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Abstract. Under-display camera (UDC) image restoration aims to re-
store images distorted by the OLED display panel covering the frontal
camera on a smartphone. Previous deep learning-based UDC restoration
methods focused on restoring the image within the RGB domain with
the collection of real or synthetic RGB datasets. However, UDC im-
ages in these datasets exhibit domain differences from real commercial
smartphone UDC images while inherently constraining the problem and
solution within the RGB domain. To address this issue, we collect well-
aligned sensor-level real UDC images using panels from two commercial
smartphones equipped with UDC. We also propose a new UDC restora-
tion method to exploit the disparities between degradations caused by
different panels, considering that UDC degradations are specific to the
type of OLED panel. For this purpose, we train an encoder with an
unsupervised learning scheme using triplet loss that aims to extract the
inherent degradations caused by different panels from degraded UDC im-
ages as implicit representations. The learned panel-specific degradation
representations are then provided as priors to our restoration network
based on an efficient Transformer network. Extensive experiments show
that our proposed method achieves state-of-the-art performance on our
real raw image dataset and generalizes well to previous datasets. Our
dataset and code is available at https://github.com/OBAKSA/DREUDC.

Keywords: Under-Display Camera · Image Restoration · Representa-
tion Learning

1 Introduction

To hide the camera hole in the frontal side of smartphones, under-display camera
(UDC) systems have been developed, enabled by recent advancements in imaging
and display panel technologies. With the UDC technology, smartphone users can
enjoy a full-screen display without any camera holes or notches on the front side
of their device. However, since the camera is hidden under the panel, the light
that reaches the camera is altered by the complex layers of the panel, causing

https://github.com/OBAKSA/DREUDC
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Table 1: Comparison of previous datasets [9, 10,30,38] and our commercial dataset.

Dataset Zhou et al. [38] Feng et al. [10] Feng et al. [9] Song et al. [30] Ours
Format RGB RGB RGB RGB RGB/RAW

UDC Modeling Real (prototype) Synthetic Real Synthetic Real
Aligned GT ✓ ✓ ✗ ✓ ✓

Multiple Display ✓ ✗ ✗ ✗ ✓

(a) Feng et al. [9], GT (b) Feng et al. [9], UDC

(d) Feng et al. [10], GT (e) Feng et al. [10], UDC (f) Song et al. [30], UDC

(g) Zhou et al. [38], GT (h) Zhou et al. [38], T-OLED (i) Zhou et al. [38], P-OLED

(j) Ours, GT (k) Ours, Axon 30 (l) Ours, Z-Fold 3

Fig. 1: Samples and their RGB channel histograms from previous UDC datasets [9,
10,30,38] and our commercial dataset.

severe degradation in the resulting image. Degradations include blur, diffraction,
noise, low-lightness, color shift, haziness, etc., and their spatially-variant nature
makes the UDC image restoration very challenging [10,17,38].

Most UDC image restoration methods used deep neural networks [9–11,
15, 17, 23, 24, 30, 31, 37, 38], providing promising results on public benchmark
datasets [9, 10, 30, 38] gathered to facilitate research on UDC image restora-
tion. However, these existing datasets either use prototype display panels to
inadequately represent the degradations observed in real UDC images caused
by commercial panels [38], lack realistic degradations due to incomplete UDC
modeling (e.g., noise and color shift) in the synthesis pipeline [10,30], or mishan-
dles aligning image pairs with occlusion and parallax due to the mechanism of
the capturing imaging system [9]. In addition, the potential for enhanced image
restoration performance through sensor-level restoration [1,19,25,35] cannot be
exploited, because previous datasets predominantly restrict experiments to RGB
domain as raw data is unreleased. Tab. 1 shows comparison of the datasets.
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In this work, we propose a new UDC dataset that is collected in the raw do-
main. The proposed dataset contains pairs of real UDC images and clean images
that are well-aligned using a monitor-based imaging system with two different
panels from commercial UDC smartphones, ZTE Axon 30 5G and Samsung
Galaxy Z-Fold 3. In our experiments, we find that training with raw data en-
hances the performance of UDC image restoration. This raw-domain approach
with real data also has the advantage of enabling the use of end-to-end neural
ISPs that are being installed in recent smartphones [26], allowing a practical
implementation on devices. Additionally, as shown in Fig. 1, real UDC data
captured with commercial smartphone panels display noticeable distinct degra-
dations visually and statistically when compared to previous datasets [10,30,38].

Furthermore, we develop a two-stage restoration method for UDC images.
First, we introduce a framework for learning the implicit representation of degra-
dations in the UDC images. We notice that degradation in a patch of a UDC
image is similar to that of other patches of the same UDC image while being dis-
tinct from degradations of the same scene taken with a different panel. With this
observation, we develop a novel unsupervised learning scheme involving triplet
loss [28] to train our encoder. The learning scheme aims to leverage the informa-
tion of the data collected with different types of panels, ultimately condensing the
degradation information into an implicit representation vector that reflects the
panel-specific degradation moderately. We also propose an efficient Transformer-
based restoration network that incorporates the learned panel-specific degrada-
tion representations as a prior by generating channel-wise calibration coefficients
for attention. We discover that our strategy yields improved results for UDC im-
age restoration. To the best of our knowledge, this is the first case in UDC image
restoration where a dataset collected with one panel is utilized to enhance the
performance on a dataset collected with another panel.

To summarize, our contributions are as follows:

– We introduce a new real UDC dataset, which is collected with commercial
smartphone panels. Our dataset is provided in raw format, which can im-
prove the performance of the UDC restoration task.

– We propose an unsupervised learning approach that allows for implicit repre-
sentations of degradations caused by various display panels in the embedding
space. The panel-specific degradation representations are leveraged as pri-
ors in the restoration network, which is an efficient Transformer and brings
notable improvement.

– Extensive experiments demonstrate that our restoration network embedded
with learned representations achieves state-of-the-art performance on the
proposed dataset and is consistently applicable to previous datasets.

2 Related Works

2.1 UDC Image Restoration

Since UDC image restoration is a relatively new area, research is still ongoing
to provide users with a satisfying experience when UDC is applied in real situa-
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tions. Research on UDC image restoration was sparked by the pioneering work
of [38]. They defined a UDC imaging system and released the first UDC dataset
for researchers to experiment with. Synthetic datasets were also made available
by simulating the camera pipeline using a pre-calculated point spread function
(PSF), which adequately represents the diffraction [10], with further improve-
ments on scattering effects in [30] to account for the haziness of UDC images.
More recently, a real UDC dataset generated by pseudo-aligning geometrically
misaligned image pairs for a single UDC panel [9] was presented. Although the
proposed datasets have some drawbacks, several works [9–11,15,17,23,24,30,31,
37,38] have investigated UDC image restoration using deep neural networks and
have shown promising results.

Among these deep-learning-based methods, several of them use priors to im-
prove performance. For instance, in [10], PCA is employed on a PSF of the UDC
display panel to stretch it as a ‘kernel code’ and condition the network with it
as a prior. In [30], the network is divided into a scattering branch and an image
branch, and the former is trained to estimate the scattering parameters, which
is prior information that can be used. However, these methods require precise
priors; otherwise, the performance is degraded. Our approach differs from previ-
ous methods because we do not need strict parameters or ground truth settings.
Instead, we aim to learn an acceptable representation of the degradation induced
by panel-specific properties in the embedding space rather than a rigorous es-
timation of the degradation. We only need images taken with different panels
because our method is unsupervised, and learn the implicit priors by leveraging
the discrepancies of degradation caused by different panels.

2.2 Image Restoration with Raw Data

Most of the previous research on image restoration relies on RGB images as
training data as they are easier to collect. However, some recent studies have
shown that using raw sensor data can lead to improved performance. Specifi-
cally, [1, 25] are the works on image denoising where they collected DND and
SIDD datasets that are available as raw and RGB images, where denoising with
raw images usually yields higher PSNR. CycleISP [35] demonstrated that noise
is more complex in RGB images and showed that noise modeling is more realistic
in the sensor domain. This is because compared to the noise samples in the sen-
sor pixels, which are nearly uncorrelated to each other, the noise samples become
highly correlated in RGB images as they pass through the camera ISP pipeline,
which involves processes like demosaicing, gamma correction, and white balanc-
ing [18,22]. DeepISP [29] proposed an end-to-end camera ISP modeled with deep
neural networks, suggesting that a deep network-based camera ISP is promising.
Furthermore, [4] solved the issue of low-light enhancement problem by operat-
ing in the sensor domain, and [19] presented a dataset for raw image deblurring
and proved that operating on raw sensor data achieves better performance than
RGB-based methods. These researches suggest that it is easier to restore raw
data than RGB images with deep neural networks, as sensor data contains the
linear representation of incoming light intensity of the scene. This ensures that
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the scene’s authenticity is maintained more faithfully in raw data than in heavily
processed RGB pixel values that are nonlinear with respect to light intensity.

3 Proposed Method

3.1 Sensor-level Real UDC Dataset

A raw dataset is necessary to achieve end-to-end image restoration using sensor
images. However, the available UDC datasets are limited to the RGB domain.
Moreover, public UDC datasets do not show the types of degradation that are
present in images taken with commercially available smartphones equipped with
UDC, limiting their assessment of practical scenarios. Therefore, we capture
real raw UDC data by using OLED panels obtained from commercial UDC
smartphones, a smartphone camera, and a monitor-based imaging system [38].

UDC data acquisition process Capturing a raw UDC image requires that we
model the UDC imaging system as similarly as possible. Consequently, our data-
capturing process involves rendering an image onto a high-resolution monitor,
followed by capturing the displayed image using a smartphone camera sensor
located closely behind a UDC panel. The panels used to capture the data are
from two commercial UDC smartphones: ZTE Axon 30 5G and Samsung Galaxy
Z-Fold 3. They introduce low-light/color shift, scattering, diffraction, and blur.
As noise is usually generated from the sensor, we chose Samsung Galaxy S23
Ultra as our camera device to capture the authentic noise of smartphone camera
sensors. Raw images are collected using the internal software of the smartphone
that automatically saves the minimally processed raw data. The preference for
monitor-displayed images [17, 38] over real natural scenes is driven by the need
to control additional factors beyond the panels’ presence. Specifically, we can
enforce the target scene to be static as dynamic scenes are prone to motion blur,
and therefore lead to misaligned data pairs. We can also eliminate interference
from external ambient sources of light other than the monitor’s emitted light.

The monitor, UDC panel, and camera sensor are aligned in sequence, and the
principal axis of the camera is aligned perpendicular to the plane of the monitor
and the panel. The camera is mounted on a sturdy tripod, and the panel is
situated close to the sensor using a firm holding device. The displayed images
are then captured remotely with/without the smartphone panels to ensure the
alignment of clean/UDC image pairs during capture while keeping the camera
settings the same. We provide more details in the Supplementary Material.

Our UDC dataset The dataset is captured using 400 images from the DIV2K
dataset [2], which is comprised of natural scene images from various themes,
encompassing diverse objects captured under different lighting conditions. This
makes our dataset 1,200 images in total, as there are three different image sets
(Axon 30, Z-Fold 3, ground truth) in raw format. The images are stored in 16
bits with a Bayer pattern of G-B-R-G. For the ground truth images, we capture
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(a) Clean image (b) Axon 30 image (c) Z-Fold 3 image

Fig. 2: Cropped examples from our captured dataset. All images are visualized with
the same procedure that includes normalization, demosaicing, channel gain adjustment,
and gamma correction. Due to the difference in smartphone display panels, noise and
haze are more apparent in Axon 30 UDC images, while the Z-Fold 3 UDC images
show blurrier results. The diffraction induces flare artifacts when the image intensity
becomes too strong that the sensor saturates.

bursts of a scene without the display panel and average them. To check for mis-
alignments that can be induced by optical image stabilization in the smartphone
hardware [1], we utilize registration and feature matching algorithms [3, 12].

Samples from our dataset are displayed in Fig. 2, with each UDC image taken
with Axon 30 and Z-Fold 3 display panels exhibiting panel-specific degradations.
As such, our dataset can be used to evaluate if a restoration method generally
performs well in the restoration of various UDC systems. Also, our real com-
mercial UDC data show different behaviors from previous datasets, as shown
in Fig. 1. Specifically, low-light, color shift, blur, and noise are observed, and
an object is seen repeated faintly near the main object due to diffraction. We
also detect a phenomenon similar to haze due to the scattering effects of the
panel [30]. Synthetic datasets that are generated using UDC modeling [10, 30]
do not take noise into account. However, including noise in UDC images is vital
as the level of noise captured with frontal smartphone camera sensors, which are
relatively inferior to DSLR camera sensors [4,26], is amplified when normalizing
sensor data. This amplification is related to the attenuation caused by the panel
which reduces light intensity. More samples are available in the Supplementary.

3.2 Proposed UDC Restoration Framework

In this section, we propose our restoration framework called Degradation Repre-
sentation Embedded Transformer for UDC image restoration (DREUDC), which
consists of a degradation representation encoder and a restoration network. We
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first train the encoder with our proposed unsupervised scheme using triplet loss
to implicitly learn the degradations of a display panel. Then, we utilize the rep-
resentations generated from the encoder by integrating them in the restoration
network as a prior. It is worth noting that our approach’s novelty lies in how we
take of advantage of UDC data from one display panel to restore a UDC image
from another panel rather than in the restoration network’s architecture itself.

Motivation Representation learning has been demonstrated to be effective in
blind super-resolution, as demonstrated in [32]. Inspired by this, we explore
the use of representation learning to enhance the restoration of UDC images
by extracting useful prior information about the panels. Since each UDC system
has a different panel, it yields panel-specific degradations. For example, the UDC
images presented in Fig. 2, which are captured using two different panels of UDC
smartphones, show differences in the degree of degradations. This implies that
the degradations present in an image captured using one panel are similar to
each other and that they differ significantly from those of the image with the
same content but are captured using another panel. Using this information, our
approach intends to utilize these differences and train an encoder to encode them
in an unsupervised manner into the embedding space.

Unsupervised representation encoder training Our proposed unsuper-
vised training scheme is visualized in Fig. 3. As mentioned above, the objec-
tive of training the panel-specific degradation representation encoder is to learn
the unique properties of the panels and produce implicit representations of the
degradations to be used as priors in UDC image restoration. To achieve this,
the encoder should learn the degradations using attributes related to a specific
panel, such as the level of noise, blur, and color shift. On the other hand, the
encoder should be discouraged from learning degradations with features in an
image that are panel-agnostic, such as textures and contents of a scene.

We believe that this condition is analogous to the situation of tasks where
triplet loss [28] is exploited to learn favorable representations. Triplet loss is
widely applied to various tasks of computer vision such as facial recognition [28],
person re-identification [13,34], and domain adaptation [8] for its ability to learn
useful embeddings by leveraging the distances between embeddings of similar
instances and dissimilar instances. For instance, in person re-identification, net-
works are guided to identify among different people using features that are unique
to a specific person, not with features that are shared among people, by learning
suitable representations using triplet loss. In our case, the features unique to a
specific person would correspond to properties unique to a specific panel, and
the features that are shared among people would correspond to panel-agnostic
features. Therefore, we opt to apply triplet loss in the training of our encoder to
capture the panel-specific degradation representations.

Nevertheless, triplet loss is only effective when the network is provided with
valid triplets [28, 33]. To collect meaningful triplets, we impose constraints on
the training pairs that will be used to train our encoder. We choose a pair of
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Fig. 3: Our proposed unsupervised panel-specific degradation representation learning
scheme. By using triplet loss, representations of the same panel-specific degradations
with different image content are pulled closer together, while representations of different
panel-specific degradations with the same image content are pushed away.

raw images xi and xj from our dataset that contains the same content but have
been taken with different display panels. Then, we randomly crop two pairs of
patches (x1

i , x
2
i ) and (x1

j , x
2
j ) from each image, where x1

i and x1
j , and x2

i and x2
j ,

respectively, are cropped from the same location of xi and xj . We choose patch
x1
i as the anchor, and the positive and negative samples are decided to be x2

i

and x1
j . The same process is repeated with x1

j as the anchor.
With this triplet selection, the encoder is guided to learn the intrinsic prop-

erties of the degradations caused by the display panel by pulling representation
of images that show similar degradation while disregarding the features that are
unrelated to degradations by pushing the representation of the same contents.
The encoder f is trained with triplet loss using the selected triplets to obtain the
panel-specific degradation representation y ∈ R256. The representations are fur-
ther projected to a projection z with two fully connected layers, following [5,6].
The triplet loss for training the encoder is as follows:

L = max(||z1i − z2i ||22 − ||z1i − z1j ||22 + α, 0)

+max(||z1j − z2j ||22 − ||z1j − z1i ||22 + α, 0), (1)

where α is the margin of the triplet loss. The margin is set as α = 1. Following
[32], the encoder is a simple network with six convolutional layers.

Representation embedded restoration network For our restoration net-
work, we design it to be as simple and efficient as possible to emphasize the ef-
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Fig. 4: Our proposed DREUDC. The framework consists of an encoder that produces
an implicit representation of the panel-specific degradations of a UDC image and a
restoration network that exploits the representations via the proposed DREblocks.

fectiveness of our contribution of how we leverage the difference in data collected
with various panels to enhance the restoration performance rather than focusing
on the impact of complex restoration network architectures. Therefore, we adopt
a U-shaped [27] Transformer with Frequency domain-based Self-Attention Solver
(FSAS) [16] as our restoration architecture. In previous works on UDC image
restoration [9, 10, 17, 31], researchers have highlighted the importance of a wide
receptive field. As FSAS utilizes the convolutional theorem of Fourier transform
to model global contexts in the frequency domain efficiently [16], we choose it
as a component of the building block for our restoration network.

Our restoration network is based on stacking repeated Transformer blocks,
which we name DREblock (Degradation Representation Embedded Transformer
block, Fig. 4(b)). The proposed DREblock efficiently integrates the degradation
representation y of the input UDC image as a condition of our restoration net-
work by calibrating the features in the block in a channel-wise manner, i.e.,

Fo = Fatt ⊗ β, (2)

where Fatt is the feature maps of the estimated attention of FSAS, Fo is the
feature after the conditioning, ⊗ denotes channel-wise multiplication, and β is
the channel conditioning coefficients that are produced by reshaping the panel-
specific degradation representation y using a single layer of 1×1 convolution.
The features Fo are then processed by the point-wise feed-forward network.

The entire framework DREUDC is illustrated in Fig. 4. In training, the en-
coder is first trained with Eq. (1). Then, the encoder is frozen while the restora-
tion network is trained with L1 loss. During inference, the encoder takes the
input raw UDC image and outputs a panel-specific degradation representation
vector that contains prior information on UDC degradation. The representation
is seamlessly embedded into the restoration network through DREblocks, finally
producing a clean restored RGB image.
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4 Experiment and Analysis

4.1 Datasets

We evaluate the restoration performance using our captured data with display
panels of ZTE Axon 30 5G and Samsung Galaxy Z-Fold 3. The raw images
are normalized to have values within the range of [0,1]. To train and evaluate
RGB-based methods, we use a simplified ISP algorithm written with MATLAB
to visualize the normalized raw images to RGB images. The algorithm contains
demosaicing, channel-wise gain control, and gamma correction in sequence. Note
that the visualized images are not sRGB images, as actual camera ISPs in prac-
tice involve additional steps to render the image in sRGB domain. Please check
the Supplementary for more discussion on the usage of simplified ISP. For both
display panels, we split the dataset into 300 images for training and 100 images
for testing. The training set is cropped into patches of 512×512. We also use
previous UDC datasets [38], which consists of 300 images of both T-OLED and
P-OLED scenes, to verify that our method is applicable to other real datasets.

4.2 Training and Implementation Details

We use NVIDIA RTX 3090 GPUs in our experiments. To train the encoder, we
use Adam optimizer (β1 = 0.9, β2 = 0.999) for 1×105 iterations with a batch size
of 64, and the loss is given as Eq. (1). The restoration networks are trained with
L1 loss to minimize the distance between the restored image of the network and
the ground truth. The initial number of channels C of our restoration network
is 32, and the number of blocks in each layer L1, L2, and L3 are [5,5,6]. We use
Adam optimizer (β1 = 0.9, β2 = 0.999) for 2 × 105 iterations with a batch size
of 2. For both networks, the initial learning rate is set as 2× 10−4 and gradually
decayed to 1 × 10−6 with cosine annealing [20]. This setting is applied to all
experiments on our dataset, and every previous method reported in this paper
is also reproduced by training on our dataset with the same setting for fairness.

4.3 Raw UDC Image Restoration

First, we experiment to validate that using raw images can improve the UDC
image restoration process. For this purpose, we employ a baseline neural network
called DE-UNET [38] and use our captured data. We compare the performance of
the network under three different settings: RAW-to-RAW, RAW-to-RGB, and
RGB-to-RGB. We evaluate the performance of the network using the PSNR
and SSIM metrics. To assess the performance of the RAW-to-RAW setting, we
convert the output restored raw images to RGB using the same ISP process
mentioned in Sec. 4.1 and measure them in the RGB domain. The results are
presented in Tab. 2, showing that using raw sensor images as input (RAW-
to-RAW, RAW-to-RGB) yields superior results compared to only using RGB
images. Among the two settings that use raw images as input, the latter shows
better performance overall, so we choose the method of converting and restoring
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Table 2: Comparison of different input-to-output settings of DE-UNET [38] on our
captured datasets. The best results are bold-faced.

Method Axon 30 (raw) Z-Fold 3 (raw) Axon 30 (rgb) Z-Fold 3 (rgb)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DE-UNET(RGB-to-RGB) - - - - 23.33 0.9109 26.90 0.9390
DE-UNET(RAW-to-RAW) 27.36 0.9335 29.66 0.9637 24.21 0.9170 27.18 0.9388
DE-UNET(RAW-to-RGB) - - - - 24.20 0.9196 27.29 0.9419

Table 3: Results on our captured datasets for ZTE Axon 30 5G and Samsung Galaxy
Z-Fold 3 smartphone display panels on various methods of UDC image restoration.
The best results are bold-faced.

Input-to-output Method Params MACs Axon 30 (rgb) Z-Fold 3 (rgb)
PSNR SSIM PSNR SSIM

RGB-to-RGB

DE-UNET [38] 8.93M 273.84G 23.33 0.9109 26.90 0.9390
DAGF [31] 1.09M 73.84G 24.49 0.9150 28.42 0.9404

DISCNET [10] 3.80M 596.95G 23.11 0.9063 26.67 0.9361
BNUDC [15] 4.57M 993.38G 25.85 0.9283 28.54 0.9458

DWFormer [36] 1.45M 216.77G 21.52 0.8923 26.36 0.9338
SRUDC [30] 6.70M 371.32G 22.67 0.8998 27.34 0.9336

PPM-UNet [9] 4.23M 409.29G 18.21 0.8502 23.85 0.9188
AWNet [7] 47.00M 1.53T 20.27 0.8839 25.60 0.9316

RAW-to-RGB

DE-UNET [38] 8.94M 69.29G 24.20 0.9196 27.29 0.9419
PyNet [14] 47.56M 1.79T 22.58 0.9069 27.35 0.9377
AWNet [7] 49.07M 392.25G 20.98 0.8885 27.25 0.9369
DREUDC 6.44M 200.07G 26.66 0.9368 29.04 0.9511

raw UDC images to a clean RGB image (RAW-to-RGB). This is also the setting
of most neural ISPs currently being used in smartphones [26] since a successful
network is able to model the image processing pipeline as well.

4.4 Evaluation on Our Dataset

To provide experimental results on our dataset and demonstrate the performance
of DREUDC on UDC image restoration, we train numerous previous methods
using our dataset for comparison. The quality of the restoration performance is
evaluated with PSNR and SSIM as performance metrics. Additionally, we assess
the efficiency of the methods by comparing the number of parameters and MACs.
To calculate the MACs, we use a dummy image with a resolution of 1024×1024.

Tab. 3 shows experimental results for raw and RGB image restoration using
our dataset. Because there are no neural networks on UDC image restoration
that take raw sensor images as input except [38] as previous datasets were pro-
vided only in the RGB domain, we choose [7] and [14] for further comparison,
which are RAW-to-RGB image conversion models. We observe that DREUDC
achieves state-of-the-art performance on both Axon 30 and Z-fold 3 datasets,
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Axon 30 DE-UNET DAGF DISCNET BNUDC DWFormer SRUDC

PPM-UNet AWNet DE-UNET* PyNet* AWNet* DREUDC* GT

Z-Fold 3 DE-UNET DAGF DISCNET BNUDC DWFormer SRUDC

PPM-UNet AWNet DE-UNET* PyNet* AWNet* DREUDC* GT

Fig. 5: Visual comparison of restoration examples for our dataset. Zoom in for a better
comparison between the methods. The top two rows are results for Axon 30 images, and
the bottom two rows are for Z-Fold 3 images. Methods that take raw input and produce
RGB images are annotated with the asterisk *. Our method is capable of removing UDC
degradations more clearly than previous UDC image restoration networks.

surpassing BNUDC [15] by 0.81dB and 0.50dB, demonstrating that our method
can successfully restore various UDC degradations. With the exception of a
lightweight model [31] and the baseline model using raw data input [38], our
method is the most efficient when it comes to computation while showing supe-
rior performance. Qualitative results are illustrated in Fig. 5, and more results
including restoration of scenes that are not displayed on a monitor are available
in the Supplementary Material.

4.5 Analysis on Panel-Specific Degradation Representation

In this subsection, we analyze the effectiveness of DREUDC and panel-specific
degradation representations learned with our proposed method. The strength
of DREUDC is reported in Tab. 4 with an ablation study. We observe that
our strategy of embedding an implicit representation of degraded UDC images
is indeed effective by comparing (a) and (c) of Tab. 4, where Model 1 is our
framework with only the restoration network without channel calibration and
representation learning, while DREUDC is our entire framework trained with
the protocol explained in Sec. 3.2.

However, with only this comparison, we cannot rule out the possibility that
the rise in performance is solely because of increased parameters. Therefore, we
further compare (a) and (c) with (b), where Model 2 is our framework trained in



Panel-Specific UDC Image Restoration 13

Table 4: Results on ablation of our method.

Method Channel Representation Params MACs Axon 30 Z-Fold 3
calibration learning PNSR SSIM PNSR SSIM

(a) Model 1 ✗ ✗ 4.52M 160.57G 26.09 0.9338 28.66 0.9491
(b) Model 2 ✓ ✗ 6.44M 200.07G 26.38 0.9348 28.71 0.9499

(c) DREUDC ✓ ✓ 6.44M 200.07G 26.66 0.9368 29.04 0.9511

(a) (c)(b) (f)(e)(d)

Fig. 6: T-SNE [21] visualization of representation generated from the encoder. (a)
and (b) show the representations generated from encoders of Model 2 in Tab. 4 for
Axon 30 and Z-fold 3 images, respectively, which are trained without representation
learning. (d) and (e) show the representations generated from encoders of Model 2
in Tab. 5 for T-OLED and P-OLED images, respectively, which are trained without
representation learning. (c) and (f) illustrate the representations that are generated
with our unsupervised triplet learning on our dataset and Zhou’s dataset [38].

an end-to-end manner by training the encoder and the restoration network jointly
with L1 loss without our proposed representation learning. By comparing Model
1 and Model 2, we see that channel calibration with representations learned from
a single dataset without triplet training increases the performance marginally.
On the contrary, when given an appropriate representation learned from two
datasets by leveraging the difference in degradations with our proposed method,
we notice that the restoration model benefits substantially from it. Moreover,
it is noteworthy that our proposed embedding scheme has a negligible effect on
the computational increase (MACs) of the restoration network, as most of the
increase is due to the encoder.

The validity of our panel-specific degradation representation learning scheme
is visualized in Fig. 6. Without representation learning (Fig. 6(a) and (b)), the
encoders are unable to distinguish different degradations. Conversely, with repre-
sentation learning (Fig. 6(c)), the encoder identifies the degradation and discrim-
inates them in clusters, offering advantageous priors for the restoration network.

This finding suggests an approach to train a restoration network by making
good use of datasets other than the one gathered for a specific UDC system.
Typically, a specific dataset is used to train a restoration network tailored for a
particular UDC system. However, this dataset would be sub-optimal or ineffec-
tive when future UDC smartphones have different panels. Our method offers a
way to utilize other datasets collected with different panels, mediating this issue.
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Table 5: Results of our method and ablation on T-OLED/P-OLED datasets [38].

Method Channel Representation Params MACs T-OLED P-OLED
calibration learning PSNR SSIM PSNR SSIM

DE-UNET [38] - - 8.94M 69.29G 36.70 0.9745 28.58 0.9344
Model 1 ✗ ✗ 4.52M 160.57G 37.37 0.9774 30.85 0.9510
Model 2 ✓ ✗ 6.44M 200.07G 37.46 0.9777 31.01 0.9515

DREUDC ✓ ✓ 6.44M 200.07G 37.55 0.9778 31.17 0.9521

Application to previous datasets Our restoration method using panel-
specific degradation representations is also applied to public UDC datasets to
show that it generalizes well to other datasets. Our method requires a real dataset
comprised of degraded images taken with more than a single panel from the same
capturing environment, so we choose Zhou’s P-OLED/T-OLED datasets [38].
DREUDC is designed to take raw images as input, so we make a pseudo-raw
version of the dataset by mosaicing the RGB images. This pseudo-raw version
of the RGB images that used to train the methods, including a new encoder, is
created by reversing the in-camera pipeline mentioned in [38]. We only reversed
the demosaicing step as it was the only mentioned process; hence we call it
‘pseudo-raw’ as the images have not been fully reversed to the original high-bit
raw data. We choose DE-UNET [38] to compare with our results because it is
a model that can be trained with RAW-to-RGB setting. Additional results on
RGB image restoration are provided in the Supplementary Material.

Tab. 5 shows the results on T-OLED/P-OLED datasets. Our method out-
performs DE-UNET on both panels with slightly fewer parameters. Most impor-
tantly, our strategy of representation embedding is also effective on [38] when
we compare Model 1 to DREUDC, showing an increase of 0.18dB and 0.32dB in
the restoration of T-OLED and P-OLED images. We also prove that the boost
in performance is not only due to increased parameters but also because we en-
hance the restoration network with effective representations of the degradations
learned using our training scheme by comparing Model 2 and DREUDC. Visu-
alization of the representations are provided in Fig. 6(d), (e), and (f). Overall,
the results imply that our method is also effective on other UDC datasets.

5 Conclusion

We have collected a new UDC dataset using commercial UDC-equipped smart-
phones and demonstrated that UDC image restoration using raw sensor images
achieves better performance than using RGB images. We have also proposed
a UDC image restoration framework that generates panel-specific degradation
representations in the embedding space with a novel unsupervised representation
learning scheme. Our restoration network efficiently accommodates the learned
representations as a prior with our proposed Transformer blocks, improving the
performance. Experiments show that our method achieves state-of-the-art per-
formance on our dataset and is generalizable to previous datasets.
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