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Figure 1: Our proposed SmartControl can perform controllable image generation un-
der rough visual conditions extracted from other images. In contrast, ControlNet
adheres strictly to control conditions, which may go against human intentions.

Abstract Recent text-to-image generation methods such as ControlNet
have achieved remarkable success in controlling image layouts, where the
generated images by the default model are constrained to strictly follow
the visual conditions (e.g., depth maps). However, in practice, the con-
ditions usually provide only a rough layout, and we argue that the text
prompts can more faithfully reflect user intentions. For handling the dis-
agreements between the text prompts and rough visual conditions, we
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propose a novel text-to-image generation method dubbed SmartControl,
which is designed to align well with the text prompts while adaptively
keeping useful information from the visual conditions. The key idea of our
SmartControl is to relax the constraints on areas that conflict with the
text prompts in visual conditions, and two main procedures are required
to achieve such a flexible generation. In specific, we extract information
from the generative priors of the backbone model (e.g., ControlNet),
which effectively represents consistency between the text prompt and vi-
sual conditions. Then, a Control Scale Predictor is designed to identify
the conflict regions and predict the local control scales. For training the
proposed method, a dataset with text prompts and rough visual condi-
tions is constructed. It is worth noting that, even with a limited number
(e.g., 1,000~2,000) of training samples, our SmartControl can generalize
well to unseen objects. Extensive experiments are conducted on four typ-
ical visual condition types, and our SmartControl can achieve a superior
performance against state-of-the-art methods. Source code, pre-trained
models, and datasets will be publicly available.

Keywords: Text-to-Image Generation - ControlNet - Rough Conditions

1 Introduction

Recent advances in diffusion models [10L28] have made remarkable progress in
text-to-image (T2I) generation, and large-scale pre-trained T2 models are capa-
ble of generating high-quality images according to given text prompts. Building
upon these advances, ControlNet [39] and T2I-Adapter |20] further introduce
an extra visual condition (e.g., edge maps, human pose skeletons, segmentation
maps, and depth) to pre-trained T2I models for layout-controllable image gen-
eration. By combining the text prompts and visual conditions, these models can
produce images that match the text prompts and adhere to visual conditions.

Despite the promising results, one of the common challenges is creating suit-
able layout conditions. In practice, users usually use the conditions extracted
from other real images. However, such a condition is usually rough, and cannot
provide layout information that is precisely aligned with text prompts during
conditional image generation. The inconsistency between the condition and text
prompt will lead to the degraded generated results. For example, as shown in
the top of Fig. [, when the user generates the photo of a girl with the visual
condition from Mickey, the generated image shows obvious artifacts in the hu-
man’s head and arm. Nonetheless, handcrafted modifying the visual conditions
is a professional and time-consuming task, and even infeasible for users.

To improve the quality of generation on the rough condition, one possible
solution is to relax the restriction of visual condition. For example, LooseCon-
trol [4] proposes to control the layout of the image through a 3D bounding box,
including the position, orientation, and size of the object. Although LooseCon-
trol achieves flexible controllability, its visual condition is too loose to control
the posture and actions of the objects effectively. Another possible way is to
reduce the control intensity of visual conditions. In ControlNet [39], the visual
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conditions are integrated into the generation process by adding the feature of
visual conditions to the latent image features. Therefore, we can decrease the
fusion weight of visual conditions to relax its influence, so that the generative
models can balance information from text and visual conditions. As shown in
Fig. a proper weight may produce a desired result. However, the optimal
weights for different inputs are varied, and one should manually navigate all
control intensities for selecting a suitable one. Moreover, it is even infeasible to
find a suitable weight for some cases (see the third row of Fig. [2]). Furthermore,
the fusion weight is a global parameter that affects the entire image, leading to
compromises between different local areas.

In this work, we propose SmartControl, an automated and flexible method
for photo-realistic image generation with the text prompt and a rough visual
condition as inputs. We argue that the text prompt can more faithfully reflect
user intentions during generation. At the same time, the rough visual conditions
usually provide only coarse layout information. Therefore, the key idea of our
SmartControl is to relax the constraints on areas that conflict with the text
prompts in the rough visual conditions, and we propose a Control Scale Predic-
tor to identify the conflict regions and predict the local control scales based on
the visual conditions and text prompts. Considering that both text prompt and
conditions are integrated into ControlNet backbone, we extract relevant priors
regarding visual conditions and text prompts from the generative model. Then,
the control scale predictor can take advantage of the generative priors to predict
the spatial adaptive control scales. For training the control scale predictor, a
dataset with text prompts and rough visual conditions is constructed. Thanks
to the generative prior extracted from the pre-trained generative models, a lim-
ited number (e.g., 1,000~2,000) of samples is sufficient, and our SmartControl
shows preferable generalization abilities to unseen objects. As shown in Fig. [T}
our SmartControl could generate photo-realistic images faithful to text prompts
while preserving useful information from the rough visual conditions.

Extensive experiments are conducted on various backbone generative models
and visual condition types, and our SmartControl can perform favorably against
state-of-the-art methods. Our contributions are listed as follows:

— We present an automated and flexible text-to-image generation method un-
der rough visual conditions (dubbed SmartControl), which achieves local-
adaptive control intensities based on the consistency between text prompts
and the visual conditions.

— A control scale predictor is designed to distinguish and identify conflicts
between text prompts and visual conditions.

— A dataset with text prompts and unaligned rough visual conditions is con-
structed, based on which extensive experiments are conducted, showing that
our proposed method performs favorably against state-of-the-art methods.
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2 Related Work

2.1 Text-to-Image Diffusion Model

Diffusion models [10,/31] have achieved remarkable success in the field of text-
to-image (T2I) generation [3},[21}27,/28,130], capable of generating images with
high fidelity and diversity. T2I diffusion models redefine the image generation
task as an iterative denoising process guided on text embeddings produced by
language encoders such as CLIP [25] or T5-pretrained [26]. Some methods [3}27]
30] adopt low-resolution models in pixel domain, coupled with cascaded super-
resolution diffusion models. On the other hand, latent diffusion models [28,36]
focus exclusively on performing diffusion processes in the latent space, relying on
separately trained high-resolution autoencoders. Stable Diffusion [32] represents
a large-scale implementation of the latent diffusion model, which has been widely
adopted in various applications, such as controllable image generation [12}/16}20]
39|, customized image generation [8.29,(34], and image manipulation [6,(9,(19}22].

2.2 Controllable Text-to-Image Generation

Text-to-image diffusion models have achieved promising ability in generating
high-fidelity images based on text prompts. However, conveying the desired spa-
tial information solely through text prompts remains a significant challenge. To
address this, several approaches have been developed to achieve controllable text-
to-image generation by adding conditional control such as pose [5}/13], 2D bound-
ing boxes [23|, segmentation map [2,/14L35], and multiple conditions [12}20}/39]
like edge maps, depth maps, segmentation masks, normal maps, and OpenPose.
ControlNet [39] adds visual conditions to a pretrained text-to-image diffu-
sion model through the fine-tuning of trainable encoder copies. T2I-Adapter |20]
employs various adapters under different conditions to achieve controllable guid-
ance. Several works have built upon ControlNet |39] to introduce improvements,
including mixing modalities [11,24], efficient architecture [38|, and loose con-
trol [4]. Cocktail [11] allows for the combination of existing modalities and au-
tomatically balances the differences between them. UniControl |24] employs a
mixture of expert style adapter and a task-aware HyperNet to unify various
Condition-to-Image tasks in a single framework, thus compressing the model
size. ControlNet-XS [38] focuses on designing an efficient and effective architec-
ture without information transmission delays. LooseControl [4] presents a novel
approach to guiding image generation using 3D box depth conditions, employing
generalized guidance to enhance the creative possibilities available to users. How-
ever, this approach is overly permissive, focusing only on maintaining position
and size, while often neglecting the crucial aspect of pose Unlike previous meth-
ods, FreeControl |18] provides a training-free approach for multi-condition T2I
generation, enabling structural alignment with guidance images and appearance
alignment with images generated without control. In comparison to the afore-
mentioned controllable T2I method, our solution has the ability to handle the
rough conditions, thereby ensuring greater flexibility in the image generation.
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3 Methodology

3.1 Preliminary

SmartControl takes advantage of pre-trained generative methods, specifically
Stable Diffusion [32] and ControlNet [39]. For a clear and comprehensive ex-
planation, we provide a brief introduction to preliminary knowledge and some
symbol definitions.

Stable Diffusion [32] is a widely employed text-to-image generation method.
Given a text prompt p, Stable Diffusion gradually integrates p into the im-
age generation process via a text-conditioned cross-attention mechanism. For
controlling the layout of the generated images, alongside the pre-trained Stable
Diffusion [32], ControlNet [39] further introduces a visual condition ¢, which can
be in the form of edge maps, segmentation masks, and so on. Then the image
generation process can be defined by I = G(p,c), and the working scheme of
ControlNet [39] at layer i of the decoder D can be represented by,

ht' = Di(h' +h’ ), 0<i<N -1, (1)

cond

where h' is the feature in the i-th layer of the Stable Diffusion decoder, and
hicond is the feature generated from the visual condition c. In this way, the
visual condition is successfully introduced into the generation process, and the
images generated by ControlNet [39] are constrained to follow both p and c.

3.2 Problem Definition

Under the assumption of existing layout-controllable T2I generation methods |11}
12[20124,139|, p and ¢ are compatible with each other. However, in practice,
preparing a visual condition that precisely aligns with the text prompt and
user intentions is difficult or infeasible for ordinary users. Therefore, the visual
condition c is often obtained via cheaper ways, for example, extracting from an
existing image. We refer to such c as rough visual conditions (denoted by ¢,ougn)
since they are not precisely aligned with the text prompt and the users usually
intend to follow these conditions at a coarse scale.

Formally, given such a more practical pair of conditions (p, Crougn ), the most
intuitive principles should be (i) in the regions of C,oqg, that aligns with p, the
generation degrades to the setting of ControlNet [39], and we can safely follow
both conditions, and (ii) for regions that c,oue, and p conflict with each other,
we should follow the content of p, and adhere to cyoyg, as much as possible.
In summary, the extent that ¢,y and p conflict determines how much c¢yoygn
influences the generation result. Therefore, an intuitive way to achieve the goal
of this paper can be represented by rewriting Eq. as,

h'*' = D'(h* +a-h%,,,), 0<i<N -1, (2)

cond

where a € RF*W denotes a spatial control scale map, which is adaptive
to the conflict between c,ougn and p. Then, the core task of this work is to
design and train a control scale predictor f to predict such a control scale map

o = f(pa Crough; 0)
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Figure 2: Images generated with different control scale. The plausible images are high-
lighted in red boxes with different control scale. It is even infeasible to find a suitable
control scale for some cases.

3.3 Control Scale Exploration

For training the control scale predictor f and achieving the adaptive control scale
in Eq. , most challenging issue is the lack of supervision information for c.
In order to explore the rules of the control scale and design reasonable training
criteria for training f, we first degrade a to a scalar « that denotes the global
control scale for the whole image, and tune the value of « to show its influence.

As shown in Fig. 2] when given a pair of an unaligned text prompt p and a
rough visual condition ¢yoygn, ControlNet (i.e., when o = 1.0) strictly follows
the layout of crougn and fits the object mentioned in the text prompt p into the
shape described by ¢rougn. For example, a deer antler is added to the horse, and
two round ears appear on the head of Spider-Man. By gradually decreasing the
value of «, one can see that the generated images become better aligned with
the text prompt p, until the effect of c,4ygn disappears when o = 0.0.

Besides, we have also observed a large amount of samples, drawing the fol-
lowing conclusions. (i) For a portion of the (p, Crougn) pairs, a proper control
scale « can be found to generate a plausible 1mageﬁ (ii) Even if the optimal «
is not found, it seems promising to obtain a desired image by combining results
with different . For example, as shown in the third row of Fig. 2] we can get a
potential result by combining Spider-Man when « = 0.6 and background when
a = 0.4. (iii) For areas that c,o,gn conflicts with p, a large enough freedom
(i.e., small enough «) should be assigned to breaking free from the constraints
of ¢rougn- On the contrary, a sufficiently large o should be set in other areas to
ensure the effectiveness of c,yugn. Among these three observations, the second
item shows that the proposed method in Eq. is feasible, while the first and
third ones provide the possibility to construct the dataset and train the control

4 For the (P, Crough) pairs we delicately prepared in Sec. we can find a suitable «
for around 60%~70% of the samples.
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Figure 3: Framework of proposed SmartControl. Our method is built upon Control-
Net, and can generate photo-realistic images with inconsistent prompt and rough visual
condition (i.e., tiger v.s. deer) as input. To achieve this, we introduce a control scale
predictor f for each decoder block of ControlNet. The predictor takes h and h + h ona
as input and predicts a pixel-wise control scale map «. The condition feature hconqg
is then updated by a - heonq to relax the control scale at conflict region, resulting a
plausible and photo-realistic generated image.

scale predictor f. In the following, we will introduce the implementation of the
control scale predictor and show the pipeline to construct the dataset in detail.

3.4 Control Scale Predictor

Generative Prior Extraction. Among the above analysis, f needs to identify
visual concept of the object described in the text prompts and locate the incon-
sistency between it and visual conditions. This requires our predictor to have
the ability to fully comprehend the prompts and visual conditions, and such a
network typically requires a substantial dataset for training. To reduce the train-
ing requirements, we propose leveraging the superior capabilities of ControlNet
as a prior. Building upon Stable Diffusion , ControlNet can extract mean-
ingful features from prompts and visual conditions separately and utilize them
to generate desired images. Specifically, h 4+ h,,, integrates information about
the visual condition, while h encodes the information from the given prompt.
Therefore, instead of using p and c as inputs to the predictor, we utilize h and
h + h.,,q, which facilitates the easier identification of inconsistencies.

Network Architecture. The overall architecture of proposed SmartControl is
illustrated in Fig. |3} Within each decoder block D?, we incorporate a control
scale predictor f* to predict spatially adaptive control scales a. The control
scale predictor consists of three stacked modules (each containing a convolutional
layer and a ReLU layer) and a sigmoid function. The i-th predictor takes h® and
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h® +h? . as input and predicts a pixel-wise control scale map a’,
o' =f"(h",h*+h’ ), 0<i<N-1 (3)

As depicted in Fig. [3] the predicted a exhibits minimal values in the conflict
region (antlers and legs), while approaching 1.0 in other regions (background).
This indicates that the predicted « is plausible, and we can utilize « to generate
the desired image of a tiger.

Learning Objective. Following ControlNet 39|, we employ the mean-squared
loss to train our predictor,

Lrpm = EZO,t,p,Cmu,gh,GNN(O,l) [HG — €9 (Zt7 t,p, CTOUQh)) ||%]7 (4>

where €9 denotes our model and zg represents the latent embedding of real image.
€ denotes the unscaled noise and t denotes the time step of diffusion process. z;
is the latent noise at t step.

To provide explicit supervision for the control scale predictor f, we further
introduce a regularization term to ensure that the values of a should be main-
tained above o, in the background regions and below aconfict in the conflict
regions,

»Cc = Mconflict max(07 o — aconﬂict) + myg - max(07 Qpg — a)a (5)

where apy and aconfiict are hyper-parameters. meongic+ denotes the mask of
conflict areas, and my, is the mask of background.
The overall learning objective for training the SmartControl is defined by,

L= Lipm + AcLe, (6)

where ). is hyper-parameters for balancing different loss terms.

3.5 Unaligned Data Construction Pipeline

ControlNet [39] utilizes an image I as input and generates aligned conditions ¢
and text prompt p, which is not suitable to train our SmartControl. In this sec-
tion, we will introduce the workflow for constructing the unaligned text-condition
dataset as shown in Fig. [ Specifically, we first generate the unaligned visual
conditions and text. Then, the paired image is generated by ControlNet [39]
based on these unaligned texts and conditions.

Generating Unaligned Visual Conditions and Text Prompts. The orig-
inal image is from OpenImage [15] and contains an object occupying over 30%
of the image area. The visual condition is generated by a pre-existing condition
estimator. To create a plausible inconsistent text prompt for the given image
with class <cls;ni;>, we first employ the hierarchical class tree to determine
one alternative class <clsgy;;>, where <cls;n;;> and <clsy;;> share the same
parent class. Then, the inconsistent text prompt can be formatted as “a photo
of a <clsyy>.”. For example, as shown in Fig. [4] if the rough depth condition
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Figure 4: Pipeline for unaligned data construction. Given an image and corresponding
class, we extract the visual condition Crougn (€.g., depth) by the pre-trained estimator.
Then, for the given class (e.g., deer), we select an alternative unaligned class (e.g.,
tiger or horse) based on class hierarchy, and use it to obtain the unaligned prompt p.
By iterating through different control scale a of ControlNet , we can generate a
series of images for (Crough, P)- Then, we manually filter those images that are faithful
to both text and rough condition to construct our dataset. For example, for tiger, the
image generated with o = 0.4 is plausible and is added to our dataset. While for horse,
there is not a suitable image and all images are discarded.

Crough 1s from an image of a deer, the corresponding prompt p is “a photo of
a horse.”.

Generating Paired Images Based on ControlNet [39]. From the above
analysis, we iterate over different control scale «, i.e., o € {1.0,0.8,0.6,0.4,0.2,0.0},
to perform sampling based on ControlNet , followed by manual filtering. If
a proper control scale a can be found to generate a plausible image, we add
this data into our dataset. In cases where no proper « is found, the data is dis-
carded. It is worth noting that our iteration is limited within a dilation range of
the chosen object and the value of « is 1.0 in other areas. Besides, we also acquire
Monfice and my, for training. me,pac: denotes the areas of conflict between
Crough and p, i.e., different part between the mask of <cls;n;> and <clsqy >,
while my, represents the background region, defined as follows,

M onflict = ‘malt - minit|7 my, = 1- (malt \ minit), (7)

where m,;; and m;,;; are obtained based on the existing segmentation method
based on “a photo of a <cls,;>.” and “a photo of a <cls;uy>.".

4 Experiments

4.1 Experimental Details

Datasets. We collect training datasets across four types of conditions including
depth, HED, segmentation, and canny. The dataset sizes for each condition are
2,000, 1,500, 1,500, and 1,000 images respectively. For each condition type, we
collect an evaluation dataset of 100 images including 70 images with significant
conflicts, 20 images with mild conflicts, and 10 conflict-free images to assess the
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performance in handling diverse conditions. Our evaluation dataset includes 48
classes, and 12.5% of those classes do not appear in the training dataset, which
allows us to evaluate the generalization ability.

Evaluation Metrics. Following [33|, we use CLIP Score [25] metric to measure
text-image alignment and use the Self-similarity distance metric to measure the
structural similarity between two images in the feature space of the DINO-ViT
model [7]. A smaller Self-similarity distance implies that the generated image
closely preserves the structure of the original image, Moreover, we introduce a
metric named Class Confidence to assess whether the generated images align
with the desired class. A higher Class Confidence indicates that the generated
images closely match the desired class, not affected by the inherent class of the
rough conditions. To comprehensively evaluate structure preservation and image-
text alignment, we propose to utilize GPT-4V |[1] as a novel metric. Given two
images from different methods, we ask GPT-4V [1] to determine which of them
is better by examining through two aspects: first, whether the pose or layout
matches the reference image, and second, whether it aligns more accurately with
the given text. The specific prompt can be found in the supplementary material.
Implementation Details. In all our experiments, we train our control scale
predictor based on the pre-trained ControlNet [39], while keeping all parameters
of ControlNet [39] fixed. The model is trained with an AdamW [17] optimizer
with weight decay of 1 x 10~ for 200 epochs. The trade-off parameter . is
determined to be 0.01. Furthermore, acongict and o, are set at 0.2 and 0.8
respectively.

4.2 Comparison with Existing Methods

We choose the following state-of-the-art models in controllable image generation
as competing methods: ControlNet [39], T2I-Adapter [20] and Uni-ControlNet [24].
However, standard ControlNet [39] and T2I-Adapter |20] are not suitable for
rough conditions. For a fair comparison, we employed the small control scale
Qefiz, for both ControlNet [39] and T2I-Adapter |20]|. Here, af;, represents the
optimal but fixed control scale for the entire evaluation dataset. However, af;,
varies across different modalities. For example, we use a;, = 0.4 for the depth
conditions and o, = 0.6 for the segmentation conditions in ControlNet [39].
Quantitative Comparison. We conduct comprehensive experiments in four
types of conditions to assess the effectiveness of the proposed method, and the
quantitative results are shown in Tab. [[l We can observe that while Control-
Net (a=1.0) [39] and T2I-Adapter(ov = 1.0) [20] are stronger in maintaining
structure, they struggle to generate images aligned with textual prompts, re-
sulting in significantly lower CLIP Scores. ControlNet(a = af4y) [39] and T2I-
Adapter(a = ayiy) [20] show inferior performance as they exhibit limitations
in handling diverse text prompts and structural conditions. Our method in-
stead exhibits significant improvement in CLIP Scores compared to the previous
methods, indicating improved structural similarity and image-text alignment.
Note that We did not achieve a superior Self-similarity metric in the unpaired
evaluation dataset. However, a low Self-similarity metric may indicate that the
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Figure 5: Qualitative comparison with different modalities, image prompts and addi-
tional visual conditions. SmartControl achieves reasonable spatial control and superior

image-text alignment compared to existing methods, resulting in a closer match to
human intentions.

Table 1: Quantitative comparison for Controllable Text-to-Image Generation for rough
conditions on our evaluation dataset.The best results are highlighted with bold.

Method Depth Canny Seg HED

CLIPt CLASSt Sim] |CLIPT CLASS? Sim| |CLIPt CLASSt Sim| |[CLIPT CLASS?T Sim|
ControlNet(a=1.0) |39 0.257 0.602 0.100] 0.244 0.467 0.107| 0.258 0.666 0.115|0.264 0.647 0.123
T2I Adapter(a=1.0) 0.267 0.593 0.123|0.253 0.464 0.109| 0.251 0.492 0.138|0.261 0.621 0.106
UniContrtol &ﬂl 0.251  0.597 0.102|0.240 0.379 0.117] 0.261 0.668 0.116 | 0.227 0.336 0.082

ControlNet(a = ayir) [39] | 0.268 0.710 0.136] 0.270 0.736 0.149| 0.267 0.696 0.140 | 0.271  0.727 0.143
T2I Adapter(o = apie) |20]] 0.271  0.721  0.137|0.272 0.682 0.141] 0.263 0.668 0.143] 0.269 0.747 0.137
Ours 0.274 0.742 0.128]0.272 0.721 0.143]0.277 0.780 0.140]0.276 0.768 0.142

generated images overly adhere to the rough conditions, which does not always
equate to better performance for rough conditions. In the supplementary ma-
terial, we will provide a Self-similarity metric calculated with pseudo-ground
truths instead of the original images. Considering the significant effort for uti-
lizing GPT-4V as the metric, we select the commonly used condition, i.e.,
depth to compare our method with ControlNet(a = ;) . In the majority
of cases, specifically 67%, GPT-4V [1| ranked our result better.

Qualitative Comparison. The qualitative results of competing methods are
shown in Fig. [f} ControlNet (o = 1.0) [39], T2I-Adapter (o = 1.0) [20], and
UniControl, when constrained by rough conditions, generate images that are
unrealistic and misaligned with the text prompts. Meanwhile, ControlNet (o =
ayiz) [39] and T2I-Adapter (o = ayiz) [20] offer some improvement in specific
scenarios. However, due to the global and uniform « across all images, they
still encounter failure in numerous situations. In the example from the first row,
‘‘a cat is driving a car.”’, there is a conflict in car. Despite altering the
pose of cat, it is not possible to successfully transform from a bicycle to a car
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Figure 6: Visualization of generated samples with the IP-Adapterr . Note that we
do not need fine-tune our control scale predictor.

using ControlNet (a = ayi;) [39] and T2I-Adapter (o = aryz) [20]. Moreover,
in cases where it is necessary to remove regions (which require extremely small
values of «), such as in the fourth row example, all competing methods would
result in images retaining the deer antlers. As illustrated in Fig. |5 our proposed
SmartControl is capable of generating images that not only closely resemble real
images but also align more accurately with text prompts and useful information
in rough conditions, demonstrating its superior performance. More qualitative
results are given in the supplementary material.

User Study. We invite 20 users to participate in our user study to assess the
effectiveness of our methods. We utilize six different methods respectively and
generate 40 images for each method based on different types of visual conditions
and text prompts. Each user is requested to select the best image based on the
text-image alignment and structural similarity with visual conditions. In the
majority of cases, i.e., 78.3%, users prefer our method.

4.3 More Results

While originally designed for rough conditions, SmartControl demonstrates ro-
bust generalization capabilities, enabling it to effortlessly adapt to other models
without retraining. In this section, we showcase additional results through the
integration of our SmartControl with the IP-Adapter . The primary function
of IP-Adapter is to interpret image prompts to pre-trained text-to-image
diffusion models. Fig. [6] shows that the images generated by SmartControl are
not only more captivating but also more coherent with image prompt under the
rough conditions.

4.4 Ablation Study

Effect of Training Dataset Sizes. Even with a limited set of 0.5k images, our
training process remains stable, and as the dataset size increases, the realism of
the generated images improves (as shown in Fig. [7| and Tab. . Obviously, we
choose 2k images for our training dataset under the depth condition. Although
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Figure 7: Visualisation of ablation study
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implementation methods based on our dataset.
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Figure 9: Visual comparison for the different

Figure 10: Impact of L1,pm and L. contribute
granularity of control scale.

to the overall performance.

Table 2: Ablation study on the sizes of trainingTable 3: Effect of the proposed control scale
dataset under the depth condition. predictor for rough conditions.

Datasets CLIPT |CLASST| Sim| Method CLIPtT |CLASStT| Siml

N=500 0.273 | 0.740 | 0.134 Fine-tuning | 0.248 0.307 0.137
N=1000 0.274 | 0.724 | 0.130 Adapter 0.273 0.731 0.192
N=2000 0.274 | 0.742 | 0.128 Ours 0.274 0.742 0.128

Table 4: Effect of local control scale. Table 5: Ablation of the network architecture

for the control scale predictor.

Method CLIPT|CLASSt| Sim|
Fixed Scale i, | 0.268 | 0.710 |0.136 Method |CLIPT|CLASS?| Sim| | Time]
Global Scale agiop| 0.272 | 0.741 [0.122 Cross Atten| 0.272 | 0.734 |0.126| 7.69
Local Scale o [0.274| 0.742 |0.128 Conv(Ours)|0.274| 0.742 |0.128| 7.36

the dataset consists of only 2k images, we achieve commendable results across
the open domain. More analysis and visual results of generalization capability
are provided in the supplementary material.

Effect of Control Scale Predictor. As illustrated in Sec. we apply a
control scale predictor to adaptively adjust the control intensity based on various
conditions, and text prompts. In this subsection, we make detailed experiments
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to assess the effects of control scale predictor, e.g., the fine-tuning scheme, the
granularity of the control scale, and the network structure.

Fine tuning scheme. In order to assess the effect on the control scale predictor,
we experiment on several commonly used fine-tuning schemes, e.g., fine-tuning
the ControlNet branch, an adapter, and a control scale predictor. Fine-tuning
the ControlNet may suffer from the degradation of generation capability. This
is evident from a performance drop in CLIP Score and the poor quality of the
generated images. On the other hand, training an adapter on our dataset may
lead to overfitting, resulting in decreased structural alignment during testing as
shown in Fig. [§| As shown in Tab. (3| although CLIP Scores are comparable,
our method achieves a 33.3% improvement on Self-similarity metric over the
adapter, which demonstrates the effectiveness of the control scale predictor.

Granularity of control scale. In this subsection, we make detailed experiments
to assess the effect of different granularity of control scale, e.g., fixed scale agy,
global scale a4, and local scale map «. Using a fixed scale that is applied
uniformly across the entire evaluation dataset leads to a decrease in performance
and the generation of lower-quality images. We trained our model to predict the
global scale based on our dataset. However, the global scale is insufficient to
handle situations where the required control scale varies within a single image.
For example, in the second line in Fig.[0] the tail is not thoroughly removed, and
the base part is not preserved. In contrast, our method is designed to predict the
local control scale, which effectively addresses these issues. As shown in Tab. [4]
the performance is promoted with local control scale, which also demonstrates
the effectiveness of the local control scale.

Network architecture. We experiment with commonly used network architec-
tures, e.g., convolution, and cross-attention. The experimental results in Tab.
revealed that all of them yield better performance. We selected the convolution
to implement the control scale predictor in this paper as it is relatively faster.
Effects of Loss. We investigate the impact of Lypy and L. in Fig. The
model trained solely with L£rpy exhibits relatively poor performance and lacks
accuracy in constraining the layout. Training without L. leads to the reduction
of control even in non-conflicting areas, such as the background in the second
row. Additionally, it results in residual artifacts such as the tail of the rabbit.

5 Conclusion

In this paper, we introduce a SmartControl, a flexible controllable image gener-
ation under rough visual conditions. Unlike existing approaches, SmartControl
adaptively handles situations where there are inconsistencies between visual con-
ditions and text prompts. We introduce the control scale predictor, capable of
identifying displacement regions between visual conditions and prompts and pre-
dicting local adaptive control strengths based on the displaces. For training and
evaluation, we construct a dataset with unaligned text prompts and visual condi-
tions. Extensive experiments demonstrate that our SmartControl achieves better
performance against the state-of-the-art methods under rough visual conditions.
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