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Abstract. The success of deep neural networks (DNNs) in real-world
applications has benefited from abundant pre-trained models. However,
the backdoored pre-trained models can pose a significant trojan threat
to the deployment of downstream DNNs. Numerous backdoor detection
methods have been proposed but are limited to two aspects: (1) high
sensitivity on trigger size, especially on stealthy attacks (i.e., blending
attacks and defense adaptive attacks); (2) rely heavily on benign exam-
ples for reverse engineering. To address these challenges, we empirically
observed that trojaned behaviors triggered by various trojan attacks can
be attributed to the trojan path, composed of top-k critical neurons with
more significant contributions to model prediction changes. Motivated
by it, we propose CatchBackdoor, a detection method against trojan
attacks. Based on the close connection between trojaned behaviors and
trojan path to trigger errors, CatchBackdoor starts from the benign path
and gradually approximates the trojan path through differential fuzzing.
We then reverse triggers from the trojan path, to trigger errors caused
by diverse trojaned attacks. Extensive experiments on MINST, CIFAR-
10, and a-ImageNet datasets and 7 models (LeNet, ResNet, and VGG)
demonstrate the superiority of CatchBackdoor over the state-of-the-art
methods, in terms of (1) effective - it shows better detection performance,
especially on stealthy attacks (∼ × 2 on average); (2) extensible - it is
robust to trigger size and can conduct detection without benign examples.

Keywords: Backdoor detection · Neural path · Fuzzing

1 Introduction

Recent advancements in deep neural networks (DNNs) have led to their widespread
application in various fields. A key factor in this progress has been the use of
pre-trained models, notably facilitated by resources like the Model Zoo, Hug-
ging Face, etc., which offers a vast collection of such models for free download.
However, such a practice also raises security concerns, particularly the risk of
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Fig. 1: Neural paths simulated by benign and trojaned examples. Dataset: 3-class
ImageNet subset; Attack: BadNets (trojan rate=0.1); Target Classification: “Tabby Cat.”
The bars, colored in green, blue, and orange, represent the average neuron contribution
and activation frequency within the model’s second layer, transitioning from benign to
trojan states.

trojaned models, which are the models that perform well on benign examples but
expose wrong/targeted predictions when the input contains the trigger [24]. These
models, susceptible to trojan manipulations during training [7, 28] or parameter
modification [20], may perform accurately on standard inputs but fail or act
maliciously when triggered. Thus, it is of great importance to conduct backbook
detection to ensure we can confidently rely on DNNs for critical tasks [11].

Existing detection methods are mostly developed along two mainstream: data
inspection (i.e., detecting trojaned examples from the training data), and model
inspection (i.e., hunting potential backdoors inside the pre-trained model). The
data inspection methods [3, 6, 35, 37] aim to distinguish benign examples from
trojaned ones. However, they are infeasible in practical scenarios like Model Zoo,
where training data of the online model is not available to downstream defenders.

Different from data inspection approaches, model inspection methods [8,19,29,
39,40] aim to examine trained models for any potential backdoors. Trigger reverse-
engineering is the most representative method [8,19,39,43], which searches for
triggers with specific victim labels. Existing research [8,19,39] commonly assumes
that backdoor triggers are static and small in size. However, this assumption does
not hold for more advanced attacks with by large and dynamic triggers [4,18,26].
Therefore, the optimized triggers reversed under this assumption often struggle
to activate errors in these advanced attacks, leading to unsatisfactory detection
results. Besides, these methods rely on benign examples for trigger reverse
engineering, therefore they will be challenged when benign data is unavailable.

To address these above challenges, in this work, we try to summarize the
general cause of different trojan attacks from neurons in DNNs. In particular,
the DNNs’ decision results are determined by the nonlinear combination of each
neuron, so it is intuitive to construct the relationship between neuron behaviors
and trojan attacks. Thus, we investigate neurons that play a decisive role in
trojaned behaviors and data flow between them. In particular, we measure the
extent of a neuron’s contribution to the variations in prediction results. By linking
neurons with more significant contributions to model prediction changes, we
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propose the concept of neural path, which represents the vulnerable direction of
triggering decision changes.

We show the relationship between neural path and trojaned behaviors in Fig. 1.
As observed, benign examples, each with a distinct label, activated unique neural
paths. Conversely, trojaned examples based on these benign examples activated
consistent neural paths, distinctively different from their benign counterparts.
During the transition phase, the neural path is activated when inputs contain
partial elements of the trigger, and increasingly align with the trojan paths, both
in neuron contribution and activation frequency.

Further, following the concept of neural path and motivated by the empirical
observation as demonstrated in Fig. 1, we design a novel backdoor detection
method independent of the trigger size, namely CatchBackdoor. It identifies
critical neurons with more significant contributions to trigger model prediction
changes to form the benign path and detect trojaned models by fuzzing benign
paths to the approximate trojan path, from which triggers can be reversed.

The main contributions are summarized as follows.
– We introduce the concept of the neural path, and empirically gain an insight

that trojaned DNN behaviors are attributed to the trojan path, i.e., a neural
path consisting of neurons dominant in model prediction changing.

– Motivated by the observation, we introduce CatchBackdoor, a novel method
for detecting potential backdoors in DNNs. It fuzzs benign path to construct
trojan path, to trigger trojan behaviors, even without benign examples.

– Comprehensive experiments have been conducted on 3 datasets and 7 self-
trained models to verify the effectiveness and efficiency of CatchBackdoor.
It outperforms the state-of-the-art (SOTA) baselines in identifying potential
backdoors, especially on stealthy attacks (∼ ×2).

2 Related Work

Trojan attacks. Trojan attack injects hidden malicious backdoors into the model,
which can cause misclassification when the input contains a specific pattern called
a trigger. In general, they could be categorized into four types: modification
attacks, blending attacks, neuron hijacking attacks and defense adaptive trojan
attacks. Modification attacks mainly modify a single pixel or a pattern on images
to reach trojan effects [7, 27,36]. Blending attacks mainly blend one class latent
representation to other classes [1, 21, 26, 28, 31]. Neuron hijacking attacks mainly
optimize pre-defined triggers combined with specific neurons [17, 20]. Defense
adaptive attacks are mainly designed to achieve trojan attacks while bypassing
possible detections [4, 18, 32]. For blending and defense adaptive attacks, they
tend to change all pixels in images, i.e., triggers are large and dynamic. Besides,
latent features of benign and trojaned examples learned by the backdoored model
are hard to distinguish. Therefore, these attacks are stealthy towards detection
algorithms that identify backdoors via cluster and separate analysis in latent
representation space.
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Trojan detections. Several detection approaches have been proposed to hunt
trojan attacks. They can be divided into data inspection and model inspection,
responsible for detecting trigger inputs and trojaned models, respectively. Data
inspection distinguishes [3,6, 9,22,33,35,37] benign examples from trojan ones
through the difference of characteristic distribution. Model inspection is used
to determine whether the model is trojaned, which is directly relevant to our
work. Some methods are based on the assumption that the backdoor trigger is
static with small size [8, 19, 29, 39]. So they do not perform well on blending
attacks and defense adaptive attacks. Other methods train additional models for
detection [13, 43]. The effectiveness of these methods highly depends on external
training data.

3 Preliminaries

3.1 Definitions

In this study, our examination is centered on DNNs on tasks related to image
processing. We consider an input image x ∈ X, where X = {x1, x2, . . .} represents
the set of all possible inputs. Each neuron in the network is denoted as ni,j ,
representing the j-th neuron in the i-th layer. This study primarily focuses on
the concept of a neural path within such a network.

The activation value of a neuron ni,j for an input x is denoted as φni,j
(x).

This value is the average of the feature map Ani,j
(x) ∈ RHeight×W idth×Channel.

A neuron is said to be activated if its activation value φni,j
(x) is greater than

zero. We then formally define the neuron contribution and neural path as follows.
Definition 1 (Neuron Contribution). Given a DNN with parameters θ,

when fed with input example x and its ground truth y. The neuron contribution
of ni,j is calculated as:

ξni,j
(x) = ∂L(x, y, θ)

∂φni,j
(x) (1)

where ξni,j (x) denotes the neuron contribution with input x. ∂ denotes the
partial derivative function. Neuron contribution reflects the influence of neuron
activation value on model decision. Neurons with larger neuron contributions are
more dominant in change effect model predictions.

Definition 2 (Neural Path). In a l-layer DNN, for an input x ∈ X, the
neural path is conceptualized as a sequence of interconnected neurons that have
a significant influence on the model’s decision for that input. It is defined as:

Ψ(x) =
l−1⋃
i=1

k⋃
j=1

{ni,j , Data Flow(ni,j , ni+1,j)} (2)

where ni,j are neurons with high contribution values, and Data Flow(ni,j , ni+1,j)
signifies the connection facilitating forward propagation between consecutive
neurons. The neural path, therefore, represents the critical route through which
data travels within the DNN, influencing its output predictions.
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Fig. 2: The framework of CatchBackdoor: A benign seed (random noise or benign
input) is input to the DNN to create a benign neural path. We then fuzz this path by
maximizing neuron contribution, converging to a critical trojan path, which generates
testing examples. A batch of benign seeds yields the same number of testing examples.
These, along with the benign seeds, are fed into the DNN. CatchBackdoor determines
if the model is trojaned by calculating the label change rate (LCR); a higher LCR
indicates a higher probability of being trojaned.

3.2 Threat Model

Attacker. We assume attackers have access to the training data [44, 45], i.e.,
either editing the training data or adding extra data to the training dataset.
They have knowledge of network architecture and the training algorithm of the
target model. They can trojan the model from scratch, fine-tune the model from
trojaned examples and labels, or retrain the model with selected neurons and
weights. We consider trojan attacks with only one trigger with one trojaned label.
Defender. Following recent backdoor detection studies [19,39,43], defenders have
white-box access to the model. Besides, they need part of the clean validation
set, i.e., at least one input for each label should be provided. They do not have
prior knowledge of the potential trojan backdoor.

Note that, CatchBackdoor stands on the defender role, it only acquires a few
images from the clean validation set or can reverse triggers from random noise,
which can imitate the activation path.

4 CatchBackdoor

An overview of CatchBackdoor is presented in Fig. 2. It consists of four steps: 1⃝
benign path construction, 2⃝ critical trojan neural path identification through
differential fuzzing, 3⃝ trigger reverse engineering, and 4⃝ trojaned model deter-
mination. For brevity in expression, benign neural path and trojan neural path
are dubbed as “benign path” and “trojan path” in the rest part of our paper.

4.1 Benign Path Construction

Constructing a benign path is a critical step for ensuring network integrity. This
process involves identifying and linking neurons that significantly contribute to
the network’s output while excluding neurons from the fully connected layer
to preserve the diversity of the paths. The pseudo-code is in supplementary
materials, which outlines the steps for constructing a benign path.
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In practice where training data is not available (e.g., Model Zoo [38]) for
defenders, the benign path is constructed using the model structure along with
random noise. This noise, when introduced into the DNN, is categorized into one
of the labels, effectively simulating the benign path that would be activated by
actual training data. We will discuss it in the supplementary materials.

4.2 Critical Trojan Path Identification Through Fuzzing

We conduct path fuzzing, to gain the critical trojan path, from which triggers
will be reversed afterward.

The pseudo-code is in supplementary materials, which presents the steps
involved in the identification of the critical trojan path for benign image x. During
fuzzing, we aim to maximize neuron contributions within the benign path. We
calculate the activated frequency of each neuron in each neural path from the
aggregation of fuzzed paths. For each input, we link critical trojan neurons with
data flow to form critical trojan path, which can trigger the correct trojaned
label as trojaned examples do. For the well-trained trojaned model, there exists
only one trojaned label. Not surprisingly, at the end of fuzzing, the fuzzed path
will gradually converge to the path that triggers the trojaned label, i.e., the
critical trojan path. By incorporating neurons from the fully connected layer and
analyzing activation frequencies, it can accurately represent a trojaned model’s
behavior.
Proposition (Converge to one specific critical trojan path).

Suppose x1, x2 ∈ X are two different benign seeds that activate different
benign paths. Assume function G(Ψ(x)) ⇔ F (x) denotes the mapping from
neural path activated by x to the model prediction. After fuzzing, the critical
trojan path is:

∀ x1, ∃ x2, xtroj s.t. x1 ̸= x2 ̸= xtroj , Ψb(x1) ̸= Ψb(x2)Ψcr(x1) = Ψcr(x2),
G(Ψcr(x1)) = G(Ψcr(x2))) ⇔ F (xtroj)

(3)

where xtroj denotes a trojaned example. Different benign seeds may construct
different benign paths, but they finally converge to one specific trojan path, i.e.,
critical trojan path, which resembles that activated by real triggers. Thus, the
effect of the critical trojan path is similar to that of the real trojan path.
Determination of path convergence in practice. We further examine
whether the critical trojan path converges through additional iterations, denoted
as S′, where S′ < S. Convergence is determined when the composition of
neurons in the Ψcr(x) remains consistent across iterations, indicating the successful
identification of a potential critical trojan path. We assume that the fuzzed path
finally converges to the critical trojan path.

4.3 Trigger Reverse Engineering

As stated, the critical trojan path has a similar effect to trojan path. Thus, we
leverage it to reverse triggers to achieve the same effect as trojaned examples,
i.e., triggering errors due to backdoors.
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For an input benign seed x, a trigger t is reversed by taking the partial
derivative of the critical trojan path. A testing example xt is generated by adding
the reversed trigger t to the benign seed x. They are calculated as follows:

t = ∂Ψcr(x)
∂x

, xt = min(max(µ × t + x, 0), 255) (4)

where µ ∈ [0, 1] controls the transparency of perturbations, which is usually set
to 0.5. The pixel values of testing examples xt are limited within [0, 255].

4.4 Trojaned Model Determination

If the input contains a trigger, the prediction of trojaned models will be the
trojaned label. Therefore, given the trojaned model with its multiple trojaned
examples, the label that most frequently appears is considered to be the target
label, i.e., the trojaned label. Thus, if we count the number of target label that
appears due to examples carrying triggers (real or reversed), trojaned models
can be distinguished from benign ones.

We define the LCR as the detection standard, which counts the label change
predicted by reversed examples. We feed reversed examples R = {xr1, xr2, ...}
into the model. The LCR of R is defined as follows:

LCR =
∑N

i=1 1 | nF (xri=yc)

N
, xri ∈ R, c ∈ C (5)

where N is the total number of reversed examples, C is the aggregation of total
labels, and nF (xri)=yc denotes the number of the target label yc.

We assume reversed examples will trigger high LCR, if a model has a potential
backdoor, and vice versa. Considering the influence of false-positive examples, we
set the threshold of LCR, λ = 50% for all datasets conducted in our experiment.
If more than 50% of the predicted labels turn to one specific label yc, we consider
yc as the trojaned label (yc = yt) and the model is very likely to be trojaned.
The specific number of this threshold will be further discussed in Section 6.2.

We further investigate the relationship between neural path and the DNN
decision, the detailed results are presented in the supplementary materials.

5 Neural Path and Trojaned Models: A Case Study

5.1 Neural Path Controls Model Predictions

We first study the relationship between neural path and the DNN decision. First,
we mask the top-k neuron path of the original class to zero. Then we move
neuron contribution values of the top-k neuron path from the target class to
replace those in the original class in the corresponding index. We check whether
the predicted result is consistent with the targeted result after the operation.
Consistency rate of the classifier is defined as:

consistency rate = {x|x ∈ X ∩ fr(x) = yt}
num(X) (6)
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Fig. 3: The proportion of different predic-
tion classes.

Fig. 4: IoU of critical trojan path among
different attacks under different iterations.

where X is a set of test cases, fr(x) is the prediction result of the classifier after
replacing fr on the input x. yt is the target class. Intuitively, the higher the
consistency rate, the larger the impact of the neural path.

Table 1: Consistency rate after re-
placing neural path from the cer-
tain class.

Datasets Models Target Class
Class 1 Class 5 Class 9

MNIST [16] LeNet-5 [16] 96.6% 94.2% 86.2%
CIFAR-10 [14] AlexNet [15] 87.4% 90.4% 84.4%

We randomly select 500 benign examples
and the target class is 1, 5, and 9. We calculate
the consistency rate after replacing the top-1
neural path. As observed in Table 1, after re-
placing, almost all predictions flip to the target
class. We can conclude neural path dominates
the decision of the DNN and each predicted
class can be attributed to a certain neural
path. Based on it, we assume if there exists
only one trojan class in the trojaned model,
we can find the unique trojan path responsible
for this class.

We illustrate the proportion of different classes in predictions under different
fuzzing iterations in Figure 3. We use a benign LeNet-5 of MNIST (left) and
two models backdoored by BadNets (middle) and BullseyePolytope (BP) [1]
(right) with trojan rate=0.05 and trojaned label 0. For the benign model, the
distribution probability of the predicted class seems relatively average. While
for trojaned models, the majority of the predicted labels turn to the trojaned
label (e.g., class 0), whose proportion rate is much higher than the benign model.
Consistent with our assumption in Section 4.4, we consider the most frequently
appearing label during fuzzing as the trojaned label.

5.2 Neural Path Converges

We empirically verify the assumption in Section 4.2. Specifically, we compare the
similarity between the top-1 fuzzed neural path and the critical neural path in
the trojaned LeNet-5 of MNIST during iterations in Figure 4. These models are
trojaned by BadNets, Poison frogs (PF) [28], BP, TrojanNN [20] and adversarial
backdoor embedding (ABE) [32], with trojan rate=0.05 and trojaned label 0.
The fuzzing start from a benign example from the corresponding dataset (left),
random noise (middle) and a random example from other datasets (right). For
consistency measurement, we use Intersection over union (IoU), which is calculated
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as IoU(X, X ′) = num(X)∩num(X′)
num(X)∪num(X′) , where X and X ′ denote two batches of input

examples. In particular, a greater value denotes higher consistency.
As observed, IoU value increases with the growing number of iterations, i.e.,

the fuzzed path gradually approximates the critical trojan path. After the 35th
iteration, IoU value remains stable at around 0.6 and the fuzzed path finally
converges. Besides, IoU value seems quite similar at 35th iteration when fuzzing
starts from benign example, random noise, or even an example from other datasets.
This shows that the critical trojan path is independent of the benign seed. So
when the training data is not available, random noise can serve as the benign
seed for generating reversed examples, which will be verified in Section 6.4.

6 Evaluation

6.1 Setup

Datasets and Models. We conduct experiment on MNIST, CIFAR-10 and
a-ImageNet - a subset of 10 classes of animals in ImageNet [25]. For MNIST, we
use small models (LeNet-1, LeNet-4, LeNet-5) [16]. On CIFAR-10, AlexNet and
ResNet20 [10] are adopted. On a-ImageNet, we adopt larger and deeper models
VGG16 [30] and VGG19 [30].
Trojan attacks. We use 11 attacks for evaluation, including modification attacks
(BadNets [7], Dynamic Backdoor [27]), blending attacks (Poison frogs [28], Hidden
trigger [26], BullseyePolytope (BP) [1] and Sleeper Agent [31]), neuron hijacking
attacks (TrojanNN [20] with face and apple stamp, and neuron frequency-based
attack, SIG [2]), and defense adaptive attacks (adversarial backdoor embedding
(ABE) [32], and deep feature space trojan attack (DFST) [4]). DFST can not
handle gray-scale images so it is not conducted on MNIST dataset.
Baselines. We adopt SOTA detection algorithms as the baselines, including
NC [39], TABOR [8], ABS [19], TND [40], K-Arm [29], ANP [42], TopoTrigger [12]
and UNICORN [41]. The parameters for these algorithms are configured following
their settings reported in the respective papers.
Metrics. The metrics used in the experiments are classification accuracy (acc),
attack success rate (ASR), and label change rate (LCR).
Implementation details. In the default setting, CatchBackdoor adopts benign
examples to construct the benign path. We set k1 and k2=3, LCR threshold
λ=0.5, unless otherwise specified. We will study the impact of it in parameter
sensitivity analysis. To mitigate non-determinism, we repeated the experiment
for 3 times and reported the average results. For all the tables, unless otherwise
stated, “N" means the trojaned model cannot be detected. A more detailed setup
is shown in the supplementary materials.

6.2 LCR for Detecting Trojaned Models

We calculate LCR of benign and trojaned models, and then investigate Area
under Curve (AUC) score using LCR as the indicator of identifying the model as
benign or trojaned under different threshold values.
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(a) MNIST (b) a-ImageNet

Fig. 5: LCR of benign and trojaned mod-
els on different datasets.

Fig. 6: AUC score under different thresh-
old of LCR.

LCR on Benign And Trojaned Models We randomly select 1,000 reversed
examples by CatchBackdoor and calculate the average LCR on 50 benign and
50 trojaned models. Results on MNIST and a-ImageNet are shown in Fig. 5.
Red and blue scatters represent LCR results of trojaned and benign models,
respectively. As observed, there is a significant difference between the LCR of
benign and trojaned models. Specifically, most trojaned models from different
kinds of attacks have larger LCRs than benign models under different trojan
rates. This is consistent with our assumptions discussed in Section 4.4. We can
see that the LCR of benign models is very low (i.e., lower than 50%) and that
of trojaned models is much higher. Benign and trojaned models can be easily
distinguished if we set the proper threshold of LCR=0.5.

LCR And AUC Analysis We calculate AUC under LCR with different
thresholds for trojaned model determination. We adopt 100 models used in
Section 6.2. Fig. 6 presents AUC under different thresholds of λ. We can observe
that when λ is set between 0.4 and 0.6, the AUC results are usually larger
than 0.9, which suggests that we could achieve detection accuracy using LCR
to distinguish trojaned models. LCR can be an indicator for the detection of
trojaned models when λ = 0.5. In the following experiment, we set λ = 0.5. The
model is considered to be trojaned if the LCR exceeds 0.5. Besides, LCR can
also reflect the effectiveness of triggering errors by a certain number of reversed
triggers, i.e., methods that can reach higher LCR is more effective in trojaned
model detection. We believe that LCR is a more suitable evaluation metric for
evaluating backdoor detection. In the follow-up, we use LCR for measurements.

6.3 Detection Effectiveness

We compare CatchBackdoor with SOTA baselines in trojaned model detection
based on LCR for effectiveness verification.
Implementation details. We use 50 trojaned models with trojan rate 0.1, 0.15,
0.2, 0.25, and 0.3. For each trojan rate, we train 10 models respectively. ASR
of all trojaned models is over 90%. 500 reversed examples are generated from
benign examples for each model. Results are shown in Table 2.
Results and analysis. CatchBackdoor can detect all trojaned models and
achieves the highest LCR in most cases, especially on stealthy attacks (∼ ×2).
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This means that our generated examples can effectively trigger more label changes
than baselines.

Table 2: Comparison of LCR against various trojan attacks.

Modification Blending Neuron Hijacking Defense Adaptive
Datasets Models Methods BadNets Dynamic

Backdoor
Poison
frogs

Hidden
Trigger BP Sleeper

Agent
TrojanNN
(Apple)

TrojanNN
(Face) SIG ABE DFST

MNIST

LeNet-1

NC 82.6% 78.6% N N 65.2% 61.4% 60.4% 51.6% 61.6% N /
TABOR 83.2% 79.2% N N 62.4% 68.0% 70.6% 69.2% 65.2% N /

ABS 89.8% 81.2% 68.0% N 77.6% 60.2% 76.8% 81.8% 67.8% N /
TND 88.8% 82.2% 65.2% N 70.0% 72.6% 70.4% 64.2% 79.6% N /

K-Arm 92.0% 84.0% 78.4% 62.8% 78.2% 74.8% 78.2% 80.2% 84.2% 57.0% /
ANP 91.4% 82.6% 78.2% 58.8% 63.2% 54.6% 67.4% 69.0% 74.0% 64.8% /

TopoTrigger 90.8% 81.2% 90.8% 70.4% 80.2% 70.2% 75.2% 78.2% 83.8% 80.6% /
UNICORN 91.2% 83.4% 92.1% 69.0% 77.0% 72.4% 80.0% 81.4% 81.6% 81.2% /

CatchBackdoor 91.0% 84.6% 94.0% 72.6% 77.8% 78.0% 81.6% 82.4% 82.0% 86.0% /

LeNet-4

NC 82.8% 80.0% N N 72.0% 64.2% 63.0% 55.4% 69.4% N /
TABOR 90.4% 83.2% N N 72.4% 78.0% 63.8% 62.0% 64.8% N /

ABS 92.0% 83.4% 79.0% 58.8% 84.2% 82.4% 79.2% 70.2% 79.0% N /
TND 90.2% 80.2% 64.2% N 78.6% 82.0% 64.4% 65.0% 72.4% N /

K-Arm 91.0% 78.6% 82.6% 58.8% 85.0% 86.8% 80.0% 71.0% 78.0% 59.8% /
ANP 86.2% 79.8% 74.2% 47.8% 73.4% 76.2% 59.8% 61.6% 73.4% 53.8% /

TopoTrigger 77.0% 83.6% 79.2% 76.8% 71.8% 80.8% 72.6% 70.6% 82.8% 93.4% /
UNICORN 92.8% 75.8% 71.6% 65.6% 86.0% 73.2% 77.8% 65.8% 86.2% 79.8% /

CatchBackdoor 91.2% 83.8% 91.0% 70.6% 83.2% 82.0% 81.0% 73.6% 85.4% 87.0% /

LeNet-5

NC 80.6% 78.4% N N N 56.0% 61.6% 62.6% 78.4% N /
TABOR 89.2% 80.0% N N 66.4% 64.6% 64.4% 59.4% 72.0% N /

ABS 91.8% 83.6% 74.0% 51.8% 78.6% 74.4% 75.2% 71.8% 80.0% N /
TND 90.7% 81.4% N N 72.6% 71.0% 68.6% 64.8% 80.6% N /

K-Arm 93.4% 81.6% 84.4% 58.2% 78.4% 78.0% 74.0% 81.2% 83.4% N /
ANP 81.8% 62.8% 69.8% 60.4% 58.8% 68.6% 58.8% 64.0% 73.6% N /

TopoTrigger 94.0% 79.2% 84.6% 56.6% 66.4% 59.8% 66.8% 59.8% 85.4% 67.8% /
UNICORN 91.6% 87.6% 82.8% 77.6% 65.6% 76.0% 58.8% 78.0% 80.6% 82.2% /

CatchBackdoor 92.2% 82.6% 93.0% 74.8% 80.0% 78.0% 78.0% 80.2% 82.4% 91.0% /

CIFAR-10

AlexNet

NC 81.6% 74.6% N N N N 51.2% N 54.6% N N
TABOR 87.6% 76.6% N N 56.0% N 67.2% 66.6% 57.2% N N

ABS 90.4% 79.4% 75.0% N 68.0% 72.6% 75.8% 64.2% 51.0% N N
TND 89.5% 77.6% 50.8% 52.6% 70.8% 70.0% 70.8% 60.0% 64.6% N N

K-Arm 92.0% 82.0% 75.2% 58.6% 74.2% 66.6% 76.8% 76.4% 72.8% N 51.2%
ANP 86.6% 78.4% 63.2% 66.2% 61.8% N 66.2% 54.6% 74.0% N N

TopoTrigger 82.6% 72.0% 78.8% 67.4% 65.4% 53.2% 73.8% 61.4% 63.6% 77.4% 60.0%
UNICORN 92.0% 72.6% 82.0% 68.8% 69.0% 67.2% 80.8% 63.6% 79.6% 79.8% 63.2%

CatchBackdoor 93.6% 83.2% 87.0% 70.8% 72.4% 70.2% 79.4% 79.2% 80.8% 83.0% 61.4%

ResNet20

NC 83.6% 78.8% N N N N 60.0% 53.8% 64.6% N N
TABOR 84.0% 79.8% N N 56.8% N 63.0% 50.2% 60.6% N N

ABS 89.6% 82.8% 77.0% 53.2% 72.0% N 81.0% 60.6% 70.0% N 56.8%
TND 88.3% 78.2% N N 68.8% N 74.8% 51.6% 68.4% N N

K-Arm 91.0% 79.4% 81.4% 70.2% 72.0% 51.4% 81.2% 78.0% 75.2% N 56.8%
ANP 80.2% 73.4% N N 60.0% 33.4% 75.4% 52.4% 54.0% N N

TopoTrigger 89.6% 78.2% 83.4% 70.0% 65.4% 68.6% 70.2% 71.6% 72.0% 78.0% 53.8%
UNICORN 87.8% 84.0% 79.2% 72.2% 78.6% 64.0% 80.4% 79.0% 75.2% 81.6% 57.2%

CatchBackdoor 90.8% 83.4% 88.0% 74.0% 80.0% 70.6% 82.2% 77.2% 73.8% 85.0% 60.8%

a-ImageNet

VGG-16

NC 81.4% 76.2% N N N N 57.2% 51.2% 54.2% N N
TABOR 82.8% 76.8% N N N N 64.8% 66.2% 63.8% N N

ABS 86.0% 79.8% 69.0% N 56.2% 78.4% 73.0% 68.8% 69.0% N 51.6%
TND 86.1% 77.2% 58.0% N N 67.0% 72.6% 65.0% 77.4% N N

K-Arm 89.0% 78.8% 69.2% N 70.8% 78.4% 76.8% 77.6% 87.2% N N
ANP 80.2% 69.2% 56.0% 63.4% 45.6% 73.6% 72.8% 59.4% 64.6% N N

TopoTrigger 81.8% 70.4% 72.4% 68.8% 70.8% 80.2% 78.4% 66.2% 82.4% 57.8% 60.2%
UNICORN 89.4% 72.4% 59.0% 70.8% 71.8% 60.0% 75.6% 69.0% 84.8% 53.4% 51.4%

CatchBackdoor 90.2% 79.4% 76.0% 76.4% 71.4% 77.8% 80.2% 77.6% 88.4% 79.0% 54.8%

VGG-19

NC 79.2% 76.4% N N N N 56.4% 57.2% 56.8% N N
TABOR 80.2% 78.4% N N N 53.2% 58.8% 63.2% 68.2% N N

ABS 85.6% 77.8% 65.0% N 62.0% 77.0% 74.4% 70.2% 72.4% N N
TND 84.3% 77.0% 57.0% N 58.4% 77.0% 70.2% 53.4% 70.0% N N

K-Arm 88.8% 78.2% 70.0% 50.8% 64.2% 74.0% 79.4% 75.2% 83.4% N 50.0%
ANP 84.4% 76.2% N N 56.8% 57.6% N N 67.2% N N

TopoTrigger 89.2% 77.6% 73.2% 56.4% 72.2% 69.2% 70.6% 72.2% 83.8% N 51.2%
UNICORN 91.6% 79.4% 76.0% 52.0% 56.6% 70.6% 76.0% 70.6% 88.6% 68.4% 55.8%

CatchBackdoor 90.0% 80.8% 79.0% 76.8% 80.6% 77.2% 79.2% 73.2% 84.0% 75.0% 56.6%

For clean label attacks like BP and Sleeper Agent, CatchBackdoor shows
inferior performance than K-Arm, especially on LeNet-4 and AlexNet. We suppose
that critical neural path is not strongly correlated with the clean trojaned
label. So the finally-converged critical trojan path will be misleading to trigger
trojaned behaviors. We will leave improvements on it in the future work. As for



12 H. Jin et al.

defense adaptive attacks that try to evade possible defenses, the superiority of
CatchBackdoor can be obviously observed.

We also notice that LCR decreases on large datasets and complex models. For
instance, on VGG19 of a-ImageNet, LCR is around 76% on average. The reason
lies in that the increasing depth of the model may lead to the redundancy of
neurons. Some neuron activation values in the neural path may not be significantly
larger than that of redundant neurons, which leads to the decrease of LCR for
those models. We have compared the activation value and frequency between
benign, trojaned, and reversed examples for interpretation.

We further extend the effectiveness of Catchbackdoor to transformer-based
models such as ViT [5] and Deit [34], as well as against advanced attacks [23] and
large-scale datasets. Additionally, we demonstrate the efficacy of Catchbackdoor
at low trojan rates. Detailed experimental results and visualizations are provided
in the supplementary materials.

6.4 Detection Extensibility

We conduct detection when applying different trigger sizes, when the training data
is unavailable, and when using adaptive attacks. We have also tested pre-trained
models on Caffe Model Zoo [38] and provided the results in the supplementary
materials.

Table 3: Sensitivity on trigger size.
Datasets Models Trigger

Size
LCR

NC K-Arm CatchBackdoor

MNIST LeNet-5

3×3 80.0% 89.6% 87.4%
7×7 63.2% 74.4% 78.4%

10×10 N 68.0% 65.2%
13×13 N N 60.2%
18×18 N N 57.8%
22×22 N N 56.2%

CIFAR-10 AlexNet

3×3 81.6% 92.0% 93.6%
7×7 74.2% 86.6% 86.6%

10×10 N 78.4% 80.4%
13×13 N 66.0% 74.2%
18×18 N N 72.8%
22×22 N N 70.2%

Detection Sensitivity to Trigger Size We
apply BadNets on LeNet-5 of MNIST and
AlexNet of CIFAR-10 with a fixed poisoning
rate 5%. For the trigger, we gradually increase
its size from 3×3 to 22×22. We generate 500
examples to calculate LCR. Results are shown
in Table 3. We can observe that CatchBack-
door is more robust to trigger size than NC
and K-Arm. For instance, when trigger size
is larger than 13×13, LCR of NC and ABS
is lower than 50%, i.e., these trojaned models
cannot be detected. CatchBackdoor can still
achieve detection when even half of the im-
age is covered by the trojaned triggers. This is
because trojan path is independent of trigger size, consistent with our assumption.

Detection Without Training Data We conduct experiments on LeNet-5 of
MNIST, ResNet20 of CIFAR-10 and VGG19 of a-ImageNet. For each model, we
generate 500 reversed examples from random noise. Detection performance is
measured by LCR shown in Table 4. Reversed examples generated on ResNet20
of CIFAR-10 under Poison frogs are shown in Fig. 7, where the reversed trigger
is added to the black image (the pixel value is set to 0) for better visualization.
Trojaned labels are attached in the corresponding caption. From the table, when
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Table 4: LCR by generating examples
with random noise.

Datasets Models Attacks

BadNets Poison
frogs

TrojanNN
(Face) ABE

MNIST LeNet-5 90.2% 81.8% 64.0% 71.4%
CIFAR-10 ResNet20 83.6% 78.6% 63.2% 74.4%

a-ImageNet VGG19 84.8% 60.4% 70.0% 64.8%

Fig. 7: Generated testing examples by
CatchBackdoor.

(a) plane (b) bird (c) cat (d) deer

starting with random noise, LCR of CatchBackdoor is still high, around 73%
on average. Even on advanced attack ABE, no significant decrease can be seen,
compared with that in Table 2. CatchBackdoor can conduct testing example
generation leveraging on the diversity of input examples from random noise,
which is different from example-dependent testing. Setting the threshold of LCR
at 50%, most trojaned models can still be detected. CatchBackdoor still performs
well mainly because trojan path is not directly related to benign seeds, and
different benign paths all converge to one trojan path. Thus, the random noise
can be adopted to construct a benign path. More visualizations of critical trojan
path fuzzed from random noise are in the supplementary materials.

Detection against Adaptive Attacks We evaluate the CatchBackdoor’s
detection performance under potential countermeasures where the attacker knows
our detection in advance and tries to bypass it. We design two types of adaptive
trojan attacks, i.e., standardized adaptive attack (S-AA) and imitation adaptive
attack (I-AA) and further evaluate CatchBackdoor on them. Details of these two
attacks can be seen the supplementary materials. Results of S-AA and I-AA
are shown in Table 5.

We observe that while the adaptive attacks do increase the difficulty, the
detection performance of our method is still remarkable under adaptive settings,
with LCR over 85%. This indicates that backdoors crafted by adaptive attacks
can still be hunted by CatchBackdoor. It is harder to identify critical neurons
when the difference in neuron contribution is smaller. On this occasion, neuron
frequency plays an important role. By selecting neurons based on activated
frequency, neurons responsible for trojaned behaviors can still be identified and
targeted through neural path fuzzing. Afterward, errors can be triggered by
CatchBackdoor.

6.5 Parameter Sensitivity Analysis

We analyze the influence of k1 and k2, which control the path selection of the
convolution layers and fully connected layers, respectively.

We measure the LCR of 500 testing examples generated under different k1
and k2 on VGG19 of a-ImageNet. For BadNets, MP is used with 7×7 patch size.
Trojan rate for all attacks is 0.1. The results are shown in Fig. 8, where abscissa
denotes different trojan attacks.
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Table 5: Detection results of adaptive
attacks.

Datasets Models S-AA I-AA
ASR LCR ASR LCR

MNIST LeNet-4 92.0% 88.3% 91.8% 87.5%
LeNet-5 91.6% 86.4% 90.4% 85.1%

CIFAR-10 AlexNet 88.3% 85.3% 88.5% 85.0%
ResNet20 87.8% 85.7% 88.4% 86.1%

ImageNet VGG16 84.6% 85.1% 86.5% 85.3%
VGG19 85.5% 85.4% 86.1% 85.9%

Fig. 8: LCR under different k1 and k2

(a) Influence of k1 (b) Influence of k2

As observed, on most cases, LCR all exceeds 50%. This indicates that various
backdoors can still be detected under different k1 and k2. So we can conclude
that the detection capability of CatchBackdoor is stable under different k1 and
k2 but it will decrease when faced with defense adaptive attacks as ABE. It
is easy to understand that by controlling more neurons that contribute to the
model’s predictions, more errors can be triggered. So the increase of k1 and k2
can effectively raise the value of LCR.

For defense adaptive attack ABE, we find that the testing examples generated
by only a single neuron cannot achieve high LCR. This is consistent with our
assumption that trojaned behaviors are produced by the joint action of multiple
neurons. So when k1 and k2 are both set to 3, LCR of ABE is over 65%, which
shows backdoors carfted by ABE can be hunted by CatchBackdoor.

Besides, a larger value of k is not related to a better effect. With the increase
of k1 and k2, neural path selection will be more time-consuming, for introducing
too many redundant neurons.

7 Conclusion

This paper proposes the concept of neural path and we empirically find that
trojaned behaviors are attributed to the trojan path, i.e., a neural path consisting
of neurons that play decisive roles in changing model predictions. Motivated
by it, we develop a backdoor detection method CatchBackdoor. We fuzz the
neural path from the benign path, to generate reversed examples that can trigger
errors due to backdoors. Extensive experiments have verified the effectiveness of
CatchBackdoor in hunting various backdoors. Besides, our method is independent
of trigger size and can perform detection without benign training data.
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