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Abstract. This paper addresses the challenge of 3D instance segmen-
tation by simultaneously leveraging 3D geometric and multi-view image
information. Many previous works have applied deep learning techniques
to 3D point clouds for instance segmentation. However, these methods of-
ten failed to generalize to various types of scenes due to the scarcity and
low-diversity of labeled 3D point cloud data. Some recent works have
attempted to lift 2D instance segmentations to 3D within a bottom-
up framework. The inconsistency in 2D instance segmentations among
views can substantially degrade the performance of 3D segmentation.
In this work, we introduce a novel 3D-to-2D query framework to ef-
fectively exploit 2D segmentation models for 3D instance segmentation.
Specifically, we pre-segment the scene into several superpoints in 3D, and
formulate the task into a graph cut problem. The superpoint graph is
constructed based on 2D segmentation models, enabling great segmen-
tation performance on various types of scenes. We employ a GNN to
further improve the robustness, which can be trained using pseudo 3D
labels generated from 2D segmentation models. Experimental results on
the ScanNet200, ScanNet++ and KITTI-360 datasets demonstrate that
our method achieves state-of-the-art segmentation performance. Code
will be made publicly available for reproducibility.

Keywords: 3D Instance Segmentation · 3D Scene Understanding · Graph
Neural Network

1 Introduction

Instance segmentation of 3D scenes is a cornerstone of many applications, such as
augmented and virtual reality, robot navigation, and autonomous driving. One
typical pipeline for 3D scene segmentation is using deep neural networks [29,
37,38,52] to process the point cloud of the target scene to predict segmentation
results. These methods [11,12,19,23,28,46,54,56,62] generally require annotated
point clouds for training. However, annotating point clouds is costly, and thus
there is a lack of datasets with the large scale and diversity similar to 2D image
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Fig. 1: Thanks to the inductive bias introduced by SAM-annotated superpoint graph,
our method achieves good segmentation performance and generalization capabilities.
After training solely on ScanNet200, our model can effectively generalize to data col-
lected with different devices (ScanNet++) and even to entirely different types of scenes
(KITTI-360).

datasets. As a result, these methods are often limited to specific types of scenes
and struggle to generalize to in-the-wild scenes.

Compared to point clouds, the acquisition and annotation of images are much
less costly. In recent years, with the emergence of large-scale labeled 2D datasets
and improvement in model architecture and capacity, state-of-the-art 2D in-
stance segmentation models [4,24,25,39] with strong generalization capabilities
have been developed. Consequently, a natural approach of 3D segmentation is to
lift multi-view 2D segmentations to 3D, leveraging them to achieve segmentation
in arbitrary 3D scenes.

Recently, some 2D-to-3D lifting methods [1, 26, 48, 57, 58, 61, 63] have used a
bottom-up framework, which first runs 2D segmentation on each view to obtain
several masks, and then attempts to establish correspondences among masks
across different views. These masks are then merged in 3D to obtain the 3D
segmentation results. However, such a bottom-up approach has a significant
issue: 2D segmentation masks from different views may be inconsistent. For
example, some instances may be segmented in some views but missing in others,
thus severely degrading the performance of 3D segmentation.

In this paper, we propose a novel 3D segmentation approach based on a
3D-to-2D query framework, which effectively utilizes 2D segmentation models.
Unlike previous methods that generate multiple masks from multi-view images
first, our approach begins with a pre-segmentation of the 3D scene into several
superpoints. Then, we construct a superpoint graph of the target scene and
transform the problem into graph cut. The edge weights of the graph are obtained
by projecting graph nodes onto multiple views, using the prompt mechanism
of SAM [25] to predict multi-view masks, and calculating the intersection of
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corresponding masks. The node features are obtained by aggregating multi-view
image features. Finally, we use a graph neural network to refine the edge affinity
for the graph partition [50]. The SAM-based graph enables great segmentation
performance on various types of scenes. In addition, we develop a scheme to
generate pseudo 3D labels from a 2D segmentation network and design a training
strategy to effectively leverages these pseudo labels, allowing us to train our
model without any manual 3D annotations.

We conduct experiments on the ScanNet200, ScanNet++ and KITTI-360
datasets. The experimental results indicate that, with the guidance of SAM in
the construction of the graph, our method achieves good segmentation results
on various types of scenes. Moreover, the GNN module in our method has good
generalization capabilities, which is able to generalize well to other datasets with
significant differences after trained on one dataset with pseudo-labels.

In summary, our contributions are as follows:

– We propose a novel 3D-to-2D-query framework that leverages SAM to con-
struct node features and edge weights of the superpoint graph, enabling great
segmentation performance on various types of scenes.

– We employ GNN to improve the robustness and develop a scheme to generate
pseudo 3D labels from a 2D segmentation network, enabling our model to
be trained without any manual 3D annotations.

– We demonstrate state-of-the-art performance on ScanNet200 [43], ScanNet++
[64] and KITTI-360 [30] datasets.

2 Related work

3D scene segmentation. The goal of 3D scene segmentation is to group the
scene point cloud into semantically meaningful regions or distinct objects. Pre-
vious works leverage large-scale 3D labeled datasets to accomplish this objective
in a supervised manner. They first train a neural network to extract per-point
features, and then assign one predicted label to each point based on the ex-
tracted features. [16,21,29,32,38,51,52,55,59] achieve semantic segmentation on
point cloud, and [11,12,19,23,28,54,56,62] further distinguish between different
objects with the same semantics, thus getting 3D instance segmentation results.
Recently, Mask3D [46] leverage Transformer [53] to construct the segmentation
network, attaining superior instance segmentation quality on 3D point clouds.
3D-SIS [20] performs 3D instance segmentation on RGB-D scan data, fusing
image features extracted from 2D convolution networks with 3D scan geometry
features, allowing accurate inference for object bounding boxes, class labels, and
instance masks.

Some works exploit 2D large vision-language models to achieve open-vocabulary
segmentation in 3D space. OpenScene [36] back-project per-pixel image features
extracted by large vision language models from multi-view posed images to form
a feature point cloud endowed with open-vocabularity abilities for various down-
stream scene understanding tasks. PLA [10] constructs multi-scale 3D-text pairs
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and uses contrastive learning to enable the model to learn language-aware em-
beddings for 3D semantic and instance segmentation.

Partitioning 3D point cloud into a collection of small, geometrically homo-
geneous regions, coined superpoints, can yield a decent rough prediction and
effectively simplify the process of scene segmentation. [49] and [22] propose to
represent each 3D scene by constructing a superpoint graph, where superpoints
serve as graph nodes, and then based on this graph, 3D instance segmenta-
tion is performed by learning inter-superpoint affinity and clustering superpoint
nodes into 3D objects. [41] propose an efficient semantic segmentation for large-
scale scenes by partitioning point clouds into a hierarchical superpoint structure,
and [42] further extend it for panoptic segmentation by scalable graph clustering.
2D-to-3D lifting. Due to the lower cost of acquiring and annotating 2D im-
ages, the scale and diversity of 2D annotated datasets [5, 9, 13, 18, 27, 31], are
much larger compared to 3D datasets, facilitating the emergence of many highly
effective 2D segmentation methods [4, 24, 25, 39] in recent years, making the
use of 2D segmentation for 3D tasks a new and promising approach. Semantic-
NeRF [67], based on the NeRF framework, utilizes outputs from a 2D semantic
segmentation network at each view to train a 3D semantic field. Since it can fuse
information from multiple viewpoints, this method is robust to inaccuracies and
noise in individual view segmentations, yielding better 3D semantic segmenta-
tion results. However, extending this approach directly to instance segmentation
is challenging, which is more complex since instance IDs in multi-view image seg-
mentation results could inconsistent, making it necessary to design an effective
label matching mechanisms in order to lift multi-view 2D instance segmentation
results to 3D space.

To address this issue, [48] solves a linear assignment for instance identifiers
across views with machine generated semantic and instance labels as supervi-
sion, [1] proposes a scalable slow-fast clustering objective function to fuse 2D
predictions into a unified 3D scene segmentation results represented with a neu-
ral field. SAD [2] uses SAM to segment both images and depth maps, combining
the advantages of both for improved results. SAM3D [63] proposes a method
for point cloud fusion. It segments each frame and gradually merges the seg-
mentation results of all frames together. For scenes with known geometry, it can
achieve segmentation very efficiently. SAI3D [65] partitions a 3D scene into geo-
metric primitives, which are then progressively merged into 3D instance segmen-
tations that are consistent with the multi-view SAM masks. MaskClustering [60]
proposes a novel metric called view consensus to better exploit multi-view ob-
servation for 3D instance segmentation. Some works integrate SAM [25] into the
Neural Radiance Fields (NeRF) [33] framework for 3D segmentation. For ex-
ample, [3] merges SAM features into Instant NGP [34] in 3D, allowing users to
segment an object from 3D space through multiple clicks. OR-NeRF [66] enables
users to segment an object by clicking and then remove it from the scene.

Additionally, some methods combine segmentation and reconstruction, en-
abling separate reconstruction of each object. [61] propose to decompose a scene
by learning an object-compositional neural radiance field, with each standalone
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Fig. 2: Overview of our pipeline. Our proposed 3D instance segmentation pipeline
consists of three main parts. 1. We over-segment the input mesh / point cloud into
superpoints and construct the structure of the superpoint graph based on adjacency
(Sec. 3.1). 2. We utilize the prompt mechanism of SAM [25] to annotate the nodes and
edges of the graph (Sec. 3.2). The node features are aggregated from multi-view SAM
backbone features corresponding to each superpoint. The edge weights are calculated
based on the intersection ratio between the multi-view SAM masks corresponding to
each pair of superpoints that constitute an edge. 3. We use a graph neural network
to further process the SAM-annotated graph and perform graph cut based on the
calculated edge affinity scores to obtain the instance segmentation results (Sec. 3.3).

object separated from the scene and encoded with a learnable object activation
codes, allowing more flexible downstream applications. To cope with the ambigu-
ity of conventional volume rendering pipelines, [57,58] further utilizes the Signed
Distance Function (SDF) representation to exert explicit surface constraint. [26]
represents each object in the scene with a small MLP and builds an object-level
dense SLAM that detects objects on-the-fly and dynamically adds them to its
map.

3 Method

Given 3D geometry and calibrated multi-view images of a scene, our goal is to
obtain its 3D instance segmentation. In this paper, we propose a novel segmen-
tation framework, as illustrated in Fig. 2. We first perform over-segmentation on
the 3D geometry to generate a set of superpoints, reformulating the task into a
graph cut problem (Sec. 3.1). Then, Sec. 3.2 describes how to leverage SAM to
construct node features and edge weights of the superpoint graph. In Sec. 3.3,
we introduce a graph neural network for 3D segmentation, which is trained with
pseudo labels generated by 2D segmentation predictions.
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3.1 Building the superpoint graph

In an indoor or outdoor scene, not only can we easily acquire multi-view images,
but we can also obtain the scene’s geometry (either in point clouds or mesh
form) through depth cameras/laser scanners (for indoor scenes) or LiDAR (for
large-scale outdoor scenes). With the geometry of the scene available, we can
proceed to pre-segment the scene based on traditional methods to obtain a set of
superpoints. For mesh, we apply the method in [6], which calculates the similarity
between mesh vertices based on their normal directions and then conducts the
graph cut algorithm [14]. For point clouds, we employ the method in [17], which
first computes a local geometric feature vector (dimensionality and verticality)
for each point, then performs Potts energy segmentation [8].

We can formulate the scene’s instance segmentation task as a graph cut
problem by employing superpoints. Specifically, we first represent the scene as
a graph G = (V,E), where V denotes the set of superpoints in the scene and E
denotes the adjacency relationships between these superpoints. Two superpoints
are considered as adjacent if their distance is within a predefined threshold.
By employing superpoints, we can simplify the segmentation task in two ways.
Firstly, the number of superpoints is substantially lower than the number of
points in the original point cloud. Secondly, superpoints serve as a 3D proxy, en-
abling us to utilize multi-view image information and SAM’s prompt mechanism
to determine the connection between regions in 3D space.

3.2 Constructing edge weights and node features

To accomplish segmentation of the 3D scene, our primary task is to determine
whether two superpoints on each edge should be merged. To this end, we leverage
multi-view image information and employ SAM to annotate the graph so that
we can apply graph cut for segmentation. Specifically, we utilize the prompt
mechanism of SAM to annotate the edges and use SAM encoder features to
annotate the nodes.
Prompt mechanism of SAM. Unlike previous 2D instance segmentation
methods that take an image as input and output its segmentation map, SAM
(Segment Anything Model) [25] operates by taking an image and a prompt
as inputs and producing corresponding segmentation result. A typical prompt
could be one or several 2D points. The image and the prompt are fed into an
image encoder and a prompt encoder separately. Subsequently, a transformer-
based decoder computes the cross-attention between prompt features and image
features to generate the mask. Specifically, SAM can output multiple valid masks
with associated confidence scores. In our experiments, we tend to prefer masks
with a larger area because they are more likely to represent an entire object. We
only resort to selecting masks with a relatively smaller area when the confidence
of the larger mask is low (please refer to the supplementary materials for detailed
implementation).
Edge weights. The prompt mechanism of SAM introduces flexibility to cal-
culate the edge weights between two 3D superpoints. Part 2.2 of Fig. 2 presents
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Fig. 3: Relationship of coefficient and 2D superpoints distance. For two su-
perpoints, their distance in 2D images will be farther under near and frontal views
than faraway or collinear views. We assume that SAM achieves better performance on
near and frontal views. Thus, we consider the 2D distance as a factor in calculating
the coefficient of each view.

an illustration of computing the weight. Specifically, we first select a view where
both superpoints are visible (if such a view does not exist, we regard the weight
to be zero). Then, the two superpoints are projected onto the image space and k
points are uniformly sampled in each projection to serve as prompts for running
SAM, thereby obtaining a mask for each superpoint. For masks corresponding
to the two superpoints, we examine their intersection situation. Specifically, if
two superpoints of an edge correspond to masks A and B, then we calculate the
edge weight as w = max(A

T
B

A , A
T

B
B ), where A

T
B denotes the intersection of

A and B.
Taking into account that two superpoints may be co-visible in multiple

views, we calculate edge weights estimation across all these views and take their
weighted average: w =

P
i ciwi, where wi is the edge weight estimation of view

i and ci is the corresponding coefficient. ci is computed based on the following
two factors: first, we consider the confidence of the two masks predicted by the
SAM network; then, we consider the distance between the projections of the
two superpoints in that view, as illustrated in Fig. 3. Specifically, for a view,
we obtain its score by multiplying the 2D distance of two superpoints with the
confidence of two corresponding masks. Then, we perform L1 normalization to
multi-view scores to obtain coefficient ci for each view.
Node features. In addition to edge weights, we also annotate node features
with SAM. Specifically, for each node in the graph model, we identify all views
that observe the corresponding superpoint. Within the projection range of that
superpoint in each view, we randomly sample several points, interpolate to obtain
features extracted by the SAM encoder and average the features obtained from
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all views to represent the attributes of the node. Part 2.1 of Fig. 2 presents an
example of obtaining node features.

3.3 Deep graph cut

We first propose a simple segmentation method that is not based on neural
networks. Specifically, based on the superpoint graph constructed in Sec. 3.1 and
the edge weights of the graph calculated in Sec. 3.2, we use the edge weights to
determine whether two superpoints are connected, then employ a method based
on the union-find algorithm [50] to merge all connected superpoints, thereby
achieving 3D segmentation of the scene.

To improve the robustness of segmentation, we feed the graph model into
a graph neural network (GNN) before segmentation. The GNN has a certain
receptive field and can utilize the information of the surrounding nodes and edges
and can predict edge affinity scores which can be more reliable than original
edge weights. To process the input graph, we design a GNN that consists of
graph convolutional layers and fully connected layers. The graph model is first
passed through graph convolutional layers to extract features for each vertex.
Then, we concatenate features of two vertices with the corresponding edge weight
computed in Sec. 3.2, which are fed into fully connected layers to predict the
affinity between two vertices. After that, we apply the same segmentation method
based on the predicted affinity scores.
Pseudo labels generation. We propose a strategy for training the GNN
without 3D ground truth annotation. To supervise the network, we first gen-
erate pseudo labels based on a 2D segmentation model. For pseudo-labels, the
most ideal case would be to obtain the correct affinity for all edges, but this is
unrealistic. In fact, while we require a high degree of accuracy for pseudo-labels,
the completeness of these labels is a lesser priority. For this purpose, we use a
2D segmentation network, CropFormer [39], for this task. We first ran Crop-
Former on all views to obtain the instance segmentation results. For each pair
of co-visible superpoints in every view, we record whether these superpoints are
within the same mask. If they are co-visible in at least n views and their records
are consistent across all these n views, then we treat the pair as a pseudo-label.
For example, if two superpoints are within the same mask in all co-visible views,
they are treated as a positive sample in the pseudo-labels, vice versa.

The reason for choosing CropFormer is based on our empirical observation
that it tends to yield relatively more complete and accurate masks for com-
mon object categories. For example, CropFormer consistently segments a chair
entirely, whereas SAM sometimes segments parts of it, such as a single chair
leg. Although CropFormer has its advantages, we opt for SAM in the previ-
ous graph construction stage due to the following considerations: SAM’s unique
prompt mechanism can use superpoints to control the granularity of segmenta-
tion to some extent. Moreover, SAM’s design, which allows for predicting mul-
tiple masks from a single prompt, makes it more adept at handling uncommon
objects. Consequently, we chose SAM for constructing the entire graph, while
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using CropFormer to generate relatively incomplete but high-quality pseudo-
labels.
Training of the GNN. We employ pseudo-labels generated by CropFormer
as supervision. For the edges included in these pseudo-labels, we compare the
affinity scores of these edges predicted by GNN with the labels to calculate
binary cross-entropy loss, which is defined as

LBCE = sps log(s) + (1� sps) log(1� s), (1)

where s is the predicted affinity score and sps is the pseudo-label of corresponding
edge. Since pseudo-labels are sparse, we observed that direct training in this
manner tends to limit the network’s capabilities. To improve the accuracy of the
graph network’s predictions, we introduce an additional regularization for edges
not included in the pseudo-labels during training. This regularization aims to
ensure the predicted affinity score s, and the corresponding edge weight predicted
by SAM, wSAM, to be as consistent as possible. This loss is defined as

Lreg = |wSAM � 0.5|L1(s, wSAM). (2)

With this design, the closer wSAM is to 0 or 1, the greater the penalty for
inconsistency between s and wSAM. The final loss is defined as L = LBCE+Lreg.

4 Implementation details

Graph construction. When sampling points within the projection of a super-
point as prompts for SAM, we uniformly sample k = 5 points within the pro-
jected mask. Considering that there might be slight inaccuracies in the camera
poses, the points too close to the boundaries of projection masks could poten-
tially fall outside the object. Therefore, we take care to avoid sampling these
points during this process.
Training of GNN. We implement the GNN with PyTorch [35] and PyG
[15]. When generating pseudo labels with CropFormer, we only consider the
superpoint pairs that are co-visible in at least n = 10 views with all consistent
records. We train the GNN on ScanNet200 with pseudo-labels for 200 epochs,
which takes about 20 minutes on an NVIDIA A6000 GPU.

5 Experiments

5.1 Datasets, metrics and baselines

Datasets. We perform the experiments on ScanNet200 [43], ScanNet++ [64]
and KITTI-360 [30]. ScanNet200 is built on ScanNet [6], which is a large-scale
RGB-D dataset that contains 1613 indoor scenes with geometry acquired by
BundleFusion [7] and images captured by iPad Air2. ScanNet++ contains 280
indoor scenes with high-fidelity geometry acquired by the Faro Focus Premium
laser scanner as well as high-resolution RGB images captured by iPhone 13 Pro
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Fig. 4: 3D segmentation results on ScanNet200, ScanNet++ and KITTI-360

datasets. Please zoom in for details. Compared to Mask3D, our method exhibits sig-
nificantly better generalization on ScanNet++ and KITTI-360 datasets. Moreover, in
comparison to SAM3D, our approach can segment objects in the scene more completely
and accurately. We observed that Panoptic Lifting struggles to extract satisfactory ge-
ometry, so we leave the qualitative comparison with it to the supplementary material.

and a DSLR camera with a fisheye lens. KITTI-360 is a large outdoor dataset
with 300 suburban scenes, which consists of 320k images and 100k laser scans
obtained through a mobile platform in a driving distance of 73.7 km. All of
these datasets are annotated with ground truth camera poses and instance-level
semantic segmentations. The GNN in our method is trained on 1201 training
scenes of ScanNet200 with our generated pseudo-labels, we then evaluate our
method on 312 validation scenes of ScanNet200, 50 of ScanNet++ and 61 scenes
of KITTI-360, according to the official split of each dataset.
Metrics. We evaluate our segmentation performance with the widely-used
Average Precision (AP) score. We follow the standard defined in [6, 40, 43] for
evaluation, calculating AP with thresholds of 50% and 25% (denoted as AP50

and AP25, respectively) as well as AP averaged with IoU thresholds from 50% to
95% with a step size of 5% (mAP). Since our method as well as most of baseline
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Table 1: Quantitative results of 3D segmentation on ScanNet200, Scan-

Net++ and KITTI-360 datasets. We report the AP scores averaged on all test
scenes. Our method significantly outperforms the baseline methods on all datasets.

ScanNet200 ScanNet++ KITTI-360

mAP AP50 AP25 mAP AP50 AP25 mAP AP50 AP25

Felzenswalb 4.8 9.8 27.5 8.8 16.9 36.1 - - -
Guinard 2.9 8.2 33.1 4.3 10.6 32.3 9.3 18.9 39.6
SAM3D (w/o ensemble) 12.1 28.6 54.1 3.0 7.9 22.3 4.6 10.6 26.0
SAM3D (w/ ensemble) 20.9 34.8 51.4 9.3 16.6 29.5 13.0 24.2 41.1
Ours + NCuts 15.7 31.7 59.0 10.1 18.6 34.7 19.5 30.2 45.0
Ours + DBSCAN 10.3 18.6 27.8 10.5 17.2 25.0 20.5 31.4 42.1
Ours (w/o GNN) 19.7 37.7 61.6 13.7 25.2 43.0 22.6 36.2 48.5
Ours (w/ GNN) 22.1 41.7 62.8 15.3 27.2 44.3 23.8 37.2 49.1

methods are class-agnostic, we do not consider semantic class label in evaluation,
which follows the setting of [44]. Additionally, we exclude the predicted instances
in unannotated regions for all methods to facilitate a fairer comparison.
Baselines. We compare our method with the following baselines: (1) Tradi-
tional segmentation methods: [14, 17], which only use geometric information to
perform segmentation. (2) 2D-to-3D lifting method: SAM3D [63] and Panoptic
Lifting [48]. We report the results of SAM3D with and without the ensemble
process. Since Panoptic Lifting is based on NeRF [33] and requires hours for
per-scene optimization, we only report corresponding qualitative analyses. (3)
Point cloud segmentation method: Mask3D [46], we use their official pretrained
models. (4) We segment our SAM annotated graph (without GNN) with tradi-
tional spectral clustering methods: Normalized Cuts [47] and DBSCAN [45], as
well as the graph cut used in our method.

5.2 Comparisons with the state-of-the-art methods

We evaluate 3D segmentation metrics on ScanNet200, ScanNet++ and KITTI-
360 datasets. Averaged quantitative results are shown in Tab. 1. We also provide
qualitative results in Fig. 4. By analyzing quantitative and qualitative results, we
found that our method significantly outperforms state-of-the-art unsupervised
methods.

Panoptic Lifting can achieve reasonably good segmentation results in simpler
scenes, but its performance deteriorates in more complex environments with a
large number of objects. SAM3D can handle complex scenes, however, its seg-
mentation often results in both large structures, like floors, and smaller objects,
like chairs, being divided into multiple segments. In contrast, our method is able
to produce more accurate and complete segmentation results. In the experiments
of our method combined with Normalized Cuts and DBSCAN, we found that
carefully tuning hyperparameters can yield relatively good result for a single
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Table 2: Comparison with Mask3D. While Mask3D shows better performance
than ours on ScanNet200, it cannot generalize well to ScanNet++ and KITTI-360.

Training Data mAP AP50 AP25

ScanNet200

Mask3D GT of ScanNet200 53.3 71.9 81.6

Mask3D GT of ScanNetV2 45.1 62.6 70.5
Ours (w/o GNN) - 19.7 37.7 61.6
Ours (w/ GNN) Pseudo-GT of ScanNet200 22.1 41.7 62.8

ScanNet++

Mask3D GT of ScanNet200 4.6 10.5 22.9
Mask3D GT of ScanNetV2 3.7 7.9 15.6
Ours (w/o GNN) - 13.7 25.2 43.0
Ours (w/ GNN) Pseudo-GT of ScanNet200 15.3 27.2 44.3

KITTI-360

Mask3D GT of ScanNet200 0.2 0.9 7.0
Mask3D GT of ScanNetV2 0.3 1.0 8.0
Ours (w/o GNN) - 22.6 36.2 48.5
Ours (w/ GNN) Pseudo-GT of ScanNet200 23.8 37.2 49.1

scene. However, each scene varies significantly in scale and the number of ob-
jects, leading to considerable differences in the optimal hyperparameters. When
we apply uniform hyperparameters across all dataset, the averaged metrics are
not ideal.
Comparisons with supervised method. In addition to unsupervised base-
lines, we also compare our method with Mask3D, which is the state-of-the-art
supervised learning method. We evaluate the class-agnostic AP scores, and the
results are shown in Tab. 2. When evaluation, we use their official pretrained
models. Specifically, we first evaluate their model trained on the ScanNet200
training set, which shows very good results on the ScanNet200 validation set.
However, when applied to the ScanNet++ dataset, there is a significant perfor-
mance drop. This is because ScanNet++, although also indoor scene data, has a
different data collection method from ScanNet200, indicating that the Mask3D
method is quite sensitive to differences in aspects such as the point cloud collec-
tion method. When applied to KITTI-360, the performance becomes extremely
poor, as KITTI-360 is an outdoor scene, which is quite different from ScanNet200
so that Mask3D cannot generalize well. Then we evaluate Mask3D model trained
on the ScanNetV2 training set. Compared to ScanNet200, ScanNetV2 lacks an-
notations for some categories of objects, resulting in decreased performance on
the ScanNet200 validation set. This indicates that Mask3D has limited ability to
generalize to different categories of objects even in the same type of scenes, and
it also suffers significant performance declines on ScanNet++ and KITTI-360.

In contrast, our method (without GNN) achieves good results on all three
datasets without any training, although our method performs worse on Scan-
Net200 than Mask3D, which is because Mask3D is trained with GT annotations
provided by ScanNet200, allowing it to learn strong priors of this dataset. Our
method shows a clear advantage on the ScanNet++ and KITTI-360 datasets.
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Table 3: Ablation studies of graph cut implementation.

mAP AP50 AP25

w/o GNN 19.7 37.7 61.6
w/o node features 19.4 37.5 61.3
w/o edge weights 10.1 21.5 42.2
w/o regularization loss 19.9 38.1 61.4
our full method 22.1 41.7 62.8

Table 4: Ablation studies of k.

k mAP AP50 AP25

1 20.3 37.7 60.7
3 21.2 38.8 61.2
5 22.1 41.7 62.8

7 22.0 40.1 62.1
9 21.9 39.9 62.3

Table 5: Ablation studies of n.

n mAP AP50 AP25

1 20.3 38.7 61.2
5 21.7 40.9 63.6

10 22.1 41.7 62.8
20 20.4 39.1 62.6
30 20.2 39.3 61.9

After using the GNN trained with pseudo-labels on ScanNet200, our method not
only improves on the ScanNet200 validation set but also shows improvement on
ScanNet++ and KITTI-360. This indicates that the GNN module in our method
helps with segmentation and learns general prior for segmentation agnostic to
the training dataset, thus has good generalization capabilities to data with large
differences.

5.3 Ablation studies

To analyze the effectiveness of each module and design in our method, as well
as the impact of hyper-parameters on performance, we conduct ablation studies
on ScanNet200.
Ablation studies of graph cut implementation. We evaluate with five
configurations: (1) Apply graph cut directly on edge weights of the SAM anno-
tated graph (without GNN refinement). (2) Annotate the graph without node
features. (3) Annotate the graph without edge weights. (4) Train GNN without
regularization loss. (5) Our full method. We report the quantitative results in
Tab. 3. The results indicate that the absence of a GNN leads to a decline in
segmentation performance. Node features have a certain impact on the predic-
tive performance of the GNN, while edge weights have a very significant impact,
almost playing a dominant role. Additionally, we found that regularization loss
is also important.
Ablation studies of number of prompt points. We conduct ablation studies
on the number of prompt points k sampled in each superpoint projection, the
results are shown in Tab. 4. In our experiment, we chose k = 5, and the ablation
results suggest that our method is not very sensitive to the value of k, but
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Table 6: Analyses of the choice for pseudo-labels generation.

Accuracy Precision Recall F1-Score

SAM 0.892 0.934 0.888 0.911
CropFormer 0.912 0.934 0.923 0.929

it is affected to some extent. The results are relatively poor when k = 1, as
sampling only one point within a projection mask leads to significant information
loss, especially when the projection mask area is large. When k is larger, the
performance slightly deteriorates, which may be due to SAM not being suitable
for accepting too many points as a prompt.
Ablation studies of minimum number of co-visible views. We conduct
ablation studies on the minimum number of co-visible views n required for gen-
erating pseudo labels, the results are shown in Tab. 5. In our experiment, we
chose n = 10, and the ablation results indicate that our method is robust to the
choice of n, but our performance is relatively poorer when n is either too small or
too large. This is because when n is small, a large number of unreliable pseudo-
labels are generated. When n is large, although the quality of the pseudo-labels
is high, they become very sparse. In both cases, this leads to suboptimal results.
Ablation studies of pseudo-label generation. Furthermore, we conduct
experiments to analyze the advantages of using CropFormer to generate pseudo-
labels compared to SAM. For the labels generated by CropFormer, we also use
SAM to predict a label. The accuracy scores of both methods are evaluated
using the ground truth annotations provided by ScanNet200. As indicated in
the Tab. 6, CropFormer achieves higher accuracy.

6 Conclusion

In this paper, we introduced a novel 3D segmentation method with SAM guided
graph cut. The key idea is to pre-segment 3D scenes into superpoints, and then
utilize the prompt mechanism of SAM to assess the affinity scores between su-
perpoints. We propose a GNN based graph cut method to achieve robust seg-
mentation, which is trained with pseudo-labels generated by a 2D segmentation
network. Experiments showed that the proposed method is able to achieve ac-
curate segmentation results and can generalize well to different datasets.
Discussion. Our method not only requires geometric data (mesh/point cloud)
but also needs multi-view images as input, which to some extent limits its appli-
cation scenarios. Moreover, we perform segmentation based on merging super-
points. When an object is part of a superpoint, we are unable to segment it out.
This situation occurs occasionally, for example, a poster adhered to a wall. To
address this, a more sophisticated pre-segmentation model, which consider not
only geometric information but also semantics, should be designed. One viable
approach is to also use the guidance from SAM or other visual models during
the pre-segmentation stage. We leave it to future works.
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