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Appendix

A Ablation study with different backbones and datasets

We showcase the results of the ablation study for each dataset across different
CLIP models in Fig. 1. It’s clear that our method, which involves removing the
residual connection and FFN, markedly enhances the open-vocabulary seman-
tic segmentation capability of CLIP throughout all datasets. This enhancement
is especially pronounced within the ViT-L/14 architecture, characterized by a
larger norm of residual connection. These findings conclusively affirm the efficacy
of our proposed methodology.

B Impact of channel-wise residual features

In this part, we investigate the effect of residual features with low intensity.
Specifically, we conduct experiments by selectively reintroducing channels from
residual features that have lower average values. We report the results of elimi-
nating the top β high-value channels and the effect of normalizing Xres in Tab. 1.
The best performance is achieved when β ≥ 70%. Additionally, normalizing Xres
significantly reduces its scale, resulting in performance comparable to β ≥ 70%.
These findings support our hypothesis that high-level supervision in CLIP em-
phasizes global feature direction in the residual latent space, which introduces
noise into the residual features. For simplicity, we eliminate all channels in Xres.

C Integration across models

Our solution serves as a free lunch applicable to various architectures and seg-
mentation models with just 2-3 lines of code modification. Specifically, for
⋆ Corresponding author.
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(a) CLIP-B/16

(b) OpenCLIP-B/16

(c) CLIP-L/14

(d) OpenCLIP-L/14

Fig. 1: Ablation study on each dataset under different architectures and attention
mechanisms. ⃝: original CLIP; △: CLIP w/o residual connection; ✩: CLIP w/o resid-
ual connection and FFN.

MaskCLIP and SCLIP, we achieve this by eliminating the residual connection
and Feed-Forward Network (FFN) of the last self-attention layer. For GEM, we
utilize the attention output from the final layer as the final representation. Im-
portantly, we preserve the original attention mechanisms of these methods. For
baseline models, i.e., CLIP, BLIP, OpenCLIP, and MetaCLIP, we enhance them
by incorporating our complete solution. The performance of different models on
five datasets is summarized in Tab. 2. The results demonstrate that our solution
consistently enhances the performance of existing models in open-vocabulary
semantic segmentation tasks, showcasing its exceptional generalizability.

D Visualization of feature maps

To intuitively demonstrate how the residual connections affect the performance,
we visualize the feature maps of Xres, Xattn, and Xsum for two randomly selected
samples in Fig. 2. It is obvious that the Xres feature maps associated with the
residual connections are characterized by peak values in one channel (highlighted
in a red box), significantly surpassing the other channels. And Xsum is similar
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Table 1: Average performance (mIoU) over all 8 datasets.

β (%) 0 5 10 30 50 70 100 Norm

Avg. 22.1 30.2 33.5 37.4 38.0 38.1 38.1 38.1

to Xres, indicating the big influence of Xres to the final feature. Conversely, the
feature maps in Xattn demonstrate a more uniform distribution across channels.
Given that the segmentation map is derived from the cosine similarity of feature
vectors at each spatial location, such a disparity implies that the features in Xsum
and Xres are less discernible compared to those in Xattn, thereby introducing
noise into the segmentation results. This observation supports our proposal that
the high-level supervision in CLIP emphasizes the global feature direction in the
residual latent space, making local feature vectors less distinguishable and leading
to noise in residual features.

E Additional qualitative examples

In this part, we present more qualitative results comparison between ClearCLIP
and state-of-the-art methods. Figs. 3 and 4 show the results from COCOStuff,
ADE20K and Pascal Context59 datasets respectively. Similar to the findings
in the main text, the results of ClearCLIP exhibit much less noise than other
methods, further underscoring the superiority of our method.

References

1. Bousselham, W., Petersen, F., Ferrari, V., Kuehne, H.: Grounding everything:
Emerging localization properties in vision-language transformers. arXiv preprint
arXiv:2312.00878 (2023)

2. Cherti, M., Beaumont, R., Wightman, R., Wortsman, M., Ilharco, G., Gordon, C.,
Schuhmann, C., Schmidt, L., Jitsev, J.: Reproducible scaling laws for contrastive
language-image learning. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 2818–2829 (2023)

3. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training for
unified vision-language understanding and generation. In: International Conference
on Machine Learning. pp. 12888–12900. PMLR (2022)

4. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

5. Wang, F., Mei, J., Yuille, A.: Sclip: Rethinking self-attention for dense vision-
language inference. arXiv preprint arXiv:2312.01597 (2023)

6. Xu, H., Xie, S., Tan, X.E., Huang, P.Y., Howes, R., Sharma, V., Li, S.W., Ghosh,
G., Zettlemoyer, L., Feichtenhofer, C.: Demystifying clip data. arXiv preprint
arXiv:2309.16671 (2023)

7. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: European
Conference on Computer Vision. pp. 696–712. Springer (2022)



4 M.Lan et al.

Table 2: Average performance (mIoU) over 5 datasets without background class based
on ViT- Base and Large architectures.

VOC20 Context59 Stuff Cityscape ADE20K Avg.

CLIP [4] 41.8 9.2 4.4 5.5 2.1 12.6
+ClearCLIP 80.9 35.9 23.9 30.0 16.7 37.5 +24.9

BLIP [3] 37.3 7.8 5.4 4.3 2.0 11.4
+ClearCLIP 73.5 31.4 21.3 23.8 13.5 32.7 +21.3

OpenCLIP [2] 47.2 9.0 5.0 5.1 2.9 13.8
+ClearCLIP 81.4 34.1 23.1 31.8 18.9 37.9 +24.1

MetaCLIP [6] 35.4 8.1 4.3 5.0 2.2 11.0
+ClearCLIP 78.3 34.8 23.5 27.9 17.4 36.4 +25.4

MaskCLIP [7] 74.9 26.4 16.4 12.6 9.8 28.0
+ClearCLIP 61.4 28.3 18.4 24.7 13.6 29.5 +1.8

SCLIP [5] 78.2 33.0 21.1 29.1 14.6 35.2
+ClearCLIP 77.9 35.6 23.6 31.0 17.0 37.9 +1.6

GEM [1] 79.9 35.9 23.7 30.8 15.7 37.2
+ClearCLIP 80.2 36.5 24.4 30.5 17.4 37.8 +0.6

CLIP [4] 15.8 4.5 2.4 2.9 1.2 5.4
+ClearCLIP 80.0 29.6 19.9 27.9 15.0 34.5 +29.1

BLIP [3] 22.5 5.8 2.4 3.8 1.5 7.2
+ClearCLIP 67.5 16.8 11.5 9.3 7.1 22.4 +15.2

OpenCLIP [2] 39.7 7.0 4.1 3.9 2.3 11.4
+ClearCLIP 65.3 27.9 19.5 26.4 16.0 31.0 +19.6

MetaCLIP [6] 22.7 6.2 3.6 5.1 2.2 8.0
+ClearCLIP 78.2 30.3 20.5 25.6 16.4 34.2 +26.2

MaskCLIP [7] 30.1 12.6 8.9 10.1 6.9 13.7
+ClearCLIP 65.1 26.5 17.6 21.2 15.1 29.1 +11.1

SCLIP [5] 60.3 20.5 13.1 17.0 7.1 23.6
+ClearCLIP 79.2 30.6 20.5 27.8 15.6 34.7 +15.4

GEM [1] 80.3 26.4 17.6 22.6 11.6 31.7
+ClearCLIP 79.7 29.9 19.4 25.9 14.2 33.8 +2.1
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Fig. 2: Visualization of feature maps with CLIP for two randomly selected examples
from the COCOStuff dataset. The first row shows the first 64 feature maps of each
type, while the second row displays all 768 feature maps of each type.
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(a) COCOStuff

(b) ADE20K

Fig. 3: Qualitative comparison between different open-vocabulary segmentation meth-
ods on (a) COCOStuff and (b) ADE20K datasets.
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Fig. 4: Qualitative comparison between different open-vocabulary segmentation meth-
ods on the Pascal Context59 dataset.
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