.4460
I2VGen-XL 571.11 58.59 0.5313 289.10 14.70 0.5352
Ours 429.23 62.47 0.6078 234.66 13.74 0.5803

frame in the specific location, and (ii) to force the image context to be more
flexible to avoid offering the over-rigid information for a specific frame, i.e., the
objective in the context learning based on T2I. It has been verified in Sec. 4.5.

4 Experiment

4.1 Implementation Details

Our development is mainly based on the open-source T2V model VideoCrafter [9]
(@256×256 resolution) and T2I model Stable-Diffusion-v2.1 (SD) [57]. We firstly
train P and the newly injected image cross-attention layers based on SD, with
1000K steps on the learning rate 1 × 10−4 and valid mini-batch size 64. Then
we replace SD with VideoCrafter and further fine-tune P and spatial layers with
30K steps for adaptation, and additional 100K steps with image concatenation
on the learning rate 5× 10−5 and valid mini-batch size 64. Our DynamiCrafter
was trained on WebVid-10M [3] dataset by sampling 16 frames with dynamic
FPS at the resolution of 256 × 256 in a batch. The experiments are primarily
conducted at this resolution unless otherwise specified. At inference, we adopt
DDIM [67] with multi-condition classifier-free guidance [29] (see Supplement).

4.2 Quantitative Evaluation

Metrics and datasets. To evaluate the quality and temporal coherence of
synthesized videos in both the spatial and temporal domains, we report Fréchet
Video Distance (FVD) [72] as well as Kernel Video Distance (KVD) [72]. Fol-
lowing [8,97], we evaluate the zero-shot generation performance of all the meth-
ods on UCF-101 [68] and MSR-VTT [85]. To further investigate the perceptual
conformity between the input image and the animation results, we introduce
Perceptual Input Conformity (PIC), computed by 1

L

∑
l(1 −D(xin,xl)), where

xin,xl, L are input image, video frames, and video length, respectively, and we
adopt perceptual distance metric DreamSim [18] as the distance function D(·, ·).

We evaluate our method against VideoComposer [76] and I2VGen-XL [36]
(Concurrent work SVD [5] is excluded due to the mismatch between model
configuration and evaluation dataset), with the quantitative results presented in
Table 2. According to the results, our proposed method significantly outperforms
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Fig. 3: Visual comparisons of image animation results from VideoComposer, I2VGen-
XL, PikaLabs, Gen-2, and our DynamiCrafter.

previous approaches in all evaluation metrics, except for KVD on UCF-101,
thanks to the effective dual-stream image injection design for fully exploiting
the video diffusion prior. More details of the evaluation are in the Supplement.

4.3 Qualitative Evaluation

In addition to the aforementioned approaches, we include two more proprietary
commercial products, i.e., PikaLabs [53] and Gen-2 [20], for qualitative com-
parison. Fig. 3 presents the visual comparison of image animation results with
various content and styles. Among all compared methods, our approach gener-
ates temporally coherent videos that adhere to the input image condition. In
contrast, VideoComposer struggles to produce consistent video frames, as sub-
sequent frames tend to deviate from the initial frame due to inadequate semantic
understanding of the input image. I2VGen-XL can generate videos that semanti-
cally resemble the input images but fails to preserve intricate local visual details
and produce aesthetically appealing results. As commercial products, PikaL-
abs and Gen-2 can produce appealing high-resolution and long-duration videos.
However, Gen-2 suffers from sudden content changes (the ‘Windmill’ case) and
content drifting issues (‘The Beatles’ and ‘Girl’ cases). PikaLabs tends to gen-
erate still videos with less dynamic and exhibits blurriness when attempting to
produce larger dynamics (‘The Beatles’ case). It is worth noting that our method
allows dynamic control through text prompts while other methods suffer from
neglecting the text modality (e.g ., talking in the ‘Girl’ case).
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User study. We conduct a user study to evaluate the perceptual quality. The
participants are asked to choose the best in terms of motion quality and temporal
coherence, and to select the results with good visual conformity to the input.
The statistics from 49 participants’ responses are presented in Table 3 (left). Our
method demonstrates significant superiority over other open-source methods and
achieves comparable, or even better, performance than commercial products.

4.4 Adaption for High-resolution Image Animation

To demonstrate the expandability and generalizability of our methodology and
fulfill a broader range of practical applications in line with cutting-edge com-
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Table 3: User study statistics of the preference rate for Motion Quality (M.Q.) &
Temporal Coherence (T.C.), and selection rate for visual conformity to the input image
(I.C.=Input Conformity). Left: 256×256 resolution setting; Right: 1024×576 setting.

Property Proprietary Open-source Proprietary Open-source

PikaLabs Gen-2 Vid.Com. I2VGen-XL Ours PikaLabs Gen-2 SVD Ours

M.Q. ↑ 28.60% 22.91% 2.09% 7.56% 38.84% 19.13% 17.39% 27.39% 36.09%
T.C. ↑ 32.09% 26.05% 2.21% 6.51% 33.14% 30.43% 15.65% 24.35% 29.57%
I.C. ↑ 79.07% 64.77% 18.14% 15.00% 79.88% 74.78% 62.61% 83.91% 86.96%

mercial [20, 53] and academic [5] image-to-video generation techniques, we fur-
ther train a high-resolution (i.e., DynamiCrafter1024 @1024×576) version via
multi-stage fine-tuning, i.e., training a DynamiCrafter512 @512×320 based on
VideoCrafter1 @512×320, and then fine-tuning it into DynamiCrafter1024 (See
Supplement). Fig. 4 displays the qualitative comparisons, illustrating that our
method can generate temporally coherent and realistic dynamics adhering to the
input images, e.g ., the rising beer level in the glass mug (the ‘Beer’ case) and walk
(the ‘Robot’ case). Conversely, PikaLabs and Gen-2 produce still (the ‘Robot’
case) or temporally inconsistent videos (the ‘Beer’ case). In addition, Gen-2 ex-
periences significant color-shifting issues compared to the input image. While
SVD tends to animate images using camera motions and fails to produce natu-
ral object motions, despite being trained on a larger curated proprietary dataset.
Moreover, SVD does not support text prompts as input, rendering the anima-
tion results less controllable. The user study with the same configuration as the
above, except for high-resolution samples shown in Table 3 (right) demonstrates
the superiority of our DynamiCrafter1024 in motion quality & input conformity.

4.5 Ablation Studies

Dual-stream image injection. To investigate the roles of each image condi-
tioning stream, we examine two variants: i). Ours w/o ctx, by removing the
image context projection stream, ii). Ours w/o VDG, by removing the visual
detail guidance stream. Table 4 compares our full method and these variants.
The performance of ‘w/o ctx’ declines significantly due to its inability to se-
mantically comprehend the input image without injection of rich image context,
leading to temporal inconsistencies in the generated videos (2nd row in Fig. 5a).
Although removing the VDG (w/o VDG) can yield better FVD scores, it causes
severe shape distortions and exhibits limited motion magnitude, as the remain-
ing image context condition can only provide semantic-level image information.
Moreover, while it achieves a higher PIC score, it fails to capture all the visual
details of the input image, as evidenced by the 3rd row in Fig. 5a.

We then study several key designs in the image context projection stream:
adaptive gating λ and full visual tokens in CLIP image encoder. Eliminating the
adaptive gating λ (w/o λ) leads to a slight decrease in model performance. This
is because, without considering the nature of the denoising U-Net layers, context
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Table 4: Ablation study on the dual-stream image injection and training paradigm.

Metric Ours Dual-stream image injection Training paradigm

w/o ctx w/o VDG w/o λ OursG Ft. ent. 1st frame

FVD ↓ 234.66 372.80 159.24 241.38 286.84 364.11 309.23
PIC ↑ 0.5803 0.4916 0.6945 0.5708 0.5717 0.5564 0.5673
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Fig. 5: Visual comparisons of (a) different variants of our method, (b) the image con-
text projection stream learned in one-stage and our two-stage adaption strategy, and
(c) different training paradigms.

information cannot be adaptively integrated into the T2V model, resulting in
shaky generated videos and unnatural motions (4th row in Fig. 5a). On the
other hand, using a strategy (OursG) like I2VGen-XL that utilizes a single CLIP
global token may generate results that are only semantically similar to the input
due to the absence of full image extent. In contrast, our full method effectively
leverages the video diffusion prior for image animation with natural motion,
coherent frames, and visual conformity to the input image.

Training paradigm. We further examine the specialized training paradigm
to ensure the model works. We firstly construct a baseline by training the context
projection network P based on the pre-trained T2V and keeping other settings
unchanged. As illustrated in Fig. 5b, this baseline (one-stage) converges at a
significantly slow pace, resulting in only coarse-grained context conditioning with
the same optimization steps. This may make it challenging for the T2V model
to harmonize the dual-stream conditions after incorporating VDG.
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Fig. 6: Illustration of dataset filtering and annotation process.
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Fig. 7: Image animation results from different methods with motion control using text.

After obtaining a compatible image context projection stream P, we further
incorporate image concatenation with per-frame noise to enhance visual confor-
mity by jointly fine-tuning P and spatial layers of the T2V model. We construct
a baseline by fine-tuning the entire T2V model, and Table 4 (Ft. ent.) shows that
this baseline results in an unstable model that is prone to collapse, disrupting the
temporal prior. Additionally, to study the effectiveness of our random selection
conditioning strategy, we train a baseline (1st frame cond.) that consistently uses
the first video frame as the conditional image. Table 4 reveals its inferior perfor-
mance in terms of both FVD and PIC, which can be attributed to the “content
sudden change” effect observed in the generated videos (Fig. 5c (bottom)). We
hypothesize that the model discovers a suboptimal shortcut for mapping the
concatenated image to the first frame while neglecting other frames.

5 Discussions on Motion Control using Text

Since images are typically associated with multiple potential dynamics, text can
complementarily guide the generation of dynamic content. However, captions
in existing datasets often consist of a combination of scene descriptive words
and less dynamic descriptions, potentially causing the model to overlook dy-
namics/motions during learning. For image animation, pure motion descriptions
should be treated as text conditions to train the model in a decoupled manner.

Dataset construction. To enable the decoupled training, we construct a
dataset by filtering and re-annotating the WebVid10M dataset, as illustrated in
Fig. 6. The constructed dataset contains captions with purer dynamic wording,
such as “Man doing push-ups.”, and categories, e.g ., human.

We then train a model DynamiCraterDCP using the dataset and validate its
effectiveness with 40 image-prompt testing cases featuring human figures with
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Fig. 8: Applications of our DynamiCrafter. □: input images.

ambiguous potential actions, and prompts describing various motions (e.g ., “Man
waving hands” and “Man clapping”). We measure the average CLIP similarity
(CLIP-SIM) between the prompt and video results, and DynamiCraterDCP im-
proves the performance from 0.17 to 0.19 in terms of CLIP-SIM score. The visual
comparison in Fig. 7 shows that Gen-2 and PikaLabs cannot support motion con-
trol using text, while our DynamiCrafter reflects the text prompt and is further
enhanced in DynamiCrafterDCP with the proposed decoupled training.

6 Applications

Storytelling with shots. First, we utilize ChatGPT to generate a story script
and corresponding shots (images). Then storytelling videos can be generated by
animating those shots, as displayed in Fig. 8 (top). Generative frame inter-
polation. With minor modifications, our framework can be adapted to facilitate
generative frame interpolation. Specifically, we provide both x1 and xL as visual
detail guidance and leave middle frames empty during training. During inference,
we provide two images for interpolation. We experiment with building this on
top of VideoCrafter1 @512×320. The interpolation results are shown in Fig. 8
(middle). Looping video generation. The modified model enables looping
video generation by inputting the same images for x1 and xL (Fig. 8 (bottom)).

7 Conclusion

We introduced DynamiCrafter, an effective framework for animating open-domain
images by leveraging video diffusion priors with the proposed dual-stream image
injection mechanism and dedicated training paradigm. Our experimental results
highlight the effectiveness and superiority of our approach compared to existing
methods. Lastly, we explored text-based dynamic control for image animation
and demonstrated the versatility of our framework across various applications.
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