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Abstract. Predicting realistic ground views from satellite imagery in
urban scenes is a challenging task due to the significant view gaps be-
tween satellite and ground-view images. We propose a novel pipeline
to tackle this challenge, by generating geospecifc views that maximally
respect the weak geometry and texture from multi-view satellite im-
ages. Different from existing approaches that hallucinate images from
cues such as partial semantics or geometry from overhead satellite im-
ages, our method directly predicts ground-view images at geolocation
by using a comprehensive set of information from the satellite image,
resulting in ground-level images with a resolution boost at a factor of
ten or more. We leverage a novel building refinement method to reduce
geometric distortions in satellite data at ground level, which ensures the
creation of accurate conditions for view synthesis using diffusion net-
works. Moreover, we proposed a novel geospecific prior, which prompts
distribution learning of diffusion models to respect image samples that
are closer to the geolocation of the predicted images. We demonstrate
our pipeline is the first to generate close-to-real and geospecific ground
views merely based on satellite images. Code and dataset are available
at https://gdaosu.github.io/geocontext/.

Keywords: Cross-view synthesis · Conditional image generation · Cross-
view geo-localization

1 Introduction

The growing availability of satellites offers the opportunity to capture images
in every corner of the world. Directly predicting ground-view images from these
images, referred to as the cross-view synthesis problem, can benefit numerous
applications, such as 3D realistic gaming [18], and city-scale scene synthesis
[22,44].

The primary challenges lie in significant disparities in viewing directions and
resolutions across satellite and ground-level domains. Firstly, the difference in
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Fig. 1: Example of our synthesized geospecific views. Instead of conditioning on seman-
tics [22,29,31], ours utilizes ground-view satellite texture which provides high-frequency
structural and color information. The predicted result not only shows photorealistic
quality but also accurately reflects the number of stories of the garage (marked as or-
ange rectangles).

viewing angles makes the transformation from one view to the other very difficult
and sensitive to noises. In urban areas, satellite images may capture subtle details
of building facades. Transforming the visible facades to ground-view domains
becomes highly sensitive to localization errors of building corners. Secondly, the
low resolution of satellite images makes the extraction of useful information for
ground-view synthesis difficult. The resolution of commercial satellite imagery
is usually 0.3m/pixel, whereas the resolution of Google street-view imagery is
much higher than satellite imagery, with around 3cm/pixel [13,45]. Bridging this
nearly 10× resolution difference remains a challenge, which cannot be simply
addressed by super-resolution techniques. Finally, due to the diffuse reflections
of clouds, the color distortions between satellite imagery and ground-view images
are significant.

Existing approaches [19,22,29,31,41] to address these challenges mainly seek
for solutions that hallucinate views that reflect possible looks on the ground,
which lack ground fidelity. They often adopt a black-box methodology or rely on
auxiliary information. In tackling the disparity in viewing directions, [29,41] pro-
posed end-to-end networks that directly learned the mapping relation between
top-down satellite and ground-view images. As a result, the synthesized results
lack photorealism and consistency in building facade regions due to substantial
domain differences. [19, 22] bridges the viewing direction difference by leverag-
ing known accurate geometry. They proposed a 2D-3D-2D projection method
that first projects the top-down satellite texture into 3D space via orthographic
projection and then projects the 3D satellite texture into ground-view 2D space
by panoramic projection. Nonetheless, orthographic projection is a compromised
solution that sacrifices facade information. To address resolution differences, the
majority of existing works [19, 22, 29, 31] employ cGAN-based methods [4, 14],
conditioning on ground-view semantics. However, this conditioning sacrifices tex-
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ture information, making the synthesized results often deviate from the ground
truth images.

Instead, our goal is to achieve ground view synthesis with not only photore-
alism but also maximal ground fidelity, meaning that the generated view will be
geospecific, reflecting the actual looks at its geolocation. Our approach addresses
the existing challenges for ground-view generation with a mathematically more
accurate approach, avoiding any compromise of satellite texture and geometry
information. Specifically, we proposed a novel cross-view synthesis approach with
full utilization of satellite texture information including the visible building fa-
cades, as shown in Fig. 1. The projection from the top-down satellite to ground
level is performed in the 2D-3D-2D way similar to [19,22] while the difference is
the utilization of an accurate satellite camera projection model (rational poly-
nomial camera, RPC [37]). The noises of the satellite geometry usually cause
the distortions of projected texture. We developed a texture-friendly geometry
refinement method to minimize distortions of the projected satellite texture.
Additionally, we present a geospecific prior approach to improve the training ef-
ficiency and synthesis quality. Experimental results demonstrate that all baseline
methods utilizing such textures exhibit superior synthesis quality compared to
those relying on semantics. Our synthesized results not only excel in all percep-
tual metrics but also accurately capture building facade layouts. We summarize
the main contributions of this work as:

– The introduction of a texture-guided cross-view synthesis approach, which
generates layout-preserving ground-view images conditioning building facade
information.

– The development of a texture-friendly geometry refinement method allowing
the utilization of subtle building facade details as the condition for cross-view
synthesis.

– Through rigorous experiments, we demonstrate our method outperforms
SOTA methods at various metrics including semantic resemblance, edge,
and perception similarity.

2 Related Work

Cross-view synthesis focuses on the novel view synthesis of objects or scenes
from a completely different view. A typical task is to synthesize ground views
given top-down view satellite images. Its main challenges are the huge view-
port and domain difference. Existing works bridge such differences by using the
top-down view or extracting high-level features from the top-down view as the
condition for the ground-view synthesis. [29, 41] used conditional GANs [14]
predicting both the ground-view and corresponding semantics conditioning on
top-down view satellite image. The large view-port difference makes such meth-
ods difficult to converge. Instead, [18,19,22,26] perform viewport transformation
based on predicted geometry, where they estimated the height maps from top-
down views assuming the orthographic projection. As an approximation projec-
tion, it can preserve the roof and ground information while ignoring the building
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facade information. Our method developed a robust way of transforming such
information to ground views while preserving the geometric consistency, which
further served as the synthesis condition.

Conditional image generation focuses on learning a parametric mapping
between source condition domains and target image domains. Example condi-
tions include text descriptions to generate corresponding images [28,33], broken
images to fill the missing parts [23,25,33], street-view semantics to generate the
corresponding images [14, 46, 49]. Among these works, conditional GANs [4, 14]
are widely used as the backbone for conditional image generation while they suf-
fer from slow and unstable convergence during the training process and require
a large volume of paired data. Recently, diffusion models [10,33,38] have proven
exceptional in image generation tasks, which iteratively denoises the Gaussian
noise distribution to the target image distribution. Compared to GANs, they
are more adapted to various image domains [34, 46] with the limited amount of
training data [11, 32, 34]. Our method explores a way of ground-view synthesis
conditioning on a combination of geo-location and context information using
ControlNet [46] and LORA [11].

Cross-view geo-localization It focuses on estimating the location and ori-
entation of ground-view images based on given satellite images. Early works
regard it as the image retrieval problem that finds the most similar satellite
image from a database to determine the rough location of query images. These
works focus on designing powerful handcrafted features [2,21] or learning-based
features [1, 30, 39, 40] to bridge the cross-view domain gap. [12, 50] further iden-
tified the accurate pixel location on satellite images corresponding to the query
images by employing the Siamese network to regress the location coordinates.
Recent works [16,36] utilized the geometry guidance to project the ground-view
images to the top-down view domain, where the location and orientation of query
images can be robustly regressed.

3 Method

We present a novel pipeline designed to predict ground-view panorama images
using a set of satellite images, as depicted in Fig. 2. Our main goal is to perform
geometrically accurate projection of satellite textures to the ground view, en-
compassing subtle details of building facades to enhance ground-view synthesis.
The proposed pipeline consists of four stages: the top-down view stage, projec-
tion stage, ground-view stage, and texture-guided generation stage. The details
are described below.

3.1 Top-down View and Projection Stage

We follow the 2D-3D-2D way to project the top-down satellite images to ground
level. The satellite 3D geometry is first derived via well-established stereo match-
ing methods [5,17,27,43]. We then perform a 2D-3D texture projection (known
as RPC projection [37]) to transform the top-down satellite textures to 3D space
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Fig. 2: Overview of our pipeline. Top-down View Stage and Projection Stage:
the satellite textures are projected to the refined 3D geometry and then projected back
to ground-view 2D space (Sec. 3.1). Ground-view Stage: The ground view satellite
texture and corresponding high-frequency layout information serve as the conditions
(Sec. 3.2). Texture-guided Generation Stage: We use the recent successful diffusion
model [33] conditioning on ground-view satellite textures, high-frequency information
with the geospecific prior. (Sec. 3.3)

.

Fig. 3: Texture-friendly geometry refinement process. The process takes the original
height map as input and estimates the building footprint, followed by boundary regu-
larization to produce the refined height map.

and fuse the multiple overlap textures by optimizing the global illumination and
color consistency. Then a panoramic projection is performed from the 3D tex-
ture information to the ground level. The crucial factor in achieving perfect
2D-3D projection lies in the precise and smooth geometry. Although the derived
3D geometry is mathematically computed based on multi-view constraints, the
presence of satellite sensor noises can introduce distortions that will largely im-
pact the quality of projected textures around building facades. Therefore, we
propose an effective approach to refine the geometry of satellite buildings.

Texture-friendly geometry refinement. As the building facades are nearly
perpendicular to the satellite viewing direction, even minor disturbances around
the facade surface can lead to inaccuracies in mapping satellite textures to the
correct facade location. To ensure the smoothness and precision of the satel-
lite building geometry, we employ a 2D U-Net [42] to ascertain the high-level
building footprint from satellite images, classifying each pixel as either part of a
building or non-building region, as shown in Fig. 3. Subsequently, we detect and
rectify building boundaries into a series of polygons, which will provide smooth
building boundaries. For non-building regions, we conduct plane fitting and flat-
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(a) Before refinement

(b) After refinement

Fig. 4: Examples of the satellite textures before and after our transformation-friendly
geometry refinement.

(a) Semantics (b) Our satellite texture (c) Our edge map

Fig. 5: Illustration of three conditions for cross-view synthesis. Semantics are widely
used by existing works [2, 22, 41]. Our satellite textures can provide additional high-
frequency and color information that details the building facade layouts, such as the
window/door shape and locations.

ten the non-building pixels onto the fitted plane, while retaining the original
configuration of building pixels. Once the satellite geometry is refined, we per-
form 2D-3D texture projection, and then panoramic projection to derive the
ground-view satellite textures. Our refinement method shows excellent results
on various buildings, examples as shown in Fig. 4.

3.2 Ground-view Stage

After minimizing the cross-viewport difference between satellite and ground-
view images, the remaining challenges primarily involve resolution and color,
with the resolution exhibiting a difference of over 10 times. To address this
resolution disparity, we introduce a novel texture-guided condition to enhance
the informativeness of ground-view generation.

Texture-guided condition. Most existing cross-view synthesis works [2,22,
41] conditions on semantics, which are assumed as the known information [2],
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Fig. 6: Examples of the synthesized results of different geospecific priors conditioning
on the same query condition.

internally estimated [41] or by 2D-3D-2D projection [22]. Deriving the semantics
from satellite imagery is difficult and the semantic labels are limited to cer-
tain classes such as "Building", "Sky", "Road/Ground" and "Trees", limiting
the diversity and richness of the details. Our semantics are generated based on
top-down view building footprint segmentation results and perform 2D-3D-2D
projection detailed in Sec. 3.1. In addition, we extract non-categorical, high-
frequency information to preserve small granular structural details. Utilizing a
2D U-Net [3], we extract the building facade layout information, as shown in
Fig. 5.

3.3 Texture-guided Generation Stage

We apply the latent diffusion model [33] as the base generator, which iteratively
performs the denoising process from 2D random noise maps to synthesize the
ground-view images.

Geospecific information prior. Many small-scale geographical nuances,
such as specific vegetation types (e.g., palm trees in tropical regions), and diverse
building facade features (including billboards and neon lights in Hong Kong),
cannot be adequately captured by pure satellite texture. To address this, we
embed the geospecific prior as the additional learnable parameters [11, 35] to
the cross-attention module of our diffusion model. The geospecific information
is represented as text descriptions corresponding to specific countries or regions,
aligned with a set of street-view images from those areas to present the typical
landscape of such regions. Specifically, given a geo-specific text prompt "High
resolution street view in {geospecific}" P, we obtain a conditioning vector cp =
Etext(P). Subsequently, we incorporate geo-location tokens Pt (e.g. HongKong,
Dubai, Paris) into the prompt P to produce geospecific conditioning vector ct,
formalized as:

ct = Etext(P+Pt) (1)

For the pre-trained weights of our diffusion model W0 ∈ Rd×k, where k is the di-
mension for the input feature vectors and d is the dimension of the output feature
vectors, we follow [11] to introduce two low-rank matrices A ∈ Rd×r, B ∈ Rr×k
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and rank r ≪ min(d, k). During the training process, using random Gaussian
initialization for A and zero initialization for B, and the optimizer only optimizes
these two matrices, the output h pass pre-trained weight W0 will be modified
as:

h = W0x+ABx (2)

where x is the feature vector in the diffusion model. Fig. 6 illustrates that our
method with geo-specific priors can generate images with geospecific attributes.

Texture Encoding. The ground-view satellite texture and edge map are
encoded by another two networks [46] sharing the same architecture as our dif-
fusion model, which conditions on such features by zero-convoluting them with
each layer of the base model decoder. Given an input pair of images {z0, c},
where z0 is the real street-view image, c are ground-view satellite textures. We
first convert the condition images into feature space following the VQ-GAN [6]
pre-processing pipeline.

cs = E(c). (3)

where cs is the texture condition vector that represents the color information of
the satellite image. To incorporate the building structure information, we extract
the edge condition vector ce from c

ce = E(H(c)). (4)

where H is the edge map extraction network described in Sec. 3.2.
During the training process, given a time step t and a geospecific prompt (en-

coded as feature vector ct, see Eq. (1)), our diffusion-based network progressively
adds Gaussian noise ϵ ∼ N (0, 1) to the previous image zt−1 and produces a new
noisy image zt and it learns to predict the noise by minimizing the mean-square
error:

L = Ez0,t,cs,ce,ctϵ∼N (0,1)

[
∥ϵ− ϵθ(zt, t, cs, ce, ct)∥22

]
(5)

Where L is the learning objective applied in our proposed approach. We aim
to finetune the two texture encoding networks, where the first is conditioned by
ground-view satellite RGB images, and the second is conditioned by the edge
map.

3.4 Implementation Details

Datasets. We perform our experiments on a large-scale dataset, DFC 2019 [20],
consisting of multi-view satellite images covering a 177km2 area in Jacksonville,
USA. Examples of satellite data and associated products are shown in Fig. 7,
based on which we process into the 3D models, and have collected correspond-
ing ground-views from Google street-view. Specifically, we first conducted stereo
matching [9, 27] and our texture-friendly geometry refinement as described in
Sec. 3.1 to produce refined satellite geometry in the form of a height map.
Ground-view depth maps were then generated through 3D-2D projection from
the refined satellite geometry. Subsequently, we performed 2D-3D-2D projection
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Fig. 7: Examples of our cross-view dataset based on Jacksonville, Florida, USA. It
provides well-aligned pairs of ground-view satellite RGB and ground truth images,
along with the top-view RGB and height maps.(see details in Sec. 3.4)

to map the top-down satellite texture to ground level. Semantic information was
derived from OpenStreetMap Building Footprint data [24]. To obtain the refer-
ence ground view data, we collected Google street-view images within the study
area using Google StreetView 360, with a step distance of 30 meters. Each image
included location information (longitude, latitude, orientation). To address posi-
tional errors, we adopted a preprocessing strategy similar to [22], calculating the
overlap ratio between sky regions in Google street-view images and ground-view
satellite images. We selected pairs with an overlap ratio exceeding 95%, followed
by post-processing. This process yielded over 7,000 pairs of cross-view data, each
comprising top-down view RGB, height map, ground-view RGB, depth map, and
ground truth images. For dataset split, we spatially tiled the datasets into a set
of 700m × 700m sub-tiles, with the ratio of train/val/test tiles being 8 : 1 : 1.
To prevent spatial correlation and overfitted prediction, we selected our test tile
far apart from the training tiles.

Training Scheme. For the building footprint segmentation network, we
randomly cropped out 512 x 512 patches from satellite images and assigned each
pixel with 1 or 0 representing whether belongs to the building or not based
on OpenStreetMap data with post-processing. This building footprint dataset
is self-constructed based on the DFC-2019 multi-view images, which contain
11,784 pairs. Given its moderate size and simplicity of the task (predicting a
binary task), We chose a moderately complex network, SegFormer [42] as our
segmentation network, which was trained for 40 epochs.

For the texture-guide generation stage, we used pre-trained weights from Sta-
ble Diffusion v1.5 [33] as the base diffusion model and only finetuned the newly
added parameters for each geospecific text prompt (detailed in Sec. 3.3). The
paired data for geospecific prior training was a text prompt of "High-resolution
street view in <City, Country, Continent>" and a set of Google street-view im-
ages broadly in the region to reflect the types of buildings and city landscape. In
our experiment, we encoded five cities (but easily expandable) including London,
Hong Kong, Jacksonville, Paris, and Dubai, where each city contains around 500
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Table 1: Quantitative evaluation of synthesized image quality. We compared our
method with Sat2Ground [22], Sat2Density [26], CrossMLP [31] and PanoGAN [41].
The same metrics for Tab. 2.

Method Low level Edge level Semantic level Perceptual Level
PSNR↑ SSIM↑ IE↑ IB↑ IG↑ IS↑ LPIPS↓ FID↓ DreamSIM↓

Sat2G 21.02 0.388 0.072 0.345 0.324 0.851 0.527 160.6 0.420
Sat2D 19.04 0.388 0.067 0.285 0.310 0.782 0.574 227.3 0.481

CrossMLP 18.66 0.407 0.069 0.448 0.214 0.861 0.509 170.8 0.434
PanoGAN 20.51 0.373 0.078 0.376 0.457 0.801 0.488 98.81 0.348

Ours 19.95 0.397 0.089 0.570 0.864 0.874 0.449 71.04 0.315

images. For ground-view texture encoders, we created the trainable copy of the
UNet encoder according to ControlNet [46] and trained the encoders with the
train datasets and inference on test datasets.

4 Experiments

4.1 Baselines and Metrics

Baseline methods. We chose two direct synthesis methods, CrossMLP [31]
and PanoGAN [41] and two geometry-guided methods Sat2Ground [22] and
Sat2Density [26] as baseline methods. The implementation and modification
can be found in supplementary material.

Evaluation metrics. We use a combination of low-level, structure-level,
semantic-level, and perceptual-level metrics to evaluate the quality of synthe-
sized results. Low-level metrics. We follow [22, 29, 41] and use PSNR, and
SSIM, which evaluate differences per pixels or local patches. Edge-level met-
rics. We extract the edge map from the synthesized result and ground truth using
the Canny detector and calculate their average IoU (intersection over union) as
the edge level similarity metric, denoted as Ie. Semantic level metrics: We
calculate the average IoU of building (IB), ground (IG), and sky labels (IS)
between synthesized and ground truth images, where the semantic labels are
generated from OneFormer [15] trained on ADE20K dataset [48]. Perceptual
level metrics: we apply three widely-used perceptual metrics: the Fréchet In-
ception Distance (FID) [8] and the Learned Perceptual Image Patch Similarity
(LPIPS) [47], and DreamSIM [7].

4.2 Comparison to State-of-the-Art Methods

Tab. 1 and Fig. 8 provide quantitative and qualitative comparison results of
CrossMLP [31], PanoGAN [41], Sat2Ground [22], Sat2Density [26] and ours in
the dataset described in Sec. 3.4.
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(a) Sat2G (b) Sat2D (c) CrossMLP (d) PanoGAN (e) Ours (f) GT

Fig. 8: Qualitative comparison. We present various synthesis results of our method,
compared with Sat2Ground [22], Sat2Density [26], CrossMLP [31], PanoGAN [41]. Our
results are more photorealistic than the baseline methods.

Semantic level similarity. For a semantic category, a higher mIoU indi-
cates the synthesized objects are more recognized by the pre-trained seman-
tic segmentation models. For building objects, ours achieved 25.8% and 54.8%
improvement than CrossMLP and PanoGAN. Similarly for road objects, ours
achieved 685% and 402% improvement than CrossMLP and PanoGAN. Specifi-
cally, Sat2Ground synthesized the basic building layouts because of its geometry-
guided module while the synthesized building objects were hardly recognized by
the pre-trained model, which can be attributed to its GAN-based synthsis mod-
ule. Moreover, the road regions generated by CrossMLP and PanoGAN exhibit
blurry and repetitive artifacts, which are misclassified as ’Sand’ and ’Earth’ cat-
egories, and a similar issue occurs with the "Building" label.

Perceptual level similarity. As shown in Fig. 8, our approach produced
fewer artifacts, and the synthesized building facades were more similar to those
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Table 2: Quantitative ablation study of the proposed geospecific priors, the ground-
view satellite texture condition, termed as "RGB". The same settings for Fig. 9.

Method Low level Edge level Semantic level Perceptual Level
PSNR↑ SSIM↑ IE↑ IB↑ IG↑ IS↑ LPIPS↓ FID↓ DreamSIM↓

Ours 19.82 0.389 0.090 0.550 0.898 0.876 0.456 66.06 0.309
w/o prior 17.34 0.288 0.071 0.359 0.832 0.726 0.580 87.75 0.416
w/o RGB 18.74 0.350 0.086 0.521 0.722 0.862 0.587 89.60 0.324

in the ground truth images. As shown in Tab. 1, ours achieved better FID
results with more than 15.7% compared to baseline methods. The baseline
methods generated artifacts of varying degrees around the building and ground
areas. CrossMLP, in particular, synthesized buildings with transparent effects
that blend with the sky and vegetation. PanoGAN and Sat2Ground performed
slightly better than CrossMLP around building regions, displaying the basic fa-
cade layouts. However, these layouts appear to be more randomly generated and
contain numerous repetitive artifacts.

Edge and low-level similarity. For edge-level performance, ours achieved
an improvement of more than 15.5% than baseline methods. This superiority was
attributed to the ground-view satellite texture conditions offering more high-
frequency information compared to semantics. For low-level performance, ours
ranked second in SSIM and third in PSNR. Given that these metrics evaluate dif-
ferences at the per-pixel or patch level, our diffusion-based synthesis model is not
designed to precisely replicate dataset distributions at the pixel level. Instead, it
focuses on synthesizing structures and perceptual features. Additionally, these
metrics are particularly sensitive to the inherent randomness of diffusion-based
models, which arises from their training on large-scale datasets. For instance, in
Fig. 8, rows 3, 6, 7, and 9 of our synthesized results exhibit significant devia-
tions from the ground truth at the pixel level, including variations in lighting,
shadows, clouds, and tree shapes.

4.3 Ablation Study

We further investigate the influence of multiple key components of our pipelines.
Importance of geo-lcoation prior. We removed the geospecific prior, for-

mulated as the additional parameters in the cross-attention module of the diffu-
sion model, and performed the training to see the influence of geospecific prior.
As shown in Tab. 2, ours using geospecific prior achieved the improvement of
32.8% and 25.7% in FID and DreamSIM, 53.2% in mIoU of the "Building" label
than ours without prior.

Importance of texture condition.We substituted ground-view satellite
textures with semantics and trained our models to assess the significance of
texture conditions. As shown in Tab. 2, our approach utilizing texture condi-
tions surpassed the one employing semantics by 23.5%, 20.7%, and 4.6% across
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(a) Ours w/o RGB (b) Ours w/o prior (c) Ours (d) GT

Fig. 9: Qualitative ablation study. We show the visual comparison of the synthesized
images by our methods with different configurations.

Table 3: Quantitative results for the potential improvement of baseline methods with
our ground-view satellite texture conditions over semantics.

Method LPIPS↓ FID↓ DreamSIM↓
Semantics Textures Semantics Textures Semantics Textures

CrossMLP [31] 0.509 0.535 170.8 86.65 0.434 0.432
PanoGAN [41] 0.488 0.477 98.81 84.38 0.348 0.337

Ours 0.587 0.449 89.60 71.04 0.324 0.315

three perceptual-level metrics. The ground-view satellite texture provides richer
details, thereby establishing a less ambiguous mapping relation. Moreover, the
qualitative results depicted in Fig. 9 underscore the challenges faced by our
semantics-dependent approach in accurately synthesizing building facade lay-
outs and textures.

Potential improvement for baselines. To showcase the effectiveness of
the proposed ground-view satellite textures, we conducted an experiment com-
paring them with two baseline methods, CrossMLP [31] and PanoGAN [41],
which originally utilize ground-view semantics as auxiliary inputs. Instead of se-
mantics, we integrated ground-view textures and assessed their perceptual per-
formance, as illustrated in Fig. 9. Overall, with our ground-view texture integra-
tion, both baseline methods demonstrated improved performance. Specifically,
PanoGAN exhibited enhancements of 2.2%, 14.6%, and 3.1% in LPIPS, FID,
and DreamSIM metrics, respectively. CrossMLP, when augmented with texture
conditions, showed superior performance in FID and DreamSIM but slightly
inferior results in the LPIPS metric.

4.4 Limitation

Although the synthesized views are geospecific with the help of geospecific prior
and ground-view satellite textures, they currently lack view consistency among
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Fig. 10: Examples of our limitation. The inherent randomness of the diffusion model
makes the synthesis results (marked as orange rectangles) not consistent with their
neighbor views.

neighboring views, as shown in Fig. 10. For instance, buildings synthesized at
two adjacent locations (highlighted by orange rectangles) show inconsistencies
in color and facade layouts. This issue arises because the inherent randomness of
the diffusion model prevents the results from strictly adhering to the input con-
ditions in the absence of explicit cross-location or view-consistency constraints.
Addressing this limitation to produce not only photorealistic but also consistent
view sequences is a focus for future work.

5 Conclusion

In this paper, we propose a novel pipeline for predicting ground-view images
from multi-view satellite images. The predicted ground views are geospecific, in
that the generated views are not only consistent with the geometry derived from
the satellite views but also the textural information from the satellite view, with
a resolution enhancement at a factor of 10 or more. This stands for our work
as the first that achieves view prediction that is specifically real to geolocation.
In particular, we propose a geometry refinement module to refine satellite 3D
geometry, to minimize the texture distortions on building facades, which signif-
icantly improves the transfered structural information from the weak satellite
textures to the predicted views. Moreover, we propose to use a geospecific prior,
to control the learned distributions of the diffusion model, to predict views that
respect the local street-view styles. This encoded geospecific prior not only dis-
tills the generation to be geospecific but is also shown to be extremely effective
in accelerating the training convergence. Our experiments demonstrate that our
method significantly outperforms published baselines at a large margin, and is
able to predict high-resolution, authentic ground views merely using multi-view
satellite images.
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