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Abstract. We introduce a Depicted image Quality Assessment method
(DepictQA), overcoming the constraints of traditional score-based meth-
ods. DepictQA allows for detailed, language-based, human-like evalua-
tion of image quality by leveraging Multi-modal Large Language Models
(MLLMs). Unlike conventional Image Quality Assessment (IQA) meth-
ods relying on scores, DepictQA interprets image content and distortions
descriptively and comparatively, aligning closely with humans’ reasoning
process. To build the DepictQA model, we establish a hierarchical task
framework, and collect a multi-modal IQA training dataset. To tackle
the challenges of limited training data and multi-image processing, we
propose to use multi-source training data and specialized image tags.
These designs result in a better performance of DepictQA than score-
based approaches on multiple benchmarks. Moreover, compared with
general MLLMs, DepictQA can generate more accurate reasoning de-
scriptive languages. We also demonstrate that our full-reference dataset
can be extended to non-reference applications. These results showcase
the research potential of multi-modal IQA methods.

Keywords: Image Quality Assessment · Multi-modal Language Models

1 Introduction

Image Quality Assessment (IQA) is an important topic in low-level vision re-
search [18, 24, 38, 75], and it is widely applied in image generation and pro-
cessing [8, 10, 11, 49]. IQA aims to measure and compare the quality of images,
expecting the final results to be aligned with human judgments. Existing IQA
methods [18,47,61,75] mainly output the quality or similarity scores, which have
apparent shortcomings. First, image quality is affected by different factors that
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Which image has a better quality, Image A or Image B? Explain the 
comparison result with detailed factors.  

Although Image A slightly outperforms Image B in terms of color 
distortion and artifacts, it falls short in the aspect of noise. Despite 
this, Image A still demonstrates a slight advantage over Image B in 
terms of overall distortion. Regarding the degree of texture damage, 
both images exhibit similar performance, with the water surface 
texture barely recognizable. Therefore, despite Image A's inferior 
performance in noise, its advantages in color distortion and artifacts 
contribute to its slight superiority over Image B.

DepictQA

User

Compare the quality of Image A with Image B and provide a 
comprehensive explanation for your comparison. 

Both images are nearly identical in terms of brightness distortion, 
color distortion, artifacts, and blurring, with no significant differences. 
However, Image A significantly underperforms Image B in terms of 
noise, which greatly impacts the overall image quality. Particularly in 
representation of architectural textures, the texture in Image A is 
completely damaged, while that in Image B remains clear and 
distinguishable. Therefore, Image B is clearly superior to Image A in 
overall quality.

DepictQA

User

Reference:

,

Image A:

,

Image B:

,

Reference:

,

Image A:

,

Image B:

,

(a) (b)

PSNR↑  SSIM↑ LPIPS↓  PieAPP↓ Our 
DepictQA

Humans

Img.A
20.60 0.47 0.34 0.66

Img.B 18.10 0.12 0.41 1.18 ✓ ✓
✓ ✓ ✓ ✓

PSNR↑  SSIM↑ LPIPS↓  PieAPP↓ Our 
DepictQA

Humans

Img.A 19.03 0.37 0.45 1.83 ✓ ✓
Img.B 21.45 0.67 0.29 1.22

✓ ✓ ✓ ✓

Fig. 1: Comparison between our DepictQA and score-based IQA methods, including
PSNR, SSIM [61], LPIPS [75], and PieAPP [47]. Score-based IQA methods only provide
numerical scores devoid of reasoning and justification. Thus they disagree with human
judgments in complex scenarios when (a) images are misaligned and (b) both images
suffer from severe distortions. In contrast, DepictQA first identifies the distortions of
images, then weighs the influences of different distortions to the texture damages, and
finally obtains the comparison results that are better aligned with human judgments.

cannot be effectively expressed by a simple score, e.g ., noise, color distortion,
and artifacts in Fig. 1. Second, the reasoning process by humans cannot be well
modeled by current IQA methods. For example, in Fig. 1b, humans may first
identify the distortions (i.e., noise in Image A, color distortion and artifacts in
Image B), then weigh the impacts of these distortions on overall visual quality
(color distortion and artifacts in Image B are worse than noise in Image A), and
finally conclude that Image A is better than Image B. On the contrary, existing
IQA methods simply compare the quality scores of these two images.

To better align with humans, we explore a new paradigm for IQA, named
Depicted image Quality Assessment (DepictQA). Inspired by recent Large Lan-
guage Models (LLMs) [41, 58] and multi-modal technologies [30, 82], we believe
that language is the key to solving the above problems. As shown in Fig. 1, De-
pictQA takes both images and a question as inputs, then outputs a paragraph
that describes the quality of images from multiple aspects. Furthermore, empow-
ered by the reasoning capability of LLMs, DepictQA can weigh the importance
of each distortion and make the final judgment. For instance, in Fig. 1a, Depic-
tQA finds that “the texture in Image A is completely damaged” while “Image
B remains clear and distinguishable”, thus concludes “Image B is superior to
Image A”. Learning this kind of reasoning makes DepictQA better at aligning
human judgments than existing methods in complex scenarios like misalignment
(Fig. 1a) and multiple distortions (Fig. 1b). Meanwhile, these descriptive outputs
can be naturally understood by humans, greatly improving the interpretability.

To integrate language into IQA, we establish a hierarchy of tasks, inspired
by human evaluation. Humans first perceive the distortions of the image, then
use this information to determine the image quality. Also, it is easier for humans
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to compare the difference between two images in a single dimension (e.g ., color
distortion) than quantitatively evaluate the overall quality of an image or the
similarity between two images, as verified by [45–47]. Based on this intuition,
DepictQA does not produce scores, but describes the image quality and compares
two images. Specifically, we break DepictQA task into a hierarchy of 3 tasks
(detailed in Fig. 2): (1) Quality Description, (2) Quality Comparison, and (3)
Comparison Reasoning. These designs follow the process of human evaluation.

To train the proposed DepictQA, we further construct a multi-modal IQA
dataset, named M-BAPPS, by collecting text descriptions based on the existing
BAPPS IQA dataset [75]. Our M-BAPPS dataset contains 5,104 detailed high-
quality text descriptions and 115,646 brief descriptions. For high-quality texts,
we first collect the quality-related information through a carefully designed ques-
tionnaire (details shown in Fig. 2a and 2c), the results of which are further con-
verted into a descriptive paragraph using GPT-4 [41]. To further increase the size
of the training set, we also augment the dataset with brief descriptions. Specif-
ically, we convert the existing quality comparison label in BAPPS into a brief
description using pre-generated templated texts, such as “Image A maintains a
distinct advantage in terms of image quality over Image B”.

With the dataset mentioned above, we resort to Multi-modal Large Language
Models (MLLMs) [21, 30, 82] to bridge the gap between images and descriptive
texts. However, directly applying existing MLLMs to our DepictQA faces two
challenges. First, there are only limited images with high-quality descriptions,
preventing the model from robustly correlating images and text descriptions.
In this aspect, we present a multi-source training approach to increase the size
of training data. Specifically, two additional sources are used. One is images
with only brief templated texts, as mentioned above. The other one is exter-
nal quality-unrelated content description data, the Detailed Description dataset
in [69], which contains 48,734 image-text pairs. Although these two datasets
are not directly designed for the descriptive reasoning ability, we find that the
former one can help bridge images and texts in quality-related tasks, while the
latter one can serve as a regularization. Second, many MLLMs have difficulty in
distinguishing multiple images, but our setup requires two or more images. We
solve this problem by employing specialized tags for different images, instead of
a unified tag for all images. Empirical results demonstrate that these approaches
effectively mitigate the two challenges and bring a better DepictQA model.

Finally, we conduct extensive experiments to prove the effectiveness of our
DepictQA. First, DepictQA achieves state-of-the-art performance on multiple
existing IQA benchmark, well aligned with human judgments. Also, DepictQA
can describe the distortions and texture damages in images and explain the rea-
soning process when comparing two images, thus generating more accurate de-
scriptions compared with general-purpose MLLMs. Even compared with notably
GPT-4V [42], DepictQA has significantly better comparison ability and compa-
rable reasoning ability. Moreover, we demonstrate the utility of our full-reference
dataset in non-reference applications. These results attest to the superiority of
our DepictQA and the research potential of multi-modal IQA tasks.
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2 Related Works

Score-based IQA methods. Most existing IQA methods rely on scores to as-
sess image quality. They can be categorized into full-reference and non-reference
methods. (1) Full-reference methods assess image quality by computing the sim-
ilarity score between a distorted image and a high-quality reference image. Tra-
ditional methods rely on human-designed metrics like structural similarity [61],
image information [52], phase congruency with gradient magnitude [72], etc.
Learning-based methods aim to align with human assessment through data-
driven training. LPIPS [75] shows that the learned features can effectively func-
tion as a perceptual metric, exhibiting high consistency with human judgments.
In alignment with advancements in the deep-learning community, data-driven
approaches [5,7,14–16,47,68,81] have similarly spurred innovations in IQA. (2)
Non-reference methods evaluate the quality of a distorted image without a ref-
erence image. Traditional methods [34, 37–40, 50, 57] primarily calculate quality
scores based on human-designed natural image statistics. Deep-learning-based
methods [23,24,31,44,54,80,83] replace hand-crafted statistics by learning qual-
ity priors from extensive data. Recent works further enhance the performance by
introducing graph representation [55], CLIP pre-training [60], continual learn-
ing [76], multitask learning [77], and so on. However, score-based IQA methods
exhibit inherent limitations, particularly the inability to reflect the intricate
analyses and weights of multiple aspects, as discussed in Sec. 1.

MLLMs incorporate the vision modality into large language models [12,41,
58], aiming to leverage their emergent ability to achieve general vision ability.
These MLLMs [2, 13, 27, 30, 42, 67, 69, 73, 74, 82] have demonstrated a general
visual ability and can tackle various multi-modality tasks, including image cap-
tioning [1, 9, 71], visual question answering [17, 32, 33], document understand-
ing [35, 36, 53], etc. Although proficient in these high-level perception tasks, we
demonstrate in Sec. 5.3 that general MLLMs are still not good at IQA tasks.

MLLM-based IQA methods aim to achieve better alignment with human
perception leveraging languages [66]. Q-Bench [62, 78] constructs a benchmark
to assess existing MLLMs in low-level perception tasks. Q-Instruct [63] and Co-
Instruct [65] further promote the low-level perception ability of MLLMs by in-
troducing large-scale datasets. Q-Align [64] utilizes the text-guided instruction
tuning for more accurate quality score regression. Our work distinguishes itself
from existing works. Our focus lies on quality comparison regarding distortions
and texture damages across multiple images, whereas existing works primarily
center on low-level perception and score regression within individual images.

3 DepictQA Task and Dataset

3.1 Task Description

Before introducing our method, we need to rethink the paradigm of IQA. To
reflect the human process of assessing image quality, we intend to apply language
as a powerful interactive tool. Intuitively, DepictQA needs the following abilities.
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Although Image A is slightly inferior to Image B 
in terms of brightness distortion, it 
significantly outperforms in blurriness. From 
the perspective of overall distortion, Image A 
far outperforms Image B. Image A can clearly 
identify the facial textures, whereas the facial 
textures in Image B are completely damaged 
and unidentifiable. Therefore, despite Image 
A's slight inferiority in brightness distortion, its 
advantages in blurriness and its ability to 
clearly identify textures, result in Image A's 
overall quality being superior.

Resonse for Comparison Reasoning

Annotators 
Revise

Generated
Texts

Generate 
Structured  

Quality 
Descriptions 
with GPT-4

Distortion
Brightness Distortion:

Color Distortion:

Noise:

Texture

Clearly identifiable
Texture of Image A:

Completely damaged
Barely identifiable

Clearly identifiable
Texture of Image B:

Completely damaged
Barely identifiable

Texture Category:
Overall Comparison

A is better than B

A is worse than B
A is slightly better

A is slightly worse
Hard to decide

Artifacts:

Blurriness: Annotators 
Complete  

Questionnaire

Comparison result is: 
Plants, Foliage
Faces
……

A >> BA > BA ≈ BA < BA << B

A >> BA > BA ≈ BA < BA << B

A >> BA > BA ≈ BA < BA << B

A >> BA > BA ≈ BA < BA << B

A >> BA > BA ≈ BA < BA << B

Reference

Image A

Image B

Image A maintains a distinct advantage in terms 
of image quality over Image B, substantiating its 
superior qualities.

Resonse for Quality Comparison
Sample from GPT-4 

Generated One-Sentence 
Comparative Conclusion

Human-Annotated 
Two-Alternative 

Forced Choice Result
A < BA > B

Reference Image A Image B

The overall quality of this image has been 
severely compromised, particularly in color 
distortion and noise, resulting in a significant 
deviation in the overall visual perception of the 
image, despite maintaining good consistency 
in terms of brightness, artifacts, and blurring. In 
terms of texture quality, the plant textures are 
barely recognizable, primarily due to the 
influence of color distortion and noise. 
Therefore, the severe distortion in color and 
noise has significantly affected the overall and 
texture quality of the image.

Resonse for Quality Description

Annotators 
Revise

Generated
Texts

Generate 
Structured  

Quality 
Descriptions 
with GPT-4

Distortion
Brightness Distortion:

Color Distortion:

Noise:

Texture

Clearly identifiable
Texture Condition:

Completely damaged
Barely identifiable

Texture Category:

Water Suface
Fabrics
Plants, Foliage
Faces
……

Overall Quality

Nearly undistorted

Severe distortion
Mild distortion

Artifacts:

Blurriness:
Annotators 
Complete 

Questionnaire

SevereMildUndistorted

SevereMildUndistorted

SevereMildUndistorted

SevereMildUndistorted

SevereMildUndistorted

Distorted Image is:

Reference
Image

Distorted
Image

(c) Task—3: Comparison Reasoning

(b) Task—2: Quality Comparison

(a) Task—1: Quality Description

Fig. 2: Collection of the responses in our M-BAPPS dataset. We first carefully
design a questionnaire to collect quality-related information. We then employ the GPT-
4 [41] to convert our annotated questionnaire results into natural language. Finally,
the outputs of GPT-4 are modified and improved by the annotators to correct errors,
eliminate ambiguities, and supplement important information.

First, DepictQA needs to identify the distortions and texture damages
(Fig. 2a). Humans begin assessing image quality by identifying distortions and
texture damages, as this is the basis for any subsequent assessment.

Second, DepictQA is required to compare distorted images like Fig. 2b
rather than just calculate scores for individual images. Quantifying image quality
has drawbacks, as the information from a single score is quite limited. It has also
been verified that humans tend to make a biased quality assessment on a single
image, but are more consistent and reliable in comparing two images [18,19,45].

Third, DepictQA should weigh and judge multiple aspects that affect
image quality. Humans consider many factors when comparing image quality. For
example, when comparing an underexposed image and a blurry image in Fig. 2c,
one may need to consider the real impacts of these two distortions on the texture
representation, and weigh among these considerations. DepictQA should mimic
this weighing ability, which distinguishes it from previous IQA methods.

Based on the above discussion, as described in Fig. 2, we design a hierarchical
task paradigm, progressively guiding DepictQA to obtain the above abilities:

– Task–1: Quality Description. Based on the provided reference image and a
distorted image, describe the distortions and texture damages in the dis-
torted image, and comment on the overall quality of the distorted image.
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– Task–2: Quality Comparison. Based on the provided reference image and its
two distorted versions, determine which distorted image has a better quality.

– Task–3: Comparison Reasoning. Based on the comparison result, describe the
distortions and texture damages of the two distorted images, make inferences,
and weigh the pros and cons to justify its judgment on image quality.

3.2 Dataset Construction

Data serves as the key factor for training MLLMs. We follow the scheme of
supervised fine-tuning [30,69] to train DepictQA. Supervised fine-tuning requires
collecting {images, question, response} data pairs, where “images” are the ones
to be evaluated, “question” describes the task, and “response” is the reference
answer. In this section, we describe in detail our selection of images and the
collection of questions and responses for the three tasks.

Image collection for the IQA dataset consists of two aspects, one is the
selection of reference images, and the other is the collection of distorted images.
Existing works usually collect a large number of distorted images on a small
number of reference images [18,19,45,47]. However, the semantic richness of the
training images is also very important. In our work, we collect reference images
and their corresponding distorted images from the BAPPS dataset [75]. BAPPS
dataset contains 197k highly diverse samples, meeting the diversity requirements
of DepictQA training. For each sample, there is a reference image and its two
distorted versions, as given in Fig. 2b and 2c. BAPPS dataset also provides
human annotations, indicating which distorted image is more similar to the
reference one, i.e., has better perceptual quality. These annotations can be used
to build our dataset and validate our newly annotated data.

Question collection. Users may express similar questions in different sen-
tences, like the two questions in Fig. 1. To encourage the robustness to users’
questions, for each task, we first leverage GPT-4 to generate 30 questions. We
then manually remove ambiguous and duplicate ones and modify inaccurate ones
to form a set of 10 questions (see Appendix ). During training and testing, we
randomly sample a question from the question set to construct the data pair.

Response collection. A straightforward way to collect high-quality training
texts is manually writing [43,59]. However, when annotators are inexperienced or
tired, human-written texts can lead to biases and uneven quality. In this work,
we use advanced LLMs to assist annotators in generating structured training
texts, as shown in Fig. 2. We first collect the information that we want the
texts to describe through a carefully designed questionnaire. Answering questions
greatly reduces the possibility of ambiguity among annotators and ensures that
the information is structured. We then use GPT-4 to convert our annotated
questionnaire results into natural language. Finally, the outputs of GPT-4 are
modified and improved by the annotators to correct errors, eliminate ambiguities,
and add important information. This process greatly reduces the difficulty of
collecting training texts and improves the quality of the training texts.

Next, we introduce the details of the questionnaire for different tasks.
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Table 1: Statistics of our constructed M-BAPPS dataset with respect to different
tasks and dataset splits.

# Task–1 # Task–2 # Task–3
Quality Description Quality Comparison Comparison Reasoning

Training / Validation 1,115 / 50 115,646 / 9,440 3,739 / 200

Task–1: Quality Description. A distorted image and its reference image are
shown to annotators. Fig. 2a shows our questionnaire with three parts: texture,
distortion, and overall quality. For the texture part, annotators are asked to select
the one that best matches the image from a list containing 11 typical texture
types, including object edges, bricks, fabrics, plants or foliage, architectures,
artificial strips, hairs or furs, faces, sky or clouds, stones or ground, and water
surface. These 11 types are selected based on the existing IQA [19] and texture
recognition [3] research. Additionally, annotators are asked to indicate whether
the texture is “clearly identifiable”, “barely identifiable”, or “completely damaged”.
Regarding the distortion part, we ask annotators to summarize with the following
five aspects: “brightness”, “color”, “noise”, “artifacts”, and “blurriness”. For each
distortion, we use three levels for evaluation: “undistorted”, “mild”, and “severe”.
This can express most distortions that appear in images. Finally, annotators
need to comment on the overall quality of the image into three levels: “nearly
undistorted”, “mild distortion”, and “severe distortion”.

Task–2: Quality Comparison. BAPPS dataset already includes binary com-
parison labels (i.e., Image A or Image B is better) for all image pairs. To convert
these comparison labels into textural responses, we first build a response pool
using GPT-4, including 20 generated sentences for “Image A is better” and an-
other 20 for “Image B is better”. Then, for each comparison label, we randomly
sample one response from the pool, as depicted in Fig. 2b. However, the diver-
sity of language output poses a challenge to evaluation. For the convenience of
evaluation, inspired by LLaVA-1.5 [29], we randomly sample half of the ques-
tions and add the following short answer prompt: “Answer the question using a
single word or phrase”. Correspondingly, the response will be a single phrase like
“Image A” or “Image B” indicating the less distorted image.

Task–3: Comparison Reasoning. As shown in Fig. 2c, annotators are given
two distorted images and the reference image. The annotation pipeline is similar
to Task–1. Annotators compare two distorted images from the five kinds of
distortions and the overall distortion using five options: “superior” (>>), “slightly
superior” (>), “roughly equal” (≈), “slightly inferior” (<), and ‘inferior” (<<).

Dataset statistics. The statistics of our dataset are presented in Tab. 1
(more in Appendix ). Our dataset comprises 5,104 detailed high-quality samples
(Task–1 and Task–3), along with 115,646 brief templated samples (training set
of Task–2). The validation set of Task–2 is the same as the “Traditional” and
“CNN” categories (two sets of distortions) in BAPPS’s validation set [75]. Each
training sample is individually annotated by one annotator. In the validation
set, samples are annotated by two annotators only if they reach a consensus.



8 Z. You et al.

Although Image A falls short in terms of noise 
compared to Image B, it far outperforms 
Image B in terms of blurriness. Both images 
exhibit similar performances in the aspects of 
brightness distortion, color distortion, and 
artifacts. In terms of texture quality, the plant
texture of Image A is clearly visible, whereas 
the plant texture of Image B is completely 
damaged and unrecognizable. This is primarily 
due to the advantage of blurriness in Image A, 
which allows for the preservation of texture. 
Therefore, the quality of Image A is evidently 
superior to that of Image B.

Reference Image A Image B

Reference Image: <Img-Reference> [Ref. Tokens] 
</Img-Reference>\n\n 
Image A: <Img-A> [A Tokens] </Img-A>\n\n 
Image B: <Img-B> [B Tokens] </Img-B>\n\n 
Compare the overall quality of Image A with Image B 
and provide a comprehensive explanation.

Question 

Response 

Image 
Projector

LoRA
Weights

Frozen 
Weights

Image               
Encoder

Text 
Tokenizer

Ref.
Tokens

A
Tokens

B
Tokens

Textural Tokens

Insert Visual Tokens 
into Textual Tokens

Tokenization Fusion Generation

Frozen Trainable

LLM

Fig. 3: Framework of DepictQA. A frozen pre-trained image encoder is employed to
encode images to visual tokens, followed by a trainable image projector to project visual
tokens to textual space. The question texts are tokenized by a text tokenizer. Visual
tokens and textual tokens are then fused and jointly processed by an LLM, fine-tuned
through the LoRA technique [20]. Our model is capable of producing comprehensive
and informative explanations for image quality comparisons.

As a means of verification, the annotated “Overall Comparison” judgments in
Task–3 exhibit a quite high consistency rate of 84.3% with the ground-truth
judgments in the BAPPS dataset. For brevity, the three tasks will be shortened
to description, comparison, and reasoning in the following.

4 DepictQA Framework

4.1 Model Architecture

Fig. 3 shows the workflow of our DepictQA. DepictQA takes images and a
quality-related question as inputs, and generates a descriptive text as the re-
sponse. In comparison or reasoning tasks, there are three input images: a refer-
ence image and Image A and B. In description task, there are two input images:
a reference image and a distorted image. The input images and the question are
first tokenized, then fused, finally processed by the LLM for response generation.

Tokenizing input images and question. As shown in Fig. 3, we employ
a frozen CLIP pre-trained ViT-L/14 [48] as the image encoder to represent the
input images as visual tokens. Then, the question texts are tokenized to textual
tokens by SentencePiece tokenizer [25]. The visual tokens cannot be directly
processed by the LLM due to different embedding spaces, so we use a trainable
image projector to map visual tokens into the textual space as in [30,82].

Token fusion. We insert the visual tokens into pre-defined positions within
the textual tokens for token fusion. As show in Fig. 3, [Ref. Tokens], [A Tokens],
[B Tokens] in the input question are these pre-defined positions.

Response generation using LLM. The fused tokens are fed into LLM to
generate the final response. Our DepictQA is compatible with different LLMs
(Vicuna-v0-7B [12], Vicuna-v1.5-7B [12], and LLaMA-2-chat-7B [59]), as shown
in Tab. 5. Pre-trained LLMs do not work well on IQA tasks, and need to be fine-
tuned on our dataset. However, complete LLM fine-tuning is resource-intensive
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and data-hungry, requiring tens of thousands of high-quality human-written
texts [43]. To get around of data shortage issue, we resort to LoRA [20], an
efficient LLM fine-tuning technique, which selectively adjusts only a small set
of parameters in the LLM. Following [20, 69], we apply LoRA to fine-tune the
projection layers in all self-attention modules.

Unique tag to distinguish multiple images. Existing MLLMs [30, 82]
are primarily designed to handle a single input image. They insert the visual
tokens between the start (e.g ., <Img>) and end (e.g ., </Img>) tags. A simple
extension to multi-image input is using textual cues to distinguish images, e.g .,
adding “Reference Image:”, “Image A:”, and “Image B:” before visual tokens.
However, this simple extension sometimes fails to distinguish images, probably
because the proportion of these short textual cues in the full texts is too small.
To mitigate this, motivated by [79], we adopt the unique tag for each image.
In comparison and reasoning tasks, we select <Img-Reference>, <Img-A>, and
<Img-B> as start tags, adhering to the HTML rule by adding a trailing slash
(“/”) in the end tags. In description task, the reference image retains the same
tags, while the distorted image employs the original tags, <Img></Img>.

4.2 Training Scheme

Multi-source training data. As stated in Sec. 1, our training images come
from three sets: (1) 115,646 brief templated data of Task–2 (comparison), (2)
4,854 high-quality data of Task–1 (description) and Task–3 (reasoning), which
are duplicated by 20 times to increase the training weights, and (3) 48,734 con-
tent description data (Detailed Description dataset in [69], duplicated 2 times
during training), which are unrelated to IQA. The abundant templated data
principally bridge images and descriptive texts in quality-related tasks. The lim-
ited yet high-quality data foster the model’s descriptive and reasoning skills.
The IQA-unrelated content description data can serve as regularization, given
the limited text diversity of our IQA data for an MLLM. Experimental results
in Tab. 4 prove the effectiveness of the three sources of training data.

Training objective. Following existing works [6,30,69], the training objec-
tive of DepictQA is the next token prediction loss: a cross-entropy loss between
predicted and ground-truth next tokens. Only the tokens in the responses con-
tribute to the loss computation. Also, only the image projection layer and LoRA
parameters are optimized, comprising a mere 0.25% of the total parameters (7B).

5 Experiments

This section discusses experimental setups and results. In LoRA, the rank and
scale factor are both set as 16. In each attention layer of LLM, the projection
weights of “query”, “key”, “value”, and “output” are adjusted using two LoRA
delta parameters. DepictQA is trained for 1 epoch with batch size 64 on 8 GPUs
(NVIDIA RTX A6000 48G). Adam optimizer with (β1, β2) = (0.9, 0.95), weight
decay 0.001, and learning rate 5e−4 is used. The training is completed in around
12 hours. See Appendix for details and the training and inference costs.
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5.1 Metrics

Unlike traditional score-based IQA methods, evaluating the diverse, descriptive,
and textual results of multi-modal IQA methods is not trivial. Therefore, we
adopt three different kinds of metrics for a comprehensive evaluation.

Accuracy, SRCC, and PLCC. For comparison task, we employ the ac-
curacy metric. MLLMs usually produce diverse textual outputs, necessitating
transformation to bi-classification results (i.e., Image A or Image B is better)
for accuracy calculation. As described in the Task–2 part in Sec. 3.2, we add
the short answer prompt “Answer the question using a single word or phrase”
during training, guiding DepictQA to directly output bi-classification results. To
further evaluate the alignment between the comparison results and human per-
ception, we conduct pair-wise comparison and adopt voting method to convert
the bi-classification results to quality scores. The quality scores are assessed using
Spearman Rank Correlation Coefficient (SRCC) and Pearson Linear Correlation
Coefficient (PLCC) following score-based IQA methods [60,77].

GPT-4 score. For description and reasoning tasks, following [12, 30], we
utilize the GPT-4 score for assessment. Specifically, we provide GPT-4 with
all information in the human-labeled questionnaire as context. Then, we give
GPT-4 both the model-generated response and the corresponding ground truth
response. Based on the context, GPT-4 evaluates the helpfulness, relevance, ac-
curacy, and level of detail of these two responses, and gives an overall score on a
scale of 0 to 10, where a higher score indicates better quality. Finally, the relative
score with regard to the ground truth response is reported as the GPT-4 score.

Reasonable rate by human evaluators. We observe that GPT-4 score ex-
hibits excessive confidence in some low-quality responses where a wrong response
even receives a GPT-4 score over 60% (see Appendix ). Thus, for a comprehensive
evaluation, given both the images and responses, human evaluators label each
response as reasonable or not. A reasonable response should adhere to three cri-
teria: indicating the major one distortion, no severe comparison mistakes, and
self-consistency (see Appendix ). The reasonable rate serves as another metric.

5.2 Comparison with Score-based IQA Methods

To demonstrate the effectiveness of DepictQA, we compare it with score-based
IQA methods on the comparison task (Task–2). We evaluate four traditional IQA
methods including PSNR, SSIM [61], VIF [52], and FSIM [72], and four deep-
learning-based IQA methods including DeepIQA [4], PieAPP [47], LPIPS [75],
and DISTS [15]. Here our base LLM is selected as LLaMA-2-chat-7B [59].

Quantitative results of quality comparison on BAPPS are depicted
in Tab. 2a. Our DepictQA surpasses the best traditional method, FSIM, by a
large margin (∼11%). We also stably outperform the best deep-learning-based
competitors, LPIPS and DISTS (>2.6%), even near the human performance. We
show in Tab. 5 that the accuracy could be further enhanced with pre-training
initialization (but with near 3× training time). Unlike high-level perception tasks
where multi-modal approaches usually lag behind single-modal methods [69], we
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Table 2: Quantitative results of quality comparison task on traditional IQA
benchmarks. Our DepictQA achieves the state-of-the-art performance.

(a) Accuracy in Traditional / CNN distor-
tion categories on BAPPS benchmark [75].

Type Method Comparison

Oracle Human 80.8 / 84.4

Tradi-
tional

PSNR 59.9 / 77.8
SSIM [61] 60.3 / 79.1
VIF [52] 55.6 / 74.4

FSIM [72] 62.7 / 79.4

Learning

DeepIQA [4] 70.3 / 79.4
PieAPP [47] 72.7 / 77.0
LPIPS [75] 76.0 / 82.8
DISTS [15] 77.2 / 82.2

DepictQA (Ours) 80.3 / 84.2

(b) SRCC / PLCC metrics on benchmark datasets
including KADID [28], CSIQ [26], TID2013 [45],
LIVE [51], LIVE-MD [22], MDID2013 [56].

Datasets
Methods

FSIM [72] LPIPS [75] DepictQA
(Ours)

KADID 0.855/0.857 0.799/0.803 0.939/0.944
CSIQ 0.937/0.937 0.905/0.926 0.940/0.954

TID2013 0.841/0.875 0.798/0.851 0.853/0.886
LIVE 0.894/0.908 0.906/0.921 0.913/0.914

LIVE-MD 0.877/0.910 0.897/0.913 0.905/0.928
MDID2013 0.717/0.770 0.731/0.764 0.820/0.835

show that multi-modal IQA methods can surpass score-based counterparts in
the quality comparison task. Nevertheless, the quantitative comparison is not
the key issue, we pay more attention to the description and reasoning abilities.

Quantitative results of quality comparison on multiple IQA datasets
are shown in Tab. 2b. In this experiment, we include additional training datasets
including PIPAL [19], KADID [28], and CSIQ [26]. These datasets consist of
reference images and corresponding distorted versions. To adapt them to com-
parison task, we reorganize the datasets by randomly selecting a reference im-
age and its two distortions. The ground truth is established by comparing the
MOS or DMOS of these two distortions. The questions and responses are con-
structed with pre-defined templates. During evaluation, besides these datasets’
non-overlapped validation split, we also evaluate on unseen benchmarks includ-
ing TID2013 [45], LIVE [51], LIVE-MD [22], MDID2013 [56]. We conduct pair-
wise comparison and adopt voting method to transform the bi-classification re-
sults to quality scores. SRCC and PLCC metrics are reported. DepictQA stably
outperforms two baselines, validating its effectiveness across multiple datasets.

5.3 Comparison with General Multi-modal LLMs

We also compare DepictQA with general MLLMs on description (Task–1) and
reasoning (Task–3) tasks. We also transform the reasoning responses to bi-
classification results to calculate the comparison accuracy. We choose four MLLMs
as baselines: LLaVA [30], LLaVA-1.5 [29], MiniGPT4 [82], and LAMM [69]. We
provide explicit instructions to inform the MLLMs of the task definition.

Quantitative results are illustrated in Tab. 3. LLaVA and MiniGPT4
(LLaMA-2-chat) fail in IQA tasks, yielding either nearly identical results or ir-
relevant results across most samples. Other general MLLMs exhibit poor perfor-
mance, indicating their inadequacy for IQA tasks. However, after fine-tuning on
our M-BAPPS dataset, DepictQA achieves significantly improved performance.
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Table 3: Comparison with general MLLMs. All LLMs have 7B parameters.
“LLaMA-2c” means LLaMA-2-chat. Metric for comparison: accuracy. Since general
MLLMs can produce responses without explicit comparison results, accuracy is re-
ported with these responses included / excluded. Metric for description and reasoning:
reasonable rate / GPT-4 score. General MLLMs are not capable of IQA tasks.

Method LLaVA
[30]

LLaVA-1.5
[29]

MiniGPT4
[82]

MiniGPT4
[82]

LAMM
[69]

LAMM
[69]

DepictQA
(Ours)

LLM (7B) LLaMA-2c Vicuna-v1.5 Vicuna-v0 LLaMA-2c Vicuna-v0 LLaMA-2c Vicuna-v1.5

Description fail 18.0 / 65.8 16.0 / 49.9 fail 12.0 / 62.5 8.0 / 57.4 64.0 / 76.2
Comparison fail 43.0 / 50.6 38.0 / 46.3 fail 53.0 / 55.8 44.0 / 48.9 82.0
Reasoning fail 7.0 / 63.9 1.0 / 42.4 fail 4.0 / 58.1 5.0 / 52.4 53.0 / 76.4

One possible reason for general MLLMs’ inadequacy is that they are trained on
single images, while our tasks require multi-image input. Therefore, we also test
LLaVA-1.5 on description task without a reference (i.e., single-image input). We
then employ GPT-4 to verify whether ground-truth distortions are mentioned
in the responses. The results (24%) indicate some improvements over the full-
reference setting (18%). However, the overall performance remains sub-optimal.
Qualitative results in Appendix show the unsatisfying results of general MLLMs.

Qualitative results. Three qualitative results of reasoning task are depicted
in Fig. 1 and Fig. 3. More qualitative results and failure cases of description,
comparison, and reasoning tasks are illustrated in Appendix .

5.4 Ablation Studies

We conduct extensive ablation studies to verify the effectiveness of our method-
ologies. The LLM used in ablation studies is Vicuna-v1.5-7B [12] if not specified.

Effects of multi-source training data are detailed in Tab. 4. (1) Task-
2 data (comparison) remarkably improves comparison accuracy (#2 vs. #4).
Though these texts are brief and templated, the abundant samples still help
bridge the images and texts in quality-related tasks. (2) As evidenced by #1 vs.
#4 and #3 vs. #5, Task-3 data (reasoning) is necessary for a robust reasoning
ability. Task-1 data (description) boosts reasoning metric (#4 vs. #5), mainly
by helping identify distortions. Therefore, the high-quality texts of Task–1 and
Task–3 are necessary to depict the image quality with language. (3) However, as
shown by #1 vs. #3 and #4 vs. #5, Task-1 data (description) harms the com-
parison performance because of the gap between the two tasks in prompts and
the number of input images. (4) Fortunately, these negative effects can be elimi-
nated by content description data (#5 vs. #6), which serves as an regularization
in light of M-BAPPS’s limited text variety for a huge MLLM. Additionally, the
content description data helps enrich the text diversity, as shown in Appendix .

Unique tag effectively mitigates the confusion problem, detailed in Fig. 4.
Confusion occurs when distortions in one image are mistakenly attributed to
another. To quantify this, we manually review 50 responses and compute the
confusion rate. With the unified tag, the model needs to distinguish images
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Table 4: Ablation studies of multi-
source training data. “Cont.” means the
content description data. Metric for com-
parison: accuracy within Traditional / CNN
categories. Metric for reasoning: reasonable
rate / GPT-4 score. Multi-source training
data stably improves the performance.

# Training Data Comparison Reasoning
Task2 Task1 Task3 Cont.

1 ✓ 78.6/82.5 N/A
2 ✓ 66.4/65.4 31.0/74.2
3 ✓ ✓ 76.3/80.5 N/A
4 ✓ ✓ 79.7/83.3 41.0/74.3
5 ✓ ✓ ✓ 78.1/82.9 45.0/77.2
6 ✓ ✓ ✓ ✓ 80.0/83.8 53.0/76.4

Table 5: Ablation studies of LLMs
and initialization. “High-level” means
the MLLM is pre-trained on high-level
perception tasks. Metric for comparison:
accuracy within Traditional / CNN cate-
gories. DepictQA is compatible with dif-
ferent LLMs. Pre-training on high-level
perceptual tasks brings improvement.

# LLM Init. Comparison

1 Vicuna-v0-7B Random 79.5/83.7
2 Vicuna-v0-7B High-level 79.8/84.2

3 Vicuna-v1.5-7B Random 80.0/83.8
4 Vicuna-v1.5-7B High-level 81.2/85.3

5 LLaMA-2-chat-7B Random 80.3/84.2
6 LLaMA-2-chat-7B High-level 80.1/85.1

Unified Tag: <Img> for all three images
Response: …Image A underperforms Image B in
terms of color distortion. However, Image A excels
in noise control, clearly outperforming Image B…

Unique Tag: <Img-Reference>, <Img-A>, <Img-B>
Response: …Although Image A slightly outperforms
in terms of color distortion, it is markedly inferior to
Image B in the aspect of noise…

Unified Tag Unique Tag

Confusion Rate / % 24.0 12.0

Ref

A

B

Fig. 4: Unique tag alleviates the con-
fusion problem using clearer instructions.
The confusion rate drops dramatically.

Fig. 5: The comparison performance
gradually increases with the size of
training data increasing.

through textual hinds, as stated in Sec. 4.1, leading to a 24% confusion rate.
One unique tag for each image significantly reduces the confusion rate to 12%.
Two alternative methods to distinguish multiple images (i.e., image embedding,
unique projector) are studied in Appendix , showing the advantage of unique tag.

The size of training data is studied in Fig. 5. As the size of training data
increases, the comparison performance gradually increases. Thus the quantity of
the training data still plays a key role in the MLLM-based method.

LLMs and the initialization methods are studied in Tab. 5. For high-
level initialization, trainable parameters are pre-trained on high-level perception
tasks (e.g., description and captioning). (1) Overall, our DepictQA is compatible
with different LLMs, stably yielding high performance. Also, the performance
is slightly improved with more advanced LLMs (e.g ., Vicuna-v1.5 and LLaMA-
2-chat). (2) With the same LLM, pre-training on high-level perceptual tasks
further enhances the overall performance. Nevertheless, pre-training on high-
level perceptual tasks will also increase the training time by nearly three times.
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Table 6: Full-reference / non-
reference performance. Metric for
comparison: accuracy. Metric for de-
scription and reasoning: GPT-4 score.

Task Performance

Description 76.4 / 84.5
Comparison 82.3 / 78.5
Reasoning 77.2 / 78.8

Table 7: Comparison with the propri-
etary GPT-4V [42]. Metric for compari-
son: accuracy. Metric for reasoning: reason-
able rate / GPT-4 score.

Method Comparison Reasoning

GPT-4V [42] 65.0 52.0 / 106.4

DepictQA (ours) 90.0 53.0 / 77.6

5.5 Extensions

Non-reference applications. Although our dataset is initially gathered in a
full-reference setting, we demonstrate its utility in non-reference applications.
We generate non-reference training data by simply removing the reference image
in our original dataset. This non-reference data is combined to co-trained our
model. The results are shown in Tab. 6. For the description task, non-reference
performance stably surpasses full-reference, possibly because single-image tasks
are easier than multi-image tasks. Our model keeps its high performance in the
non-reference setting, proving the feasibility of the non-reference extension.

Comparison with GPT-4V [42] is conducted on the first 100 samples in
the validation set of Task–3 (reasoning)1. We request GPT-4V to complete both
comparison and reasoning tasks. GPT-4V is given detailed instructions and two
examples for task description. As shown in Tab. 7, DepictQA and GPT-4V have
mutual advantages and disadvantages. The GPT-4 score of GPT-4V is quite
high, even higher than human-annotated responses (>100%), because of the lin-
guistic fluency and detailed description of contents. However, we achieve compa-
rable performance at the human-evaluated reasonable rate. Moreover, DepictQA
is significantly better than GPT-4V in quality comparison. Note that GPT-4V is
close-source and expensive to access, thus developing an effective MLLM for IQA
is worthwhile. See Appendix for qualitative results and failure cases of GPT-4V.

6 Conclusions and Limitations

In this preliminary attempt, we propose an MLLM-based IQA model, DepictQA,
demonstrating the possibility of depicting image quality with languages. There
is still a long way to go for real-world application. (1) The amount and coverage
of data are not sufficient, limiting the generalization. (2) The performance in
description and reasoning tasks is not satisfying. (3) The distortion types can
be more than five, even not pre-defined. Also, fine-grained comparisons on local
details are preferred. (4) The voting method with pair-wise comparison is time-
consuming. (5) Finally, whether MLLM-based IQA methods can take the place
of score-based ones is still an open question. These belong to our future works.
1 The results were tested on the preview web version released in Nov. 2023. A com-

prehensive evaluation of the stable API version, gpt-4-turbo, is given in [70].
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