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Abstract. Traditional image deblurring struggles with high-quality re-
construction due to limited motion data from single blurred images. Ex-
citingly, the high-temporal resolution of event cameras records motion
more precisely in a different modality, transforming image deblurring.
However, many event camera-based methods, which only care about the
final value of the polarity accumulation, ignore the influence of the ab-
solute intensity change where events generate so fall short in perceiving
motion patterns and effectively aiding image reconstruction. To overcome
this, in this work, we propose a new event preprocessing technique that
accumulates the deviation from the initial moment each time the event is
updated. This process can distinguish the order of events to improve the
perception of object motion patterns. To complement our proposed event
representation, we create a recurrent module designed to meticulously
extract motion features across local and global time scales. To further
facilitate the event feature and image feature integration, which assists in
image reconstruction, we develop a bi-directional feature alignment and
fusion module. This module works to lessen inter-modal inconsistencies.
Our approach has been thoroughly tested through rigorous experiments
carried out on several datasets with different distributions. These tri-
als have delivered promising results, with our method achieving top-tier
performance in both quantitative and qualitative assessments. Code is
available at https://github.com/ZhijingS/DA_event_deblur.
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1 Introduction

Frame-based cameras often produce blurred images due to factors like camera
shake or object motion, given their configured exposure time. Such blur, a com-
mon form of image degradation, occurs across various scenes. While photogra-
phers typically aim for clear and focused photos, clear inputs are equally critical
for numerous computer vision tasks. These tasks include super-resolution, target
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(e) EFNet [33]
(30.76dB
|0.856)

(f) Ours
(31.01dB
|0.858)

Fig. 1: A deblurring example on HS-ERGB [37] dataset via recent state-of-the-art
methods. Compared to other methods, our approach yields a more distinct result owing
to its enhanced motion perception capability.

detection, and semantic segmentation, to name a few. Hence, image deblurring
serves as a fundamental task in the realm of low-level computer vision, reinforc-
ing the image quality and supporting the proper function of various algorithms.

Traditional image-based techniques often attempt to derive a clear image
from a single blurred one. They do this by leveraging natural image priors
or making assumptions about blur operations [6, 8, 13, 15, 34, 44]. However, in
capturing a single blurred image, much motion information is lost. This lack
of motion information during exposure creates undesirable artifacts in the de-
blurred results, especially in complex motion scenarios, as illustrated in Fig-
ures 1c and 1d. To counter this challenge, recent methodologies use more tem-
poral information, such as differently exposed frames [2,46,48] and neighboring
frames [16, 28, 32]. However, these approaches have their limitations. For in-
stance, the use of differently exposed frames is constrained by the low temporal
resolution of frame-based cameras, improving the reconstruction effect primarily
in slow-motion scenes. The method that uses adjacent frames to estimate the
current frame’s motion information can lead to accumulative errors. In sum-
mary, traditional deblurring techniques encounter hurdles due to the inability of
frame-based cameras to capture motion information during exposure.

As opposed to frame-based cameras, event cameras, inspired by biological sys-
tems, offer a promising solution to this issue. These cameras’ microsecond-level
temporal resolution (µ s) and asynchronous output architecture allow the record-
ing of fast motions. This capability enables event streams to store pixel intensity
changes and provide accurate motion information to deblur the corresponding
frame. By using event frames as additional input, some methods attempt to
guide the deblurring process through these event cameras [9, 25, 39, 43, 49]. One
method [45] subdivides the event stream into ternary 2D data and generates a
mask to localize high-blur regions, thereby enhancing the network’s ability to
distinguish different blur levels. Another method [33] symmetrically accumulates
event polarities and fuses event and image features using an attention mecha-
nism, enabling the integration of motion information into image reconstruction.
However, these methods primarily employ the event stream in a manner akin to
polarity accumulation. In essence, they consider only the final accumulation re-
sult of relative intensity change between subsequent moments, neglecting the ab-
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solute intensity change caused by historical events. Consequently, this approach
fails to differentiate between various motion patterns, injecting unnecessary am-
biguity into the deblurring process, and leading to edge artifacts as displayed in
Figure 1e.

Given the limited perception of motion during exposure offered by polar-
ity accumulation, we posit that the deviation from the initial moment provides
more precise motion information for image deblurring. Each time the event gen-
erates, the absolute light intensity changes. The deviation from the initial mo-
ment enables us to consider the impact of changes in absolute light intensity,
even when the absolute light intensity at the initial moment is unknown. Thus,
the deviation, to a degree, implies the order of arrival of the events, offering
different information for varying motion patterns. As a result, we propose the
Deviation Accumulation (DA) method to enhance motion perception. Specif-
ically, every time a new event arrives, our method accumulates the deviation
relative to the initial moment, thus encompassing more comprehensive motion
information. Furthermore, we find that longer time scales for event accumulation
can capture global motion patterns, while shorter scales precisely depict local
fast-motion patterns. To better perceive motion at both global and local time
scales, we have designed a Recurrent Motion Extraction (RME) module that
works with corresponding event representations. Moreover, in line with multi-
modal learning [18–20,29,36,42], we present an effective Feature Alignment and
Fusion (FAF) module. This module serves to address the issue that simple fusion
methods struggle with the disparate nature of event and frame modalities. As
a result, these two modalities align, ensuring better information interaction. We
integrate these modules into a single image deblurring network. This network
extracts the motion features within the exposure time from the event stream and
combines them with the texture information supplied by the image to complete
the motion blur removal, as illustrated in Figure 1f.

The key contributions of this paper are as follows:

• We introduce an event preprocessing method designed specifically for the
deblurring problem. The deviation accumulation is capable of responding
distinctively to various motion patterns, thereby adding accurate motion
information for image deblurring tasks.

• We develop a network equipped with recurrent motion extraction modules,
designed to better extract motion features on local and global time scales.
This design enables the network to handle multiple composite motion sce-
narios effectively.

• We propose a feature alignment and fusion module to mitigate the impacts
of inter-modal inconsistencies and ensure that motion information more ef-
fectively guides the image deblurring process.

Our experimental results indicate that our method achieves state-of-the-art
performance on synthetic, semi-synthetic, and real-world datasets, including a
0.61dB improvement in PSNR on the GoPro dataset compared to previous stud-
ies [33]. Moreover, our method produces more distinct subjective results, as
demonstrated in Figure 1.



4 Z. Sun et al.

2 Related Work

2.1 Event-based Motion Deblurring

The utilization of event information to assist in deblurring tasks has become
increasingly common in recent research [9,12,25,31,39,43,49]. The high tempo-
ral resolution and low latency of event cameras not only capture edge positions
but also embed moving temporal information within the event stream. This in-
formation is crucial to reconstruct the latent sharp image. Many methods have
been attempted to explore the relationship between event information, blurred
images, and sharp images. One such method [25] includes the Event-based Dou-
ble Integral (EDI) model, which leverages the principles of event generation
to formulate an optimization problem that establishes a correlation between a
blurry image and a latent sharp image. In recent studies, the event stream is
typically converted into event frames [30, 38], which simplifies the processing of
event data within traditional CNN frameworks. [9] combines the motion feature
extracted from event data with the image feature, using them as the input for
the decoder. [50] employs a Multi-Layer Perceptron (MLP) to predict the fused
feature value from event and image features. [33] integrates them through a
cross-modal attention method, which generates a query matrix from the image
features, but derives key and value matrices from the event features.

Confronting the prevalent issue of integrating image and event features is
the problem of inter-modal inconsistencies, which traditional fusion techniques
cannot easily mitigate. To address this, our approach seeks to align these two
modalities, optimizing the use of event data. Through this alignment, our goal
is to minimize the inconsistencies spawned when merging differing modalities,
thus amplifying the efficacy of the deblurring process.

2.2 Event Representation

Event data, characterized by its spatial sparsity and strong temporal continuity
due to its asynchronous generation, necessitates a custom-designed event repre-
sentation to deliver the required information. Methods [11, 26, 41] that process
events individually maximize the use of high temporal resolution, as suggested
by [26], which proposed an adaptive spiking neuron model to manage the fluctu-
ating event input. The effectiveness of these algorithms, however, can be signif-
icantly hampered by the noise within the event due to independent processing.
A Time Surface [1,14,22,51] is created using the timestamp of the last event at
each pixel, which prominently reveals the rich temporal information contained
within the event. Furthermore, the event frame [5, 7, 21, 23, 45] transforms the
original 4D event data into a 2D frame by accumulating events on the number or
the polarity pixel-wise, facilitating extraction with conventional image process-
ing techniques. In [45], the authors utilize ternary data for their event frames to
allocate high blur region of the image.

However, existing event frame approaches result in abundant light intensity
change information being lost in the squeezing process, making it impossible to
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distinguish the order of event arrivals and lacking the ability to detect multiple
motion patterns. Some techniques attempt to recover some of this lost data
by dividing the exposure time into smaller segments, though this essentially
equates to sampling the original data. Consequently, we design a motion-aware
event representation specifically tailored for motion deblurring.

3 Method

3.1 Overall Framework

The overall framework of our proposed method is depicted in Figure 2. We
adopt a classical encoder-decoder architecture for our approach. Initially, the
blurred image is inputted into the image branch, where we use the baseline conv
block mentioned in [3] as our fundamental block, to extract relevant features.
Simultaneously, the corresponding event frames generated by our deviation ac-
cumulation are fed into the Recurrent Motion Extraction (RME) module, which
facilitates the extraction of features covering motion in local and global time
scales. Following each block of the two branches, the Feature Alignment and Fu-
sion (FAF) module is employed to eliminate the inconsistencies between the two
modalities. By performing down-sampling operations, we are able to obtain both
shallow and semantic information. In the decoder, skip connections are utilized
to incorporate the extracted features for image reconstruction. The architecture
of the conv block and the decoder is shown in the supplementary materials. The
entire training process is conducted in an end-to-end manner, with the PSNR
Loss function [4] employed to optimize the network’s parameters.

3.2 Deviation Accumulation Event Representation

Event cameras are bio-inspired sensors which asynchronously output signals.
They trigger an event while the logarithm of the intensity change exceeds the
preset threshold c at any pixel, which is formulated as

p =

{
+1 if log(Ixy(t))− log(Ixy(t−∆t)) ≥ c,

−1 if log(Ixy(t))− log(Ixy(t−∆t)) ≤ −c,
(1)

where p is the event’s polarity, Ixy(t) and Ixy(t−∆t) represent the intensity at the
pixel coordinate (x, y) at time t and t−∆t, respectively. An event is a quaternion
value (x, y, t, p) where x, y denotes the pixel coordinate, t represents the time of
change, the polarity p ∈ {+1,−1} indicates the increase and decrease. For a
given blurry image B, it can be formulated as the average of latent intensity
images I(t) during the exposure time [25]:

B =
1

T

∫ T

0

I(t)dt, (2)
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Fig. 2: Overview of the architecture of our proposed method for image deblurring.
The blurred image and related event frames within the exposure time are fed into the
corresponding network branches respectively. The core module of the event branch: (a)
Recurrent Motion Extraction (RME) module processes event frames from longer time
scales to shorter, merging old features into new features through weighted sum, which
results in perceiving various motion patterns under different time ranges. The image
branch extracts the features with conv block and fuses them with event features using
(b) Feature Alignment and Fusion (FAF) module. FAF module eliminates the inter-
modal inconsistencies in a bi-directional way ensuring better information interaction.

where T is the exposure time. For simplicity of understanding, we now only
consider the pixel at (x, y) then combining Equations (1) and (2), we have

Bxy =
1

T

∫ T

0

exp(log(Ixy(t)))dt (3)

=
1

T

∫ T

0

exp(log(Ixy(0)) + c

∫ t

0

p(s)ds)dt. (4)

The internal part of the exponential operation is the logarithmic value of the
light intensity of the pixel at time t, while the external part of the exponential
operation is the integration and averaging of each moment within the exposure
time. Based on the event data, we can discretize Equation (4):

Bxy =
1

N

∑
t′∈T

exp(log(Ixy(0)) + c

t′∑
t=0

pt) (5)

=
Ixy(0)

N

∑
t′∈T

exp(c

t′∑
t=0

pt), (6)

where T = {t1, t2, ..., tN} indicates the set of time event occurs, N is the number
of events, and pt means the polarity of the event at time t.

The aforementioned derivation prompts us to consider not only the polarity
of the event but also the impact of the alteration in the absolute value after
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Algorithm 1 Deviation Accumulation (DA)
Input: taking pixel at (x, y) for an example, the events stream (x, y, ti, pi) in which

i ∈ [1, N ], deviation from the initial moment D, accumulation of deviation R,
Output: the value of DA event representation V .
1: D = 0, R = 0;
2: Counting the number of events N ;
3: for (i = 1 to N) do
4: D = D + pi
5: R = R+D
6: end for
7: V = R/N

each accumulation when considering the problem of deblurring. However, since
event data cannot provide Ixy(0), the absolute light intensity is not accessible.
But we can indirectly capture this information through the deviation from the
initial moment. Therefore, we design a new event representation method for
the deblurring problem presented in Algorithm 1. First, we accumulate all the
events in the exposure time, so we get a 2D matrix named frequency matrix
representing the number of the event occurs at each pixel position. We deal with
the events considering their polarities subsequently, recording the deviation at
each pixel by an additional tensor. Upon the arrival of the subsequent event,
we update the deviation according to polarity and then add the deviation to
the corresponding position. In the end, by dividing the cumulative matrix by
the frequency matrix, we obtain the average deviation change over the exposure
period as the new event representation named Deviation Accumulation (DA).

Traditional polarity accumulation methods directly accumulating event po-
larities lead to identical outputs whenever the number of positive and negative
events within a given time frame ([0, T ]) remains unchanged. Nevertheless, by
considering the deviation brought by historical events, our method can generate
distinct values for events arriving in different orders, thereby improving the abil-
ity to perceive motion patterns and providing more precise motion information
for the deblurring procedure. For example, as illustrated in Figure 3, (a) shows
event signals generated by a motion pattern which represents that the light in-
tensity at that pixel has risen twice and then fallen twice while (d) shows another
pattern. Facing these two patterns, (b) and (e) depict the changing process of
the outputs of traditional method and our method after each event is accumu-
lated. After processing all four events, traditional polarity accumulation gets the
same output of 0 for both patterns, but our DA representation yields 1 and 0.5
respectively which contains richer motion information. More examples of motion
patterns our method can distinguish are shown in supplementary materials.

Overall, the phenomenon that polarity accumulation methods represent some
different motion patterns as the same value introduces ambiguity into the de-
blurring process. Our method has a better perception of the motion patterns and
offers a more distinct motion edge than conventional approaches from the visual
effect as shown in Figure 3 (c) and (f). Inspired by [33], directly segmenting
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(c) PA’s visual example
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Fig. 3: (a) and (d) are event signals of two different motion patterns. (b) shows the
Polarity Accumulation (PA) can’t distinguish (a) and (d) as it gets the same output
of 0 after processing all events while (e) shows our Deviation Accumulation (DA) can.
DA perceives more motion information than PA as shown in (c) and (f).

the entire exposure time averagely is not suitable for motion deblurring, which
focuses on capturing rapid motion but falls short in adequately modeling the
continuous movement throughout the exposure. In this paper, we symmetrically
accumulate events along the T/2 axis using the DA method. Taking [0, T/2]
as an example, we accumulate events on different time scales. The longest ac-
cumulating range is T/2, followed by T/3, and the shortest is T/6. A detailed
schematic is provided in the supplementary materials.

3.3 Recurrent Motion Extraction Module

The goal of the Recurrent Motion Extraction (RME) module is to cater to both
global slow motion and local fast motion in different time scales. Based on our
observations of the motion process and event representations, the focus of the
event representations varies in different time scales. In shorter time interval,
the global slow motion is not significant in the event representation due to the
smaller number of events triggered. On the contrary slow motion can be clearly
recorded in longer interval, but at the same time, the violent moving part will
produce edge spreading artifact.

To enable the network to accurately model the various in-homogeneous mo-
tions, we devised an RME module that incorporates a recurrent mechanism. As
shown in Figure 2(a), the event features are fed into the processing module from
the longest time scales to the shortest and we use e1, e2, and e3 to denote them.
Formally, the RME module can be presented as

e
′

i =

{
fex(ei) if i = 1,
(1− α)× fex(ei) + α× fre(e

′

i−1) if i = 2,3,
(7)
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where fex(·) and fre(·) are two baseline conv blocks, fex(·) is used to extract infor-
mation from the current representation, fre(·) is used to retain useful information
from previous features, α is the learnable weight as a trade-off between two fea-
tures. By sharing the parameters of fex(·) and fre(·) for different time scales, we
force the network to be able to perceive motions at varying time scales. Each
input feature is symmetric on the time axis so that the priori information about
the motion direction is simultaneously fed into the network.

3.4 Feature Alignment and Fusion Module

Although the information captured by the event camera exhibits a high corre-
lation with the frame camera during the equivalent exposure period, there is
still an inevitable gap originating from the modal dissimilarities between them.
This phenomenon is frequently mentioned in multi-modal learning [18,42], but in
event-guided image restoration tasks people usually [9,33,45] fuse features from
two modalities directly using convolutions or attention mechanisms. Therefore,
we propose an effective Feature Alignment and Fusion (FAF) module to facil-
itate enhanced feature fusion in a more coherent environment. Concretely, as
shown in Figure 2(b), this module consists of a feature alignment module and a
multi-head attention module. We use the operations of multiplication and addi-
tion successively to merge the raw information of one modality into the changing
process of the other modality, which fills the gap of inter-modal inconsistency.
The aligned features are fed into the attention module. In each fusion process,
attention plays a bi-directional role, we not only generate the Q matrix through
the frame features and the K and V matrix through the event features but also
use the event features to perform look-ups on the frame features. The weights
of the attention module are shared so that we can fuse the motion information
under a more consistent space. Therefore, FAF module can be expressed as

x
′
= Conv2(x) + (Conv1(x)× e+ e), (8)

e
′
= Conv2(e) + (Conv1(e)× x+ x), (9)

F = Conv3(Concat([Attention(Qx′ ,Ke′ , Ve′ ),Attention(Qe′ ,Kx′ , Vx′ )])), (10)

where x
′

and e
′

are aligned image feature x and event feature e respectively,
Attention(·) denotes the multi-head attention operation, Concat(·) denotes the
concatenation operation along the channel dimension.

4 Experiments and Analysis

4.1 Experimental Settings

Datasets. We use three different datasets containing synthetic, semi-synthetic,
and real-world frames and events to evaluate the proposed method.
GoPro: We train the network on the GoPro dataset which is the benchmark
dataset for the image motion deblurring [24]. The blurry image is averaged from
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Table 1: The quantitative results on GoPro, HS-ERGB, and REBlur test datasets.
The best values are highlighted in bold. HINet+ and UFPNet+ are event-enhanced
versions of HINet and UFPNet by concatenating our DA to their input.

Method Input GoPro HS-ERGB REBlur Params(M)
PSNR SSIM PSNR SSIM PSNR SSIM

LEVS [10] F 20.84 0.547 22.13 0.555 - - 18.2
EDI [25] F+E 29.06 0.943 23.93 0.704 36.52 0.964 0.5
SRN [35] F 30.26 0.934 - - 35.10 0.961 10.2
EVDI [49] F+E 30.40 0.906 25.13 0.707 - - 0.4
HINet [4] F 32.71 0.959 27.32 0.807 35.58 0.965 88.7

Restormer [47] F 32.92 0.961 27.55 0.808 35.50 0.959 26.1
MSDI-Net [17] F 33.28 0.964 27.46 0.809 36.14 0.968 241.3
NAFNet [3] F 33.71 0.967 27.64 0.811 36.15 0.969 67.8
UFPNet [6] F 34.06 0.968 27.64 0.809 36.11 0.968 80.3
HINet+ [4] F+E 34.63 0.968 27.66 0.808 37.92 0.976 88.7

UFPNet+ [6] F+E 35.22 0.972 27.68 0.809 37.97 0.976 80.3
EFNet [33] F+E 35.46 0.972 26.68 0.800 38.12 0.975 8.5

Ours F+E 36.07 0.976 27.93 0.812 38.47 0.978 13.9

adjacent sharp frames, by doing so the dataset contains 3214 pairs of blurry
and sharp images. According to the standard division, we adopt 2103 pairs for
training and 1111 pairs for testing. For the event data, we use the GoPro raw
event dataset provided by [33] which synthesizes events with a random threshold
c following the Gaussian distribution by ESIM simulator [27]. Following the DA
method, the raw event data is preprocessed into 6 event frames for each image.
HS-ERGB: The HS-ERGB dataset [37] consists of sharp videos and real-world
events, we use [50] released normal blur version which synthesizes blurry frames
by averaging 49 interpolating images. Each blurry frame in the dataset has a
known exposure time, allowing us to generate the DA representation for each
frame within its respective exposure duration.
REBlur: The REBlur dataset collects a number of sequences of real-world event
data, corresponding with blurry images and reliable ground-truth sharp im-
ages [33]. It contains 12 kinds of linear and nonlinear motions. Following the
original setting, we use 486 pairs of blurry-sharp images with associated events
for training and 983 pairs for testing.
Implementation details. We train the end-to-end network without pre-training
on a single Tesla V100 GPU. We extract patches of size 256 × 256 for training
images and corresponding event frames, and the batch size is set to 2 by default.
The AdamW optimizer is employed (β1 = 0.9 and β2 = 0.99) with the initial
learning rate 0.0001 with the cosine annealing schedule where the Tmax is 400K
iteration. For data augmentation, we perform horizontal and vertical flips, the
random noise and the hot pixels are added into event frames in order to simulate
the real-world situation. For HS-ERGB and REBlur datasets, We fine-tune the
model trained on GoPro with the training set of them. The fine-tuning process
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(b) HINet

(f) HINet+

(c) UFPNet (d) EFNet

(g) UFPNet+

(e) NAFNet

(h) Ours (i) GT(a) Blurry image in GoPro testset

Fig. 4: Qualitative comparisons on the GoPro dataset. The notation is the same as in
Table 1. Zoom in for better view.

(b) HINet

(f) HINet+

(c) UFPNet (d) EFNet

(g) UFPNet+

(e) NAFNet

(h) Ours (i) GT(a) Blurry image in REBlur testset

Fig. 5: Qualitative comparisons on the REBlur dataset. The notation is the same as
in Table 1. Zoom in for better view.

consisted of 4000 iterations while keeping the other configurations consistent
with the previous experiments.

4.2 Comparison with State-of-the-Art Methods

Table 1 shows the comparison results of our method and other SOTA methods
on GoPro [24], HS-ERGB [50] and REBlur [33]. We compare our network with
not only event-based methods, but also with some SOTA image-only deblur-
ring networks enhancing with event input. The results illustrate that: (1) Our
method outperforms all other methods in synthetic, semi-synthetic and real-
world datasets, which indicates that with the proper utilization of events the
designed approach is able to handle blur with different distributions. Specifically,
the average gains of our method over the second-best one are 0.61dB, 0.25dB
and 0.35dB in terms of PSNR on GoPro, HS-ERGB and REBlur datasets, re-
spectively. (2) Through the enhancement of our proposed event representation,
the HINet+ and the UFPNet+ increase 1.92dB and 1.16dB in PSNR on the
benchmark GoPro dataset compared with their image-only version, respectively.
Taking HINet as an example, with the same operation of [33], HINet with DA
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(a) GT (b) Blurry (c) UFPNet (d) NAFNet (e) EFNet (f) Ours

Fig. 6: Qualitative comparisons on the HS-ERGB dataset.

(a) Blurry (b) SCER [33] (c) DA (Ours) (d) GT

Fig. 7: Visual comparisons on GoPro dataset with different event representation. Com-
pared to SCER representation, our DA representation reduces edge artifacts.

event representation exceeds 0.94dB over the result in [33], which presents the
fact that DA extracts more conducive information for motion deblurring.

We also show the visual comparison results to verify the effectiveness of our
method in Figure 4, Figure 5 and Figure 6 with representative samples from each
dataset. As illustrated in the figures, our model reconstructs better details and
has minor spatial distortions compared with other methods. This indicates that
our event representation perceives more motion information and the modules
effectively embed it to reconstruct a high-quality image with enhanced details.

4.3 Ablation Studies

We conduct plenty ablation experiments on GoPro dataset to verify the effec-
tiveness of our event representation and proposed method.

Effectiveness of Event Representation. To demonstrate the adaptability
of our event representation for motion deblurring tasks, as shown in Table 2, we
replace our DA representation with several other types of representations and
trained the network accordingly. The results reveal certain shortcomings of the
alternative representations. Firstly, the stack representation simply accumulates
all events on their polarities which leaves out the temporal information. Secondly,
the SBT approach [40], which subdivides the entire exposure time equally, proves
to be inadequate for modeling the varying degrees of blur. Thirdly, the SCER
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Table 2: Ablation study of each module effects.

Event Representation RME Fusion PSNR SSIM

Stack
✓ FAF(Ours)

33.24 0.953
SBT [40] 35.63 0.973

SCER [33] 35.81 0.975

ACA(Ours) ✓

Concat. 34.02 0.967
Add 34.74 0.970

Attention 35.75 0.974
Only Align Event+Attention 35.78 0.975
Only Align Image+Attention 35.74 0.974

ACA(Ours) ✗ FAF(Ours) 35.42 0.973
✓ 36.07 0.976

(a) w/o RME (b) w/o RME (c) w/o RME

(d) w/ RME (e) w/ RME (f) w/ RME

Fig. 8: Visual comparison results of w/ and w/o RME module. All of these scenarios
involve movement in different directions and speeds, RME module can successfully
capture motion features in these complex motion scenarios. Zoom in for better view.

method [33], which directly accumulates event polarities, is found to be incapable
of capturing the influence of absolute intensity changes. This limitation is illus-
trated in Figure 3. In contrast, our DA representation not only possesses a solid
physical foundation for event generation but also perceives more motion pat-
terns. As a result, it achieves a 0.26dB improvement in performance compared
to the best alternative representation. We also provide the visual comparison
on the image reconstruction results in Figure 7. Our DA representation reduces
motion-generated edge artifacts, resulting in a better deblurring effect.

Effectiveness of Recurrent Motion Extraction Module. To assess the
RME module’s contribution, we replace it with a baseline conv block and ad-
just the parameters for fair comparison. In this approach, we concatenate event
frames of different time scales and feed them into the conv block. The findings, as
presented in the last two rows of Table 2, clearly indicate that the contribution
of 0.65dB increment in PSNR stems from the network structure design, rather
than an increase in parameter quantity. This shows the importance of incorpo-



14 Z. Sun et al.

rating the module for effectively leveraging motion information in multi-time
scales and improving performance in motion deblurring tasks. We also present
the visual comparisons when removing the RME module in Figure 8, the RME
module adeptly captures both fast local and slow global motion characteristics.

Effectiveness of Feature Alignment and Fusion Module. To illustrate
the effectiveness of our FAF module, we compare it with several common fusion
methods, including concatenation, addition, and cross-modality attention. As
shown in Table 2, it is arduous to utilize the motion information contained
in event feature through the direct concatenation or addition. While atten-
tion mechanisms can capture relative parts in the two features, the inherent
inconsistencies within the two modalities still lead to a 0.32dB performance gap
when compared to our FAF module. We also use a t-SNE visualization in Fig-
ure 9 to demonstrate the effectiveness of our feature alignment, where two origi-
nally in-congruent modal features are mixed up together after the FAF module.

image feature
event feature

aligned image feature

aligned event feature

Fig. 9: t-SNE visualization of original and
aligned features. The distributions of the
aligned two features overlap more compared
to the original features. This indicates the
effectiveness of FAF module to reduce the
inter-modal inconsistency.

Furthermore, we also verify the im-
portance of bi-directional alignment
by conducting experiments solely on
aligning event or image features. Since
both events and frames provide cru-
cial information for image restora-
tion, such as edge motion informa-
tion and textual information, respec-
tively, it is unreasonable to let one
modality dominate the alignment pro-
cess. As shown in Table 2, the bi-
directional alignment outperforms the
highest score achieved by one-way cor-
rection by 0.29dB. This demonstrates
the necessity of fully utilizing the
mutual information between the two
modalities in order to achieve better
image reconstruction results.

5 Conclusion

In this paper, we propose an event-based image deblurring method. Firstly, we
rethink the limit of traditional event preprocessing method and propose a new
deviation accumulation (DA) technique. With deviation, the new approach can
distinguish the order of events and perceive more motion patterns. Moreover,
we design an image deblurring network equipped with recurrent motion extrac-
tion (RME) module and feature alignment and fusion (FAF) module to fit our
proposed event representation. The RME module can better perceive motions
in different time scales, and the FAF module promotes better integration of
the two modalities. Finally, extensive experimental results over several datasets
demonstrate the effectiveness of the proposed algorithm.
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