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S1 EventPed Dataset

In this section, we provide more details and analysis for our newly introduced
EventPed Dataset. We introduce more details about data processing in Sec-
tion S1.1 and provides analysis and statistics of the dataset in Section S1.2.

S1.1 Data processing.

Time synchronization is achieved using a physical connection between the cam-
eras. Given the small distance between the cameras, spatial registration can be
approximated using a homography matrix. Initially, we performed camera cali-
bration to estimate the intrinsic and extrinsic camera parameters. Subsequently,
the homography matrix was calculated to project the coordinates of event im-
ages onto the corresponding RGB images. This process ensured the alignment
of RGB-Event image pairs. Finally, we cropped the central region of the regis-
tered RGB-Event image pairs to ensure the same field of vision and image size,
resulting in a resolution of 960× 512 pixels for all samples.

S1.2 Analysis and Statistics.

We conducted an analysis comparing the EventPed dataset with the existing
event-based dataset, PEDRo. In Fig. S1(a,b), we present heatmaps visualizing
the distribution of bounding boxes. The heatmaps illustrate the probability of
bounding boxes covering each pixel. The EventPed dataset shows a more uniform
distribution in the horizontal direction and a more concentrated distribution
in the vertical direction compared to PEDRo. Furthermore, we examined the
distribution of bounding box sizes, as shown in Fig. S1(c). Our EventPed dataset
exhibits a higher number of bounding boxes in larger sizes. This difference can
be attributed to the disparity in image resolutions between the two datasets.
The PEDRo dataset has a relatively low image resolution of 260 × 346, while
our EventPed dataset boasts a higher resolution of 960× 512.
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Fig. S1: (a,b) The bounding box distribution of PEDRo dataset (a) and our EventPed
dataset (b). The bounding box distribution of EventPed is more uniform horizontally
and more concentrated vertically. (c) The distribution of the diagonal length in pixel
of the bounding boxes in PEDRo (green) and our EventPed (blue). EventPed contains
more bounding boxes in large size.

S2 Dataset Distribution

We illustrate distribution of different modalities of MMPD dataset in Figure S2.
From the figure, we see the vast majority of the MMPD dataset is in the RGB
modality (for RGB pretrain), with other modalities accounting for a smaller pro-
portion, only about 2% for training. For testing, the proportions of the different
modalities are more balanced. Aside from the RGB modality, the proportions of
the other modalities are relatively balanced.

Fig. S2: Distribution of different modalities: (a) Train (b) Test.
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Table S1: Multi-modality fusion evaluation. AP is reported.

Method #Param. LLVIP STCrowd InOutDoor EventPed

Early-Fusion [14] 41M 53.6 54.4 58.3 47.4
FPN-Fusion [20] 65M 57.2 61.5 60.1 61.1
ProbEN [4] 82M 54.8 60.0 62.4 60.1
HRFuser [1] 101M 53.9 49.0 58.6 46.0
CMX [24] 150M 59.6 61.0 62.3 58.0

Ours (Faster R-CNN) 41M 66.8 66.4 66.1 75.3
Ours (Co-Dino) 62M 72.6 74.9 65.7 79.0

S3 Experiments with the Faster R-CNN head

To validate the applicability of our method on a wider range of detection ap-
proaches, we also implement our MMPedestron on the common Faster R-CNN [17]
head. Specifically, in order to improve the generalization ability across diverse
scenarios, we use a wider range of box ratio when generating candidate boxes.
Specifically, we set the bounding box ratio to 0:5; 1:0; 1:5; 2:0; 2:5; 3:0. In addi-
tion, we use more proposal boxes (up to 2000 per image) to handle crowded
scenarios. Please refer to Sec.5.1 in the main paper for other implementation
details.

The results are reported in Table S1. Compared to models separately trained
on specific datasets, our MMPedestron model consistently outperforms all fu-
sion methods on diverse datasets without requiring dataset-specific fine-tuning.
More importantly, our MMPedestron model with the Faster R-CNN detection
head has achieved significantly higher performance than other methods, without
introducing more parameter counts (41M only).

S4 Implementation Details

MMPedestron adopts Dual ViT [22] as the backbone (if not explicitly indicated),
pretrained on ImageNet1K. The training process consists of two stages: RGB
pretrain stage and multi-modal training stage. For both stages, we employ the
AdamW optimizer with parameters �1 = 0.9, �2 = 0.999, and weight decay set
to 1e-4. The learning rate is warmed up linearly for the first 500 iterations to
1e-3 and then decayed by a factor of 0.1 at epoch 8 and 10. The training input
image resolution is randomly selected between 480× 1333 and 800× 1333.

S4.1 RGB Pretrain Stage

We pretrain MMPedestron on the combined RGB-based dataset for 12 epochs.
The drop path rate is set to 0.15 for the MMPedestron encoder. Training is
conducted using 64 NVIDIA V100 GPUs with a total batch size of 64. The RGB
pretrain stage requires a total of 27,648 GPU hours.
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S4.2 Multi-modal Training Stage

During training, we use a drop path rate of 0.3 and apply a layer-wise learn-
ing rate decay of 0.1 for the MMPedestron encoder. To enhance robustness to
missing modalities, we set the modality dropout probability as p = 0:3. The en-
tire training process comprises 550k iterations, approximately equivalent to 12
epochs. Training is conducted using 32 NVIDIA V100 GPUs, with a total batch
size of 32. The multi-modal training stage requires a total of 1,056 GPU hours.

S5 Details about Baselines

S5.1 Unimodal Baselines

We compare our proposed MMPedestron model with a range of single-modality
detectors, including two-stage detectors e.g . Faster R-CNN [17], one-stage de-
tectors e.g . YOLOX [9] and query-based detectors e.g . Co-Dino [28] on our
proposed MMPD benchmark.

Experiments on multi-modal datasets Faster R-CNN [17] is a two-stage,
anchor-based detector. For comparisons, we reported the results of the model
with the ResNet50 [11] backbone. The model is trained with MMDetection [3]
using the default 1x training setting (12 epochs)1.

YOLOX [9] is a single-stage, anchor-based detector. For comparisons, we re-
ported the results of YOLOX-X, which is the largest one in the YOLOX series.
All hyper-parameters are set to the default values of YOLOX [9] in MMDetec-
tion [3]. For example, the total training epochs is 300.

Co-Dino [28] is a collaborative hybrid, query-based detector. For compar-
isons, we reported the results of the model with the ResNet50 [11] backbone.
All hyper-parameters are set to the default values of Co-Dino [28] in MMDetec-
tion [3].

Meta-Transformer [25] is a unified multimodal encoder which can handle
various data formats, such as natural language, images, audio, point clouds, etc.
It also supports various downstream tasks, such as classification, segmentation,
object detection, etc. For comparisons, we choose the Meta-Transformer-B16
base-scale model (with LAION-2B [16] pretraining) as the backbone. We follow
[25] to adopt ViT-adapter techniques for training and use Cascade RCNN head
for the detection task. We directly use the official codes2 without changing any
hyper-parameters.

Experiments on COCO-Persons dataset We compare MMPedestron against
notable models trained on COCO dataset, i.e. Faster-RCNN [17] and DINO [23].
Note that these models are originally trained to handle general 80 classes (as

1 https://github.com/open-mmlab/mmdetection/
2 https://github.com/invictus717/MetaTransformer/tree/master/Image/detection
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indicated by ‘-80’). To ensure fair comparisons, we utilize MMDetection [3] to
re-train these models on “Person” category using the default experimental set-
ting. Note that MMDetection re-implementation can be a little bit better than
the original implementation.

Faster R-CNN [17] is a two-stage, anchor-based detector. For fair com-
parisons under similar model size (number of parameters), we report the results
using the ResNet-50 as the backbone. All hyper-parameters are set to the default
values in MMDetection [3].

DINO [23] is an query based with improved deNoising anchor boxes end-
to-end object detection model. For fair comparisons under similar model size
(number of parameters), we report the results using the ResNet-50 as the back-
bone. The models are trained for 50 epochs. Other hyper-parameters are set to
the default values in MMDetection [3].

UniHCP [6] is a unified model for human-centric perceptions, which uses
the standard ViT-L [8] as the encoder network. The model is pre-trained with
the MAE [10] techniques, and then trained with multi-task learning on a mixture
of 33 human-centric datasets, including COCO-Persons dataset. The results are
from the authors [6].

InternImage [21] is a multimodal multitask general large-scale foundation
models with deformable convolutions. In the experiments, we compare with the
result of InternImage-XL with Cascade R-CNN 3, because InternImage-H model
is not publicly available. InternImage-XL is pretrained on ImageNet22k and then
finetuned on COCO dataset.

Experiments on CrowdHuman dataset DETR [2] is an end-to-end de-
tection model which views object detection as a direct set prediction problem.
For comparisons, we reported the results of the model with the ResNet50 [11]
backbone. The results are from the paper [26].

CrowdDet [5] is an object detection model based on Faster-R-CNN, and
the refinement module enables it to effectively handle the difficulty of detecting
highly overlapping objects. For comparisons, we reported the results of the model
with the ResNet50 [11] backbone. The results are from the paper [26].

PEDR [12] is a DETR [2] based detector, and the dense queries and corrected
attention field (DQRF) decoder significantly improves the performance of the
model in crowded scenarios. For comparisons, we reported the results of the
model with the ResNet50 [11] backbone. The results are from the paper [26].

Deformable DETR(D-DETR) [27] is an query based detector. The ad-
ditional deformable attention module can be naturally extended to aggregating
multi-scale features, without the help of FPN [13]. For comparisons, we reported
the results of the model with the ResNet50 [11] backbone. The results are from
the paper [26].

Sparse-RCNN(S-RCNN) [18] is an end-to-end Object Detection with
learnable proposals. For comparisons, we reported the results of the model with
the ResNet50 [11] backbone. The results are from the paper [26].
3 https://github.com/OpenGVLab/InternImage
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Iter-Deformable-DETR(Iter-D-DETR) [26] is a progressive Deformable-
DETR based method equipped with a prediction selector, relation information
extractor, query updater, and label assignment to improve the performance of
query-based object detectors in handling crowded scenes. In our comparison, we
chose the model with the Swin-L [15] backbone. The results are from the original
paper [26].

PATH [19] is a general human-centric perception model based on the stan-
dard ViT-L [8]. Projector-Assisted Hierarchical pretraining method (PATH) can
be used to learn diverse knowledge at different granularity levels. The model
is pre-trained on a collection of 11,019,187 pretraining images from 37 human-
centric datasets, and then fine-tuned on the COCO-Persons dataset. The results
are from the original paper [19].

InternImage [21] is a multimodal multitask general large-scale foundation
models with deformable convolutions. For experiments on the CrowdHuman
dataset, we reported the results of InternImage-H with (denoted as †) and with-
out the composite techniques. The composite technique improves the model per-
formance but at the cost of doubled model parameters. The results are obtained
from the authors [21].

S5.2 Multi-modal Fusion Baselines

We compare our proposed MMPedestron model with a range of multi-modality
fusion approaches, including early-fusion [14], mid-fusion [1, 24] and late-fusion
approaches [4].

Early-Fusion [14] involves concatenating multi-modal data prior to model
input. The model is based on Faster RCNN with the ResNet-50 backbone. The
model is trained with MMDetection [3] using the default 1x training setting (12
epochs).

FPN-Fusion [20] fuses features from various encoder stages through simple
addition. The model is based on Faster RCNN with the ResNet-50 backbone.
The model is trained with MMDetection [3] using the default 1x training setting
(12 epochs).

ProbEN [4] trains separate models for each modality individually and ag-
gregate the predicted bounding boxes of all models with post-processing. The
model is based on Faster RCNN with the ResNet-50 backbone. The model is
trained with MMDetection [3] using the default 1x training setting (12 epochs).

CMX [24] adopts a transformer-based model to incorporate the fusion of
RGB with various modalities. It was originally designed for semantic segmenta-
tion, but we adapted it to perform pedestrian detection by introducing the Faster
R-CNN based detection head. For comparisons, we choose the Swin Transformer
(ImageNet [7] pre-trained) [15] small version backbone. The model is trained with
MMDetection [3] using the default 1x training setting (12 epochs).

HRFuser [1] is a multi-resolution sensor modality fusion model. For compar-
isons, we choose the base-scale HRFuser model with the Cascade-RCNN detec-
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tion head. We directly follow the official codes4 for model training (the default
12-epoch training schedule), without modifying the hyper-parameters.

S6 Qualitative Results

In this section, we show some qualitative results of our proposed MMPedestron
in Fig. S3, Fig. S4 and Fig. S5. The qualitative evaluation includes multi-modal
evaluation (a-d) and unimodal evaluation (e-i). For multi-modal evaluation, we
visualize the results of (a) RGB+IR, (b) RGB+Event, (c) RGB+Depth, and
(d) RGB+LiDAR. And for single-modal evaluation, we visualize the results of
(e) IR, (f) Event, (g) Depth, (h) LiDAR, and (i) RGB. In the images, the red
boxes represent the model prediction results, and the green boxes represent the
ground-truth bounding box results. From the visualization results, we can ob-
serve our MMPedestron model can handle a variety of modalities and their
dynamic combinations. In addition, it shows strong generalization ability across
diverse scenarios, such as different scales, types of occlusion, view-point and il-
lumination conditions. This suggests that our MMPedestron model has good
potential for a wide range of application scenarios.

S7 Limitations

While our work focuses on 2D modalities, such as RGB and IR, other modalities
such as 3D point cloud and sequence inputs like videos also hold significant
potential for pedestrian detection. We encourage future research to expand upon
our work by incorporating more modalities for multi-modal pedestrian detection.
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