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1 Derivation of Block-based Volume Rendering

Traditional volume rendering methods, like those used in Block-NeRF [9] and
Mega-NeRF [11], necessitate accessing radiance and opacity for all sampling
points, even if the points belong to different blocks. This requirement means
that when the rendering resources of multiple shaders cannot communicate with
each other, their volume rendering algorithm cannot work. On the contrary, our
block-based volume rendering algorithm is tailored for such resource-independent
settings, allowing for the independent rendering of each block before blending
their outputs. In this section, we will prove the equivalence between this resource-
independent volume rendering and the traditional volume rendering under Lam-
bertian conditions.

In traditional volume rendering, consider a ray r with M sampling points. For
each sampling point pi, the diffuse color, feature, and opacity are represented
as ci, f i, and αi respectively. The final diffuse color Cd of the ray r can be
obtained by

Ĉd(r) =

M∑
i=1

i−1∏
j=1

(1− αj)αici (1)

In block-based volume rendering, let’s assume the ray, with M sampling
points, traverses through K blocks. Within block Bk, there are Nk sampling
points. For sampling point pki in block Bk, the diffuse color, feature, and opacity
output by the shader or submodel of block Bk are represented as cki , f

k
i , and

αk
i , respectively.

cki = cN1+···+Nk−1+i

fk
i = fN1+···+Nk−1+i

αk
i = αN1+···+Nk−1+i

(2)
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Then, for this ray, diffuse color Ck
d, specular feature F k and opacity αk of block

Bk are caculated as follows:

Ck
d =

Nk∑
i=1

i−1∏
j=1

(1− αk
j ) · αk

i c
k
i

F k =

Nk∑
i=1

i−1∏
j=1

(1− αk
j ) · αk

i f
k
i

αk =

Nk∑
i=1

i−1∏
j=1

(1− αk
j ) · αk

i

(3)

By blending the rendering results of each block using Eq. (8), the final diffuse
color Cd and specular feature F of the ray r can be obtained.

Cd(r) =

K∑
k=1

k−1∏
j=1

(1− αj) ·Ck
d

F (r) =

K∑
k=1

k−1∏
j=1

(1− αj) · F k

(4)

From Eq. (3), we get the following equation:

1− αk = 1−
Nk∑
i=1

i−1∏
j=1

(1− αk
j ) · αk

i

= 1− αk
1 − (1− αk

1)α
k
2 − (1− αk

1)(1− αk
2)α

k
3 − · · ·

= (1− αk
1)(1− αk

2 − (1− αk
2)α

k
3 − · · · )

= (1− αk
1)(1− αk

2)(1− αk
3 − · · · )

= · · ·

=

Nk∏
i=1

(1− αk
i )

(5)

Consequently, we can obtain the following by substituting Eq. (5) into Eq. (4).

Cd(r) =

K∑
k=1

k−1∏
j=1

(1− αj) ·Ck
d

=

K∑
k=1

k−1∏
j=1

Nj∏
i=1

(1− αj
i ) ·C

k
d

=

K∑
k=1

N1+···+Nk−1∏
i=1

(1− αi) ·Ck
d

(6)
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By substituting Ck
d from Eq. (3) into Eq. (6), we demonstrate the equivalence

between Eq. (1) and Eq. (4).

Cd(r) =

K∑
k=1

N1+···+Nk−1∏
l=1

(1− αl)

Nk∑
i=1

i−1∏
j=1

(1− αk
j ) · αk

i c
k
i

= α1
1c

1
1 + · · ·+

N1−1∏
i=1

(1− α1
i )α

1
N1

c1N1︸ ︷︷ ︸
block1

+

N1∏
j=1

(1− α1
j )

(
α2
1c

2
1 + · · ·+

N2−1∏
i=1

(1− α2
i )α

2
N2

c2N2

)
︸ ︷︷ ︸

block2

+ · · ·

+

N1∏
j=1

(1− α1
j ) · · ·

NK−1∏
j=1

(1− αK−1
j )

(
αK
1 cK1 + · · ·+

NK−1∏
i=1

(1− αK
i )αK

NK
cKNK

)
︸ ︷︷ ︸

blockK

= α1
1c

1
1 + · · ·+

N1−1∏
i=1

(1− α1
i )α

1
N1

c1N1︸ ︷︷ ︸
block1

(7)

+

N1∏
j=1

(1− α1
j )α

2
1c

2
1 + · · ·+

N1∏
j=1

(1− α1
j )

N2−1∏
i=1

(1− α2
i )α

2
N2

c2N2︸ ︷︷ ︸
block2

+ · · ·

+

N1∏
i=1

(1− α1
i ) · · ·

NK−1∏
i=1

(1− αK−1
i )αK

1 cK1 + · · ·︸ ︷︷ ︸
blockK

+

N1∏
i=1

(1− α1
i ) · · ·

NK−1∏
i=1

(1− αK−1
i )

NK−1∏
i=1

(1− αK
i )αK

NK
cKNK

)︸ ︷︷ ︸
blockK

= α1c1 + · · ·+
N1−1∏
i=1

(1− αi)αN1cN1︸ ︷︷ ︸
block1

+

N1∏
j=1

(1− αj)αN1+1cN1+1 + · · ·+
N1+N2−1∏

i=1

(1− αi)αN1+N2
cN1+N2︸ ︷︷ ︸

block2

+ · · ·
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+

N1+···+NK−1∏
j=1

(1− αj)αN1+···+NK−1+1cN1+···+NK−1+1 + · · ·︸ ︷︷ ︸
blockK

+

N1+···+NK−1∏
i=1

(1− αi)αN1+···+NK
cN1+···+NK︸ ︷︷ ︸

blockK

=

N1+···+NK∑
i=1

i−1∏
j=1

(1− αj)αici

=

M∑
i=1

i−1∏
j=1

(1− αj)αici = Ĉd(r)

(8)

It can be observed that block-based volume rendering approach in the resource-
independent environment, such as in our case where multiple shaders are used to
render the entire scene, is equivalent to the MERF’s volume rendering method [7]
without deferred rendering.

2 More Details on Experiments

In this section, we provide more details on our custom Campus dataset, imple-
mention details and settings of comparison methods.

2.1 Dataset

The Campus dataset is captured at an altitude of about 180 meters, covering an
area of approximately 960,000 m2. We adopt a circular data capture method for
areial photography, as shown in Fig. 1. We find that this method often results in
a higher overlap rate, allowing for a more accurate estimation of camera poses.
Our dataset was captured over 8 hours on a cloudy day, with a fixed exposure
setting to ensure almost identical appearance of photos taken at different time.
We used Colmap [8] to estimate camera poses. Feature matching was done using
a vocabulary tree, followed by a hierarchical mapper followed by a few iterations
of triangulation and bundle adjustment to estimate camera poses.

2.2 Implementation Details

For blocks at the boundaries of the entire scene, an unbounded scene represen-
tation is required to represent areas outside the block boundaries. We follow the
same approach as MERF [7] to compute ray-AABB intersections trivially. To be
specific, we employ the scene contraction function to project the scene external



City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 5

to the unit sphere into a cube, which has a radius of 2. The definition of the
j − th coordinate for a contracted point is as follows:

contract(x)j =


xj if ∥x∥∞ ≤ 1

xj

∥x∥∞
if xj ̸= ∥x∥∞ > 1(

2− 1
|xj |

)
xj

|xj | if xj = ∥x∥∞ > 1

, (9)

Our method takes posed multi-view images captured using a fly-through
camera as input. The training code is built on the nerfstudio framework [10] with
tiny-cuda-nn extension. Our real-time viewer is a JavaScript web application
whose rendering is implemented through GLSL. We set the 5123 resolution for
the voxel and 20482 resolution for the triplane within each block. We use a 4-
layer MLP with 64 hidden dimensions as an encoder after multi-resolution hash
encoding to output density, color, and specular feature. Moreover, a 3-layer MLP
with 16 hidden dimensions tiny deferred MLP is developed to predict residual
view-dependent color. We sample 16384 rays per batch and use Adam optimizer
with an initial learning rate of 1 × 10−2 decaying exponentially to 1 × 10−3.
The global deferred MLP is a 6-layer MLP with 128 hidden dimensions. Our
model is trained with 50k iterations on one NVIDIA A100 GPU. We split the
scene into 24 blocks for Campus scene, and split other scenes into four blocks
to reconstruct these scenes. We perform qualitative comparisons between our
method and existing SOTA methods for large-scale reconstruction. The Campus
dataset is partitioned into six parts. NeRFacto, Instant-NGP, and Grid-NeRF
were applied to reconstruct one of these parts. NeRFacto and Instant-NGP are
utilized with the highest hash encoding resolution of 81923. Mega-NeRF divides
the Campus scene into 24 blocks and splits another dataset into four blocks to
evaluate its performance.

We use an A100 GPU for training. In Sections 5.1 and 5.2, we perform
training for 50,000 iterations with a batch size of 16384 pixels for the Campus
dataset, taking approximately 48 hours, while the training for other datasets
takes around 24 hours. The experiments described in Sections 5.2 and 5.4 are
subjected to training for 30,000 iterations with the same batch size, which is
completed in approximately 12 hours. Training losses are initially balanced with
λ1 = 1.0, λ2 = 1.0, λ3 = 0.01, λ4 = 0.05, λ5 = 0.001 and sample 214 samples for
computing sparsity loss. During LOD genreation phase, we utilize the same loss
function and hyperparameters as those employed during the training stage. We
freeze the training of submodels for 5,000 iterations and then refine them and
shared global deferred mlp jointly for an additional 10,000 iterations.

2.3 Comparative Method Settings

In Sec. 5.1, we adopt the official implementations of Mega-NeRF [11], NeR-
Facto [10], and Grid-NeRF [12]. Additionally, we use an unofficial implemen-
tation of Instant-NGP3. Specifically, NeRFacto is trained with a batch size of
3 https://github.com/ashawkey/torch-ngp



6 K. Song et al.

Fig. 1: Visulization of Campus Dataset.

65,536 for 30,000 iterations. Instant-NGP [6] is trained for 500,000 iterations
with a batch size of 4096. Grid-NeRF [12] is trained for 50,000 iterations with
a batch size of 16384. Mega-NeRF [11] is trained for 500,000 iterations for each
block, using a batch size of 1024. In Sec. 5.2, For MobileNeRF [1], We initialize a
1923 grid to generate polygonal meshes while adhering to default parameters for
other setups. We use the open-source version4 for BakedSDF [13], conducting
training in two phases: 20,000 and 50,000 iterations, respectively with a batch
size of 16,384 and use 10243 to extract meshes by marching cubes [5]. We employ
the official implementation of MERF [7] and 3D Gaussian Splatting [3]. During
the MERF [7] experiments, the data is divided into four parts for a fair compari-
son with our method, and each block is trained with 32,768 batch size for 30,000
iterations, using default parameter settings. For 3D Gaussian splatting [3], we
demonstrate the results after training for 30,000 and 100,000 iterations using the
default settings.

Table 1: Comparison on Residence, Building and Sci-art scenes.

Residence Sci-art Building
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRFacto 21.92 0.642 0.475 24.65 0.781 0.312 17.70 0.502 0.442
Mega-NeRF 22.08 0.628 0.489 25.60 0.770 0.390 20.93 0.547 0.504
Ours 22.54 0.680 0.386 25.71 0.802 0.241 20.13 0.578 0.397

3 More Results

We present more qualitative comparisons among our method, MERF [7] (4
blocks), and 3D Gaussian Splatting [3] (100k iters) on the Campus Dataset
4 https://github.com/hugoycj/torch-bakedsdf
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Fig. 2: Qualitative comparison of real-time rendering methods.

in Fig. 2. Additionally, we showcase rendering results from different LODs to
demonstrate the appearance consistency across various LODs in Fig. 3. We con-
duct more experiments on the Residence, Building, and Sci-art scenes datasets.
The hyperparameters used in these additional experiments are the same as de-
scribed in the main paper. The results of these extended experiments are pre-
sented in Tab. 1. Our method outperforms Mega-NeRF and NeRFacto in all the
scenes.

Ablations on shared heads. In contrast to Grid-NeRF [12], we don’t share
heads. This strategy reduces the model’s representational capacity, consequently
decreasing reconstruction quality as shown in the first two rows of Tab. 2. Addi-
tionally, we tested the speed of generating LOD under the shared heads condition
in Tab. 2. It can be observed that sharing heads does not exert an influence on
the quality of lod generation.

4 Real-Time Viewer

Our real-time viewer platform is based on the MERF volume renderer [7], lever-
aging an OpenGL fragment shader to execute ray marching and deferred ren-
dering. It accesses feature and density information through texture look-ups.
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Table 2: Ablation study on sharing heads.

PSNR↑ SSIM↑ LPIPS↓ Training Time ↓

training with shared heads (4 blocks) 24.36 0.734 0.201 -
training with non-shared heads (4 blocks) 24.82 0.741 0.190 -

generate lod with shared heads (2 hours) 24.19 0.718 0.213 2 hours
generate lod with shared heads (4 hours) 24.22 0.729 0.204 4 hours
generate lod with non-shared heads 24.20 0.724 0.204 4 hours

However, we have implemented several improvements tailored for large scenes to
enhance performance.

Dynamic Loading. We employ dynamic loading strategy to determine the
level-of-detail and blocks to be loaded, thereby reducing VRAM usage. We use
the center points obtained in Section 4.1 for each block on the xy plane as
the xy-components, and assign the height of the highest part within the block
as the z-component. This defines the 3D center point for each block during the
rendering stage. Additionally, we use the rectangle formed by the block’s four xy
corner points and the previously determined z value to define the block’s region.
By projecting this region onto the camera plane, we can determine whether the
block is visible to the camera.

During the rendering phase, we first eliminate blocks that are not visible
for cameras. Starting with the coarsest LOD, we check if the distance from the
camera to all visible blocks within the finer LOD exceeds a certain threshold. For
blocks beyond this threshold, rendering is performed using the resources loaded
at the current LOD. Otherwise, the evaluation progresses to the subsequent,
finer LOD. This stepwise process continues until we reach the finest LOD or
complete the rendering of the entire image.

Depth sorting. We compute the distance from each block’s center point to
the camera using only their xy-components, leveraging this calculated distance
for depth sorting. We adopt this approach as our scene segmentation occurs
solely in the xy plane, without division along the z-axis.

5 Discussion

UE4-NeRF [2] and NeuRas [4], both mesh-based rendering approaches, offer fast
rendering speed but face challenges when representing large, detail-rich scenes
like those including dense foliage. These mesh representations can consume ex-
tensive memory, often amounting to several gigabytes. Additionally, 3D Gaussian
Splatting [3], typically requires millions to tens of millions of points. The in-
herent properties of Gaussian splatting, which involve numerous Gauss-related
attributes, further increase the VRAM needed for rendering. The substantial
VRAM consumption characteristic of these methods poses significant challenges
for implementing rendering on web platforms and resource-constrained devices,
as they struggle to accommodate the high memory demands.
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LOD 3 GTLOD 2 LOD 1

Fig. 3: Qualitative comparison of different levels-of-detail.
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