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Abstract. Group activity detection (GAD) is the task of identifying
members of each group and classifying the activity of the group at the
same time in a video. While GAD has been studied recently, there is still
much room for improvement in both dataset and methodology due to
their limited capability to address practical GAD scenarios. To resolve
these issues, we first present a new dataset, dubbed Café. Unlike exist-
ing datasets, Café is constructed primarily for GAD and presents more
practical scenarios and metrics, as well as being large-scale and providing
rich annotations. Along with the dataset, we propose a new GAD model
that deals with an unknown number of groups and latent group mem-
bers efficiently and effectively. We evaluated our model on three datasets
including Café, where it outperformed previous work in terms of both
accuracy and inference speed.

Keywords: Group activity detection · Social group activity recognition

1 Introduction

Understanding group activities in videos plays a crucial role in numerous ap-
plications such as visual surveillance, social scene understanding, and sports
analytics. The generic task of group activity understanding is complex and chal-
lenging since it involves identifying participants in an activity and perceiving
their spatio-temporal relations as well as recognizing actions of individual actors.
Due to these difficulties, most existing work on group activity understanding has
been limited to the task of categorizing an entire video clip into one of prede-
fined activity classes [2, 16, 25, 31, 37, 47, 53], which is called the group activity
recognition (GAR) in the literature. The common setting of GAR assumes that
only a single group activity appears per clip and actors taking part of the activ-
ity are identified manually in advance. However, these assumptions do not hold
in many real crowd videos, which often exhibit multiple groups that perform
their own activities and outliers who do not belong to any group. Moreover, it
is impractical to manually identify the actors relevant to each group activity
in advance. Hence, although GAR has served as a representative group activity
understanding task for a decade, its practical value is largely limited.
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Fig. 1: Examples of videos in Café. The videos were taken at six different places and
four cameras with different viewpoints in each place.

As a step toward more realistic group activity understanding, group activity
detection (GAD) has recently been studied [12, 13, 43]. GAD aims to localize
multiple groups in a video clip and classify each of the localized groups into
one of predefined group activity classes, where the group localization means
identifying actors of each group. Although a few prior work sheds light on this
new and challenging task, there is still large room for improvement in both
dataset and methodology due to their limited capability to address practical
GAD scenarios. Existing datasets for GAD [12,13] are not constructed primarily
for the task but are extensions of other datasets [7, 34] with additional group
labels. Moreover, most of the groups in these datasets are singletons, which are
individuals rather than groups. Meanwhile, most GAD models rely on off-the-
shelf clustering algorithms for group localization, which are not only too heavy
in computation but also not optimized for the task.

To address the dataset issue, we present a new dataset for GAD, dubbed
Café. Examples of videos in Café are presented in Fig. 1. The videos were taken
at six different cafes where people tend to gather in groups, capturing realistic
daily group activities. Each video exhibits multiple groups performing various
activities, along with outliers, presenting more practical scenarios for GAD. Café
has several advantages over the existing GAD datasets. First, it is significantly
larger, providing 10K clips and 3.5M actor bounding box labels, as summarized
in Table 1. Second, Café poses a greater challenge for group localization since
it capture more densely populated scenes than the others; group localization on
Café demands an accurate understanding of semantic relations between actors
as well as their spatial proximity. Finally, Café captures the same scene with up
to four cameras from different viewpoints; these multi-view videos can be used
to evaluate model’s generalization on unseen views as well as unseen places.

In addition to the new dataset, we also propose a new model architecture
for end-to-end GAD. Our model builds embedding vectors of group candidates
and individual actors through the attention mechanism of Transformer [11, 44].
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Table 1: Comparison between Café and other datasets for group activity understand-
ing. ‘# Clips’ and ‘# Boxes’ represent the number of video clips and the number of
annotated bounding boxes, respectively.

Dataset # Clips Resolution # Boxes Source Multi-group Multi-view
CAD [7] 2,511 720× 480 0.1M Daily videos ✗ ✗

Volleyball [24] 4,830 1280× 720 1.2M Sports videos ✗ ✗

NBA [51] 9,172 1280× 720 - Sports videos ✗ ✗

PLPS [39] 71 1920× 1080 0.2M Daily videos ✓ ✗

Social-CAD [12] 2,511 720× 480 0.1M Daily videos ✓ ✗

JRDB-Act [13] 3,625 3760× 480 2.5M Daily videos ✓ ✗

Café 10,297 1920× 1080 3.5M Daily videos ✓ ✓

Unlike GAR approaches using Transformer, which aggregate actor features to
form a single group representation while capturing spatio-temporal relationship
between actors, our model divides actors into multiple groups, each with its own
group representation. Embedding vectors of an actor and a group are learned
to be close to each other if the actor is a member of the group so that group
localization is done by matching the actor and group embeddings. To deal with
an unknown number of groups, we employ learnable group tokens whose number
is supposed to be larger than the possible maximum number of groups in a video
clip; the tokens are then transformed into group embeddings by Transformer,
attending to actor embeddings. Each group embedding is also used as input to
an activity classifier that determines its activity class. This mechanism allows
to discover groups accurately without off-the-shelf clustering algorithms unlike
most of previous work, leading to substantially faster inference.

We evaluated our model on three datasets, Café, Social-CAD [12], and JRDB-
Act [13], where it outperformed previous work in terms of both accuracy and
inference speed. In summary, our contribution is three-fold as follows:

• We introduce Café, a new challenging dataset for GAD. Thanks to its large-
scale, rich annotations, densely populated scenes, and multi-view character-
istics, it can serve as a practical benchmark for GAD.

• We present a novel GAD model based on Transformer that localizes groups
based on the similarity between group embeddings and actor embeddings.
Our model efficiently deals with an unknown number of groups and latent
group members without off-the-shelf clustering algorithms.

• Our model outperformed previous work on Café and two other GAD bench-
marks in terms of both GAD accuracy and inference speed.

2 Related Work

2.1 Group Activity Recognition

Group activity recognition (GAR) has been extensively studied as a represen-
tative group activity understanding task. With the advent of deep learning,
recurrent neural networks have substantially improved GAR performance [3,10,
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23, 24, 33, 38, 41, 46, 49]. In particular, hierarchical long short-term memory net-
works [23,46,49] have been used to model the dynamics of individual actors and
aggregate actors to infer the dynamics of a group.

A recent trend in GAR is modeling spatio-temporal relations between ac-
tors. To this end, graph neural networks (GNN) [12, 22, 47, 50, 53], have been
placed on top of a convolutional neural network (CNN). Popular examples of
such modules include graph convolutional networks [47], graph attention net-
works [12], dynamic relation graphs [53], and causality graphs [48,57]. To employ
global spatio-temporal dynamic relations between actors and contexts, Trans-
formers [11, 44] have been adopted for GAR and shown significant performance
improvement [16, 18, 25, 31, 32, 37, 52, 58]. They utilize the attention mechanism
to employ spatio-temporal actor relations [16, 18, 32], relational contexts with
conditional random fields [37], actor-specific scene context [52], intra- and inter-
group contexts [31], and partial contexts of a group activity [25]. Although these
methods have demonstrated outstanding performance, since GAR assumes that
only one group is present in each video, their applicability in real-world scenarios
is substantially limited.

2.2 Group Activity Detection

Group activity detection (GAD), which is closely related to social group activ-
ity recognition [12, 13, 43] and panoramic activity recognition (PAR) [19], has
recently been studied to address the limitation of GAR. GNNs [12, 13, 19] have
been utilized to model relations between actors and to divide them into multi-
ple groups by applying graph spectral clustering [35, 54]. However, they require
off-the-shelf clustering algorithms, which are not optimized for the task and re-
sulting slow inference speed. Meanwhile, HGC [43], which is most relevant to our
work, adopts Deformable DETR [59] for localization and matches a group and
its potential members in 2D coordinate space. Unlike HGC, our model conducts
such a matching in an embedding space to exploit semantic clues more explicitly,
achieving better performance.

Along with these models, several datasets have been introduced. Social-
CAD [12] extends CAD [7] by adding sub-group labels. JRDB-Act [13] and
JRDB-PAR [19] extend annotations of JRDB [34], a multi-person dataset cap-
tured by a mobile robot with panoramic views. On these datasets, actors are
divided into multiple groups, and the activity of each group is determined by
majority voting of individual actions. However, most of the groups in these
datasets are composed of a single actor, which is an individual who does not in-
teract with other actors. Unlike these datasets, Café is constructed primarily for
GAD. Also, in Café, people annotated as a group perform an activity together,
and singleton groups are annotated as outliers.

3 Café Dataset

Café is a multi-person video dataset that aims to introduce a new challenging
benchmark for GAD. The dataset contains more than 4 hours of videos taken at
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six different cafes by four cameras with different viewpoints, and provides rich
annotations including 3.5M bounding boxes of humans, their track IDs, group
configurations, and group activity labels. In an untrimmed video, an actor can
engage in varying group activities over time, which makes the task challenging
and comparisons with existing methods infeasible. Thus, each of the videos is
segmented into 6-second clips. In each clip, each actor is a member of a group
that performs one of six different group activities or is an outlier who does not
belong to any group (i.e., a singleton group). Also, outliers are often located
overly close to groups as shown in Fig. 1. Thus, for group localization in Café,
it is required to grasp the properties of individual actors and their semantic
relations as well as their spatial proximity.

3.1 Dataset Annotation and Splitting

Human annotators selected the key frame that clearly exhibited group activities
in each video clip. Then, they annotated actor bounding boxes, group configu-
rations, and group activity labels in the frame. Next, a multi-object tracker [56]
was applied to extend the actor box labels from the key frame into tracklets
across the frames of the clip. To improve the quality of estimated tracklets, the
tracker utilized a person detector [17] pretrained on public datasets for person
detection and tracking such as CrowdHuman [40], MOT17 [8], City Person [55],
and ETHZ [14], which was further finetuned using the key frames of Café. Fi-
nally, the annotators manually fixed incorrect tracking IDs and box coordinates.

To examine both place and viewpoint generalization of tested models, we split
the dataset in two different ways: split by place and split by view. The split by
view setting demonstrates the multi-view characteristics of Café by evaluating
the model on unseen views, a challenge absent in existing GAD benchmarks.
Details of each dataset split is provided in the supplementary material (Sec. A.2).

3.2 Dataset Statistics

Important statistics that characterize Café are summarized in Fig. 2. Fig. 2a
shows group population versus group size (i.e., the number of group members)
for each activity class. The class distribution of Café is imbalanced: The least
frequent group activity Queueing appears about seven times fewer than the most
frequent group activity Taking Selfie. Such an imbalance is natural in the real
world, and may deteriorate activity classification accuracy.

As shown in Fig. 2b, the number of actors in each video clip varies from 3
to 14, and most clips contain 10 or 11 actors. We thus argue that videos in Café
well simulate real crowd scenes. Also, about half of the actors are outliers in each
clip, which suggests that, on Café, group localization is more challenging.

3.3 Comparison with Existing GAD Datasets

To show the unique challenges and practical aspects of Café, we compare Café
with the existing GAD datasets, Social-CAD [12] and JRDB-Act [13]. Fig. 3a
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Fig. 2: A summary statistics of Café. (a) Group population versus group size per
activity class. (b) Distribution of the number of actors in each video frame.
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Fig. 3: Comparison between Café and existing GAD datasets in terms of (a) group size,
(b) aspect ratios of actor boxes, (c) population density, and (d) inter-group distance.

shows that most groups of existing datasets comprise only a single actor, which
are not actually groups but individuals. On the other hand, all groups in Café
have at least two actors, and mostly contain more than or equal to four actors.

Fig. 3b illustrates the aspect ratio distribution of actor bounding boxes. In
Social-CAD, actors are predominantly pedestrians moving or standing, resulting
in nearly all aspect ratios being around 1 : 2. In contrast, Café and JRDB-Act
present diverse group activities, resulting in significant pose variation and diverse
aspect ratios. Particularly, activities like Fighting and Taking Selfie in Café ne-
cessitates capturing fine-grained pose information, making it a more challenging.

We also compare the datasets in terms of population density, which we define
as the ratio between the union area of actors participating in group activities
and the area of their convex hull. As shown in Fig. 3c, Café exhibits a higher
population density compared to the others in both the split by view and split by
place, making it more challenging for detecting group activities.
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Finally, Fig. 3d compares the datasets in the inter-group distance, which cal-
culated by computing the distance between each group and its nearest group or
outlier and taking the average of such distances; the exact formulation of the
inter-group distance can be found in the supplement. A lower inter-group dis-
tance indicates that groups are harder to be localized only by spatial proximity,
making the benchmark more challenging than the other two datasets.

3.4 Evaluation Metrics

A proper evaluation metric for GAD should consider following two aspects of
predictions: (1) group localization, i.e., identification of members per group,
and (2) activity classification per group. While a few evaluation metrics such
as social accuracy, social mAP, and G-Act mAP were already proposed in pre-
vious work [12, 13], they evaluate group localization based on individual actors
rather than groups, which makes them less strict criterion for evaluating group
localization quality.

Hence, we propose new evaluation metrics for GAD: Group mAP and Outlier
mIoU. Group mAP is a modification of mAP that has been widely used as the
standard performance metric for object detection. On the other hand, Outlier
mIoU evaluates how much correctly a model identifies outliers of input video.
Group mAP. Before introducing the definition of Group mAP, we first define
Group IoU [6], analogous to IoU used in computation of mAP for object detec-
tion. Group IoU measures group localization accuracy by comparing a ground-
truth group and a predicted group as follows:

Group IoU(G, Ĝ) =
|G ∩ Ĝ|
|G ∪ Ĝ|

, (1)

where G is a ground-truth group and Ĝ is a predicted group; both groups are
sets of actors. Group IoU is 1 if all members of Ĝ are exactly the same with
those of G and 0 if no member co-occurs between them. Ĝ is considered as
a correctly localized group if there exists a ground-truth group G that holds
Group IoU(G, Ĝ) ≥ θ, where θ is a predefined threshold. Note that we use two
thresholds, θ = 1.0 and θ = 0.5, for evaluation. Group mAP is then defined by us-
ing Group IoU as a localization criterion along with activity classification scores.
To be specific, we utilize the classification score of the ground-truth activity class
as the detection confidence score of the predicted group, and calculate average
precision (AP) score per activity class through all-point interpolation [15]. Fi-
nally, AP scores of all classes are averaged to produce Group mAP.
Outlier mIoU. It is important for GAD in the real world videos to distinguish
groups and outliers (i.e., singletons). We thus propose Outlier mIoU to evaluate
outlier detection. Similar to Group IoU, its format definition is given by

Outlier mIoU =
1

|V |
∑
v∈V

|Ov ∩ Ôv|
|Ov ∪ Ôv|

, (2)
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Fig. 4: (Left) Overall architecture of our model. (Right) Detailed architecture of the
Grouping Transformer.

where |V | is the set of video clips for evaluation, Ov is the set of ground-truth
outliers in clip v, and Ôv is the set of predicted outliers in clip v.

4 Proposed Model for GAD

The purpose of GAD is to identify members of each group (i.e., group local-
ization) and classify the activity conducted by each group simultaneously. The
task is challenging since both the number of groups and their members are un-
known. We present a new model based on Transformer [11,44] to deal with these
difficulties; its overall architecture is illustrated in Fig. 4.

The key idea at the heart of our model is that embedding vectors of an
actor and a group should be close if the actor is a member of the group. To
compute embedding vectors of groups and individual actors, we adopt attention
mechanism of Transformer. To deal with a varying number of groups in each
video clip, our model defines and utilizes learnable group tokens, whose number
is supposed to be larger than the possible maximum number of groups in a clip.
The group tokens along with actor features obtained by RoIAlign [20] are fed to
a Transformer called Grouping Transformer to become the embedding vectors.

4.1 Model Architecture

Our model consists of three parts: feature extractor, Grouping Transformer, and
prediction heads.
Feature extractor. As in recent GAR models [12, 13, 16, 31, 47, 52], our model
extracts frame-level features using a CNN backbone, and extracts actor features
from the frame features by RoIAlign given actor bounding boxes. To be specific,
we adopt an ImageNet [9] pretrained ResNet-18 [21] for the feature extraction,
and actor features extracted by RoIAlign are of 5 × 5 size. Additionally, to
incorporate spatial cues when identifying group members, learnable positional
embeddings of actor box coordinates are added to their associated actor features.
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Grouping Transformer. Grouping Transformer takes learnable group tokens,
actor features, and frame features as input, and produces embedding vectors of
group candidates and actors in a frame-wise manner. As illustrated in the right-
hand side of Fig. 4, it comprises three types of multi-head attention layers: (1)
multi-head self-attention layers that capture relations between actors and those
between groups separately, (2) multi-head grouping attention layers where group
tokens as queries attend to actor features serving as keys and values, and (3)
multi-head cross-attention layers where actor features and group tokens draw
attentions on frame features to capture contextual information. The core of the
Grouping Transformer lies in the grouping attention layer. Each group token pro-
duces group representation by attending to actor features potentially belonging
to its group, based on the similarity in the embedding space. In addition, to
exploit spatial cues, we apply a distance mask to the multi-head self-attention
layers for actor features: Following ARG [47], a pair of actors whose distance is
greater than a threshold µ do not attend to each other.
Prediction heads. Two types of prediction heads in the form of feed-forward
networks (FFNs) are attached to individual outputs of the Grouping Trans-
former, actor embeddings and group embeddings. The first prediction heads are
for group activity classification, and the second prediction heads further project
the actor/group embeddings so that the results are used for identifying group
members: An actor embedding and a group embedding projected separately are
dot-producted to compute their semantic affinity, which is used as the member-
ship score of the actor for the group. At inference, each actor is assigned to the
group with the highest membership score among all predicted groups.

4.2 Training Objectives

Group matching loss. Motivated by DETR [4], we first establish the optimal
bipartite matching between ground-truth groups and predicted groups using
Hungarian algorithm [28]. Since our model produces K predicted groups, where
K is the number of group tokens and is supposed to be larger than the number
of ground-truth groups, we add empty groups with no activity class, denoted
by ∅, to the set of ground-truth groups so that the number of ground-truth
groups becomes K and they are matched with the predicted groups in a bipar-
tite manner accordingly. Then, among all possible permutations of K predicted
groups, denoted by SK , Hungarian algorithm finds the permutation with the
lowest total matching cost:

σ̂ = argmin
σ∈SK

K∑
i

Ci,σ(i). (3)

Ci,σ(i) in Eq. (3) is the matching cost of the ground-truth group i and the
predicted group σ(i) and is given by

Ci,σ(i) = −1{yi ̸=∅}p̂σ(i)(yi) + 1{yi ̸=∅}∥mi − m̂σ(i)∥2, (4)
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where yi is the activity class label of the ground-truth group i and p̂σ(i)(yi)

is the predicted class probability for yi. Also, mi = [m1
i , . . . ,m

N
i ]T indicates

ground-truth membership relations between actors and group i, and m̂σ(i) =

[m̂1
σ(i), . . . , m̂

N
σ(i)]

T is a collection of predicted membership scores of actors for
predicted group σ(i), where N is the number of actors in the input clip; each
dimension of the two vectors is computed by

mj
i =

{
1, if actor j is a member of group i,
0, otherwise,

(5)

m̂j
σ(i) = ψj

Tϕσ(i), (6)

where ψj is the output of the second prediction head for actor j and ϕσ(i) is
the output of the second prediction head for predicted group σ(i). The group
activity classification loss Lgroup and the membership loss Lmem are calculated
for all matched pairs. To be specific, we adopt the standard cross-entropy loss
for Lgroup = Lgroup(i, σ(i)):

Lgroup = − log
exp(p̂σ(i)(yi))∑C
c=1 exp(p̂σ(i)(c))

, (7)

where C is the number of group activity classes, and the binary cross-entropy
loss for Lmem = Lmem(i, σ(i)):

Lmem = − 1

N

N∑
j=1

(
mj

i · log m̂
j
σ(i) + (1−mj

i ) · log(1− m̂j
σ(i))

)
. (8)

Group consistency loss. It has been known that supervisory signals given
by the bipartite matching of Hungarian algorithm may fluctuate and thus lead
to slow convergence [29]. To alleviate this issue, we additionally introduce a
group consistency loss, which is a modification of InfoNCE [36] and enhances
the quality of group localization while bypassing the bipartite matching. The
loss is formulated by

Lcon = −
∑
gi

∑
j∈gi

log

∑
k∈gi,k ̸=j exp

(
cos(fj , fk)/τ

)∑
k ̸=j exp

(
cos(fj , fk)/τ

) , (9)

where gi means the i-th ground-truth group, τ is the temperature, fj stands for
j-th actor embeddings and cos indicates the cosine similarity function. This loss
provides a consistent group supervision to actors that belong to the same group.
Individual action classification loss. We adopt a standard cross-entropy
loss for individual action loss Lind. The individual action class of an actor who
belongs to a group is regarded as the group activity class of the group, and the
action class of an outlier is no activity class, denoted by ∅.
Total loss. Our model is trained with four losses simultaneously in an end-to-
end manner. Specifically, the total training objective of our proposed model is a
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linear combination of the four losses as follows:

L = Lind +
∑
i

Lgroup + λm
∑
i

Lmem + λcLcon. (10)

5 Experiments

5.1 Implementation Details

Hyperparameters. We use an ImageNet pretrained ResNet-18 as a backbone
network. Ground-truth actor tracklets are used to extract actor features with 256
channels by applying RoIAlign with crop size 5 × 5. For the Grouping Trans-
former, we stack 6 Transformer layers with 4 attention heads for Café and JRDB-
Act, 3 Transformer layers with 8 attention heads for Social-CAD. The number
of group tokens K is set to 12 for Café and JRDB-Act, 10 for Social-CAD.
Training. We sample T frames using the segment-based sampling [45], where T
is 5, 1, and 2 for Café, Social-CAD, and JRDB-Act, respectively. We train our
model with Adam optimizer [26] with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8 for 30
epochs. Learning rate is initially set to 1e−5 with linear warmup to 1e−4 for 5
epochs, and linearly decayed for remaining epochs. Mini-batch size is set to 16.
Loss coefficients are set to λm = 5.0, and λc = 2.0. The temperature τ is set to
0.2 for the group consistency loss.

5.2 Comparison with the State of the Art

Compared methods. We compare our method with three clustering-based
methods [12, 13, 47] and one Transformer-based method [43]. Since most GAD
methods do not provide the official source code, we try our best to implement
these previous work with necessary modifications for dealing with different prob-
lem settings, in particular the existence of outliers in Café. Specifically, we adopt
a fixed cluster size [35] for clustering-based methods since estimating the number
of clusters did not perform well in Café due to the presence of spatially close
outliers. Note that no adjustment was made for datasets other than Café.
• ARG [47]: ARG utilizes graph convolutional networks [27] to model relations
between actors in terms of position and appearance similarity. We apply spectral
clustering [35] on a relation graph to divide actors into multiple groups.
• Joint [12] and JRDB-base [13]: These models utilize GNNs to model relations
between actors, and train actor representations to partition graphs by adopting
a graph edge loss. JRDB-base further adopts geometric features. Then, spectral
clustering [35] is applied on the graph.
• HGC [43]: Similar to our method, HGC employs a Transformer for GAD.
However, unlike our method, HGC identifies group members by point matching
between groups and actors on the 2D coordinate space. For a fair comparison,
we utilize ground-truth actor tracklets to obtain actor features for HGC.
Café dataset. For a fair comparison, we use ImageNet pretrained ResNet-18
as the backbone and apply distance mask for all the methods including ours.
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Table 2: Comparison with the previous work on Café. All methods are built on
the same ResNet-18 backbone. The second column means the number of tokens for
Transformer-based models and the number of clusters for clustering-based models. ‘#
G’ and ‘# O’ indicates the true number of groups and that of outliers in each video
clip, respectively. The third column is the wall-clock inference time for a single video
clip measured on a Titan XP GPU. The subscripts of Group mAP mean Group IoU
thresholds (θ in Sec. 3.4). We mark the best and the second-best performance in bold
and underline, respectively.

Method # Token
(# Cluster)

Inference
time (s)

Split by view Split by place
Group
mAP1.0

Group
mAP0.5

Outlier
mIoU

Group
mAP1.0

Group
mAP0.5

Outlier
mIoU

ARG [47]

4 0.22 11.03 34.50 56.61 6.87 28.44 46.72
5 0.26 5.46 30.34 58.89 5.79 24.25 49.25
6 0.28 1.27 27.69 60.41 2.59 22.33 51.00

#G+#O 0.30 2.64 28.98 58.21 2.29 22.33 50.01

Joint [12]

4 0.23 13.86 34.68 53.67 6.69 27.76 49.50
5 0.25 14.05 36.08 60.09 8.39 26.26 55.95
6 0.28 5.94 33.14 60.63 5.11 24.55 56.94

#G+#O 0.32 4.54 31.24 59.78 2.87 21.35 56.68

JRDB-base [13]

4 0.23 15.43 34.81 60.43 9.42 25.75 48.00
5 0.25 13.26 37.40 63.91 9.42 26.19 51.30
6 0.28 6.77 35.22 63.85 6.37 26.23 51.53

#G+#O 0.32 4.49 34.40 61.46 3.15 25.80 49.71

HGC [43]

12 0.10 5.18 23.02 57.23 3.50 17.92 57.42
24 0.10 5.60 21.44 54.57 3.00 14.48 53.64
50 0.10 6.55 26.29 56.84 3.47 18.46 52.56
100 0.10 3.63 15.42 54.59 3.07 19.97 56.80
4 0.10 16.02 40.22 64.06 8.97 27.33 62.35
8 0.10 18.10 37.51 65.49 9.79 29.23 63.93
12 0.10 18.84 37.53 67.64 10.85 30.90 63.84Ours

16 0.10 15.03 37.03 65.31 7.57 25.08 58.66

We test every model on two different dataset splits as explained in Sec. 3.1:
split by view and split by place. Table 2 summarizes the results. Our model
outperforms all the other methods by substantial margins on both splits in terms
of both Group mAP and Outlier mIoU. Note that the performance of clustering-
based methods largely depends on the number of clusters, which is hard to
determine or predict when there are outliers in a video clip. On the other hand,
our model is less sensitive to the number of group tokens, 12 tokens shows
the best performance on both settings though. Our model outperforms HGC,
demonstrating the effectiveness of our group-actor matching in an embedding
space, as opposed to the point matching strategy used in HGC. We also conduct
experiments in a detection-based setting for all methods, and the results can be
found in the supplementary material (Sec. C.2).
JRDB-Act dataset. Table 3 presents results on JRDB-Act. Our model achieves
59.8 mAP, surpassing all other methods. This indicates that our method effec-
tively detects group activities across varying group sizes, especially when the
group size is larger than 2. Notably, our model with the ResNet-18 backbone
outperforms Joint and JRDB-base with the substantially heavier I3D backbone.
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Table 3: Quantitative results on JRDB-Act validation-set.
Method Backbone G1 AP G2 AP G3 AP G4 AP G5+ AP mAP
SHGD [30] Unipose [1] 3.1 25.0 17.5 45.6 25.2 23.3
Joint [12] I3D [5] 8.0 29.3 37.5 65.4 67.0 41.4
PAR [19] Inception-v3 [42] 52.0 59.2 46.7 46.6 31.1 47.1
JRDB-base [13] I3D 81.4 64.8 49.1 63.2 37.2 59.2
Ours ResNet-18 [21] 70.1 56.3 50.4 71.7 50.8 59.8

Table 4: Quantitative results on Social-CAD.
Method Backbone # frames Social Accuracy
ARG [47] Inception-v3 17 49.0
Joint [12] I3D 17 69.0
Ours ResNet-18 1 69.2

Table 5: Ablation study on the
group consistency loss.

Lcon Group mAP1.0 Outlier mIoU
✗ 15.06 63.35
✓ 18.84 67.64

Table 6: Ablation on the attention layers
of the Grouping Transformer.

Method Group mAP1.0 Outlier mIoU
Ours 18.84 67.64
w/o self-attention 13.53 65.62
w/o cross-attention 13.12 64.19
w/o grouping-attention 12.86 64.65

Table 7: Ablation on the use of distance
mask and its threshold.

Distance threshold (µ) Group mAP1.0 Outlier mIoU
0.1 14.46 62.75
0.2 18.84 67.64
0.3 15.09 63.49

No threshold 14.96 67.03

Social-CAD dataset. Table 4 summarizes the results on Social-CAD. Our
model surpasses the previous methods by using ResNet-18 with a single frame
as backbone, which is significantly lighter than I3D backbone taking 17 frames
as input in Joint model [12]. Due to the short length of video clips and small
variations within clips, our model achieves the best even with a single frame.

5.3 Ablation Studies

We also verify the effectiveness of our proposed model through ablation studies
on Café, split by view setting.
Impact of the proposed loss function. Table 5 shows the effectiveness of
the group consistency loss, which improves Group mAP by a substantial margin.
This result demonstrates that the group consistency loss, which brings actor
embeddings within the same group closer, has a significant impact for GAD. We
do not ablate the other losses since they are inevitable for the training.
Effects of the attention layers. Table 6 summarizes the effects of multi-head
attention layers in Grouping Transformer. Note that self-attention in this ta-
ble stands for both multi-head self-attention layers that captures relationship
between actors and those between groups, cross-attention means multi-head
cross-attention layers that actor features attends frame-level features to cap-
ture contextual information, and grouping-attention refers to the layers that
group tokens attends actor features to form group representation. The results
demonstrate that all three attention layers contribute to the performance. Par-
ticularly, removing grouping-attention layer results in the largest performance
drop in Group mAP since grouping-attention layer learns the relationship be-
tween group embeddings and actor embeddings, aiding in group localization.
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Fig. 5: Qualitative results on Café test-set, split by view setting. Boxes with the same
color belong to the same group. (a) Input frame. (b) Prediction of JRDB-base. (c)
Prediction of HGC. (d) Prediction of our model. (e) Ground-truth.

Effects of the distance mask. We investigate the efficacy of utilizing the
distance mask. Distance mask inhibits self-attention between a pair of actors
whose distance is greater than the distance threshold µ. As shown in Table 7,
applying distance mask between actors is effective in most cases but too small
threshold, 0.1 in this table, degrades the performance. It is because actors can
interact only with nearby actors at small distance threshold, which might mask
the interaction between actors of the same group. Distance threshold of 0.2
reaches the best result while slightly degrades at 0.3.

5.4 Qualitative Analysis

Fig. 5 visualizes the predictions of JRDB-base, HGC, and our model. The results
show that our model is able to localize multiple groups and predict their activity
classes at the same time, and more reliably than the others, even in challenging
densely populated scenes with a lot of outliers.

6 Conclusion

We have introduced a new challenging benchmark, dubbed Café, and a new
model based on Transformer to present a direction towards more practical GAD.
As Café exhibits multiple non-singleton groups per clip and provides rich anno-
tations of actor bounding boxes, track IDs, group configurations, and group
activity labels, it can serve as a new, practical, and challenging benchmark for
GAD. Also, the proposed model can deal with a varying number of groups as
well as predicting members of each group and its activity class. Our model out-
performed prior arts on three benchmarks including Café. We believe that our
dataset and model will promote future research on more practical GAD.
Limitation: Our model does not consider much about temporal and multi-view
aspects of the proposed dataset. Improving upon these aspects will be a valuable
direction to explore.
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