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Abstract. Recent years have witnessed increasing research attention to-
wards pedestrian detection by taking the advantages of different sensor
modalities (e.g . RGB, IR, Depth, LiDAR and Event). However, design-
ing a unified generalist model that can effectively process diverse sensor
modalities remains a challenge. This paper introduces MMPedestron, a
novel generalist model for multimodal perception. Unlike previous spe-
cialist models that only process one or a pair of specific modality inputs,
MMPedestron is able to process multiple modal inputs and their dynamic
combinations. The proposed approach comprises a unified encoder for
modal representation and fusion and a general head for pedestrian de-
tection. We introduce two extra learnable tokens, i.e. MAA and MAF,
for adaptive multi-modal feature fusion. In addition, we construct the
MMPD dataset, the first large-scale benchmark for multi-modal pedes-
trian detection. This benchmark incorporates existing public datasets
and a newly collected dataset called EventPed, covering a wide range of
sensor modalities including RGB, IR, Depth, LiDAR, and Event data.
With multi-modal joint training, our model achieves state-of-the-art per-
formance on a wide range of pedestrian detection benchmarks, surpass-
ing leading models tailored for specific sensor modality. For example, it
achieves 71.1 AP on COCO-Persons and 72.6 AP on LLVIP. Notably, our
model achieves comparable performance to the InternImage-H model on
CrowdHuman with 30× smaller parameters. Codes and data are avail-
able at https://github.com/BubblyYi/MMPedestron.

Keywords: Pedestrian Detection · Multi-Modal Learning

1 Introduction

Pedestrian detection [13] has long been a hot research topic in computer vi-
sion due to its various applications, including autonomous driving, robotics and
video surveillance. Traditional pedestrian detection mostly focus on single-modal

� : Corresponding author.

https://orcid.org/0009-0006-7303-7594
https://orcid.org/0000-0003-1562-6332
https://orcid.org/0000-0001-5736-7434
https://orcid.org/0000-0002-8761-5563
https://orcid.org/0000-0002-6685-7950
https://orcid.org/0000-0001-6587-9878
https://github.com/BubblyYi/MMPedestron


2 Y. Zhang et al.

RGB

More 

combinations

MMPedestron

Fig. 1: MMPedestron unifies diverse
modality inputs, including RGB, IR,
Event, Depth and LiDAR, for pedes-
trian detection.

Fig. 2: Performance on diverse datasets
and modalities. MMPedestron outper-
forms leading models trained on the spe-
cific dataset and modality.

RGB images as the input. However, RGB based pedestrian detection meth-
ods face great challenges in complex scenarios (e.g . background clutter and ad-
verse lighting conditions). With the rapid development and application of sens-
ing hardware, multi-modal learning has attracted increasing research attention.
Different types of sensors can supply RGB images with rich complementary in-
formation and bring remarkable benefits for pedestrian detection. For example,
Infrared Radiation (IR) sensor detects heat radiation of pedestrians which is
helpful for detection in a dark environment. Time of Flight (ToF) and LiDAR
sensors provide additional depth information of the scene.

Previous studies mainly focus on designing specific models for one single or
a pair of modality inputs. The development of a unified model that can effec-
tively incorporate various sensor modalities in multi-modal pedestrian detection
poses several challenges. Firstly, existing benchmarks for pedestrian detection
primarily focus on a single or a pair of sensor modalities, lacking a comprehen-
sive benchmark that can fairly and comprehensively evaluate various methods
across diverse application scenarios. Secondly, previous multi-modal fusion meth-
ods are often tailored for specific modality pairs (e.g . RGB-D or RGB-T), yet
hard to be extended to operate with other modality combinations. For exam-
ple, those models trained for RGB-D data are not applicable to the RGB-T
data. Consequently, multiple models are required to deal with different modality
combinations, resulting in unnecessary system complexity and inefficiency. In
addition, previous fusion methods assume the availability of all modalities and
do not account for scenarios where certain modalities may be missing, exacer-
bating the problem. Lastly, different modality-specific pedestrian datasets are
collected from various domains and designed for specific application scenarios
(e.g . LLVIP [20] for surveillance viewpoints, Waymo [43] for automobiles, In-
OutDoor [34] for robotics). As a result, previous pedestrian detectors trained on
one specific modality lack generalization capabilities across different domains.
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In this paper, we make contributions to the field of multi-modal pedestrian
detection by introducing both a benchmark dataset and a generalist model.
Firstly, we address the lack of a comprehensive benchmark for multi-modal
pedestrian detection by constructing the MMPD benchmark. This benchmark
dataset is derived from existing public datasets [10,20,30,34,42]. To address the
lack of paired RGB-Event data in the community and to enhance the MMPD
benchmark’s diversity, we also introduce a new RGB-Event pedestrian detec-
tion dataset called EventPed. Our MMPD dataset is diverse in two aspects. (1)
Modality. MMPD dataset covers multiple sensor modalities, such as RGB, IR,
Depth, LiDAR, and Event data, and diverse modality combinations, including
RGB+IR, RGB+Depth, RGB+LiDAR, and RGB+Event. (2) Scenario. Un-
like previous datasets collected under a specific scenario, MMPD encompasses
various scenarios, including surveillance, automobile, robotics, outdoor and in-
door environments. The diversity of modality and scenario make it possible to
develop and evaluate the generalist multi-modal pedestrian detection model.

We propose MMPedestron, a generalist multi-modal pedestrian detection
model designed to handle diverse input modalities and scenarios. MMPedestron
consists of a unified multi-modal encoder and a detection head. The unified en-
coder transfer multi-modal input to vision tokens, which are combined with a
Modality Aware Fuser (MAF) and a Modality Aware Abstractor (MAA) token to
form a hybrid token sequence. The hybrid token sequence is processed by trans-
former blocks and transferred to unified tokens by modality unifier module. The
unified tokens are then passed to the detection head for final predictions. By
training on data with different modalities, MMPedestron achieves state-of-the-
art performance on various pedestrian detection benchmarks, surpassing models
tailored for specific sensor modalities. Furthermore, we highlight several note-
worthy properties of MMPedestron: (1) Flexibility: MMPedestron exhibits the
capability to handle diverse input modalities and their dynamic combinations,
allowing for versatility in different applications. (2) Scalability: With efficient
weight sharing, MMPedestron can seamlessly accommodate an increasing num-
ber of modalities without a proportional growth in parameters, demonstrating
excellent scalability. (3) Generalization ability: The diversity of the MMPD
dataset enables MMPedestron to exhibit strong generalization abilities across
various domains and scenarios.

Our main contributions can be summarized as follows:

– The introduction of MMPD dataset, a large-scale multi-modal pedestrian
detection benchmark, which serves as a standardized evaluation platform
for multi-modal pedestrian detection methods.

– Pioneering the concept of generalist multi-modality pedestrian detection
through the development of the MMPedestron model. This model is designed
to handle diverse input modalities and scenarios, showcasing remarkable flex-
ibility, scalability, and generalization ability.

– Experimental results showcase that our model achieves state-of-the-art per-
formance across a wide range of pedestrian detection benchmarks, outper-
forming current leading models tailored for specific sensor modality.
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2 Related Works

2.1 Multi-Modal Object Detection

While RGB images provide substantial texture information and details for pedes-
trian detection, the inclusion of multi-modal data is desirable to achieve more
reliable results in challenging conditions, such as extreme lighting, occlusions,
and fast motion. Existing methods have developed various strategies to fuse
information from multiple modalities, namely early-fusion, late-fusion, and mid-
fusion. Early-fusion (pixel fusion) concatenates data from different modalities
and process it with regular object detectors [29, 38, 39]. Late-fusion (decision
fusion) feeds the inputs of two modalities separately into two unimodal object
detection models, and then fusing predicted bounding boxes using statistical
methods [6,25,45]. Early-fusion and late-fusion approaches are straightforward,
however they ignore the correlations between modalities. Mid-fusion (feature
fusion) fuses the features extracted from multiple modalities and predicts bound-
ing boxes from the fused feature. Most research on multi-modal object detection
focuses on mid-fusion [3, 31, 36, 37, 47, 55], as this strategy enables the deep ex-
ploration of the correlations between modalities.

Our MMPedestron model falls within the mid-fusion category. Previous mid-
fusion methods usually use separated branches for different modalities. However,
we use a unified encoder for all modalities, demonstrating better scalability. In
addition, previous fusion approaches primarily focus on bi-modal features and do
not consider diverse modal combinations. In contrast, our model offers flexibility
in handling diverse combinations of modalities and scenarios.

2.2 Multi-Modal Benchmarks

To facilitate the development of generalist multi-modality pedestrian detection
models, it is crucial to have diverse data comprising various modalities. As de-
picted in Table 1, while there exists large repositories of annotated RGB-based
datasets, there are much fewer annotated data of other modalities (e.g . Depth),
and even scarcer annotations of modality combinations (e.g . RGB + Depth).
More importantly, existing multi-modal benchmarks for pedestrian detection
typically consist of only a single pair of modalities, e.g . LLVIP [20] and InOut-
Door [34]. In contrast, MMPD dataset which integrates multiple public datasets,
encompasses five modalities and four distinct modal combinations.

Event-based datasets for pedestrian detection. The advantages in han-
dling challenging lighting conditions, high motion, and low latency make event
data well-suited for pedestrian detection [11, 17, 35]. However, due to the chal-
lenges in data collection and annotation, the availability of annotated event data
is significantly limited compared to other common modalities. GEN1 dataset [11]
and PEDRo dataset [1] offer manual annotations, however they have relatively
low image resolution and lack paired RGB images. DSEC [17] offers paired RGB
and event data without object bounding box annotations. A recent work [47] pro-
poses an automated labeling protocol to generate box annotations for DSEC, but
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Table 1: Overview of representative multi-modal pedestrian detection datasets. “#
Img” means the number of total images. “Label” includes manual labels or pseudo-
labels generated by models. MMPD has paired modality data covering all modalities.

Dataset # Img Label RGB IR LiDAR Depth Event
Caltech [12] 250K Manual ✓

CityPersons [58] 5K Manual ✓

CrowdHuman [42] 24K Manual ✓

Objects365-Persons [41] 133K Manual ✓

COCO-Persons [30] 66K Manual ✓

LLVIP [20] 15K Manual ✓ ✓

M3FD [32] 4K Manual ✓ ✓

FLIR [19] 26K Manual ✓ ✓

STCrowd [10] 8K Manual ✓ ✓

Waymo [43] 36K Manual ✓ ✓

InOutDoor [34] 7K Manual ✓ ✓

MobilityAids [48] 17K Manual ✓ ✓

DSEC [17, 47] 11K Pseudo ✓ ✓

PEDRo [1] 27K Manual ✓

EventPed (Ours) 9K Manual ✓ ✓

MMPD (Ours) 260K Manual ✓ ✓ ✓ ✓ ✓

the utilized data is not publicly released. In contrast, our proposed EventPed
dataset overcomes these limitations by providing high-resolution RGB-Event
pairs collected in diverse environments, along with comprehensive manual anno-
tations for pedestrian detection.

2.3 Generalist Model

Multi-modal generalist model. The emergence of unified models that incor-
porate multiple modalities has garnered significant attention due to their excep-
tional performance across various tasks. ImageBind [18] learns a joint embedding
across six different modalities through data pairs of image and other modalities.
LanguageBind [61] further improves the joint embedding space by considering
language as the bind modality. While these works utilize separate encoders for
different modalities, our MMPedestron employs a shared encoder for all modal-
ities. Meta-Transformer [59] leverages a frozen encoder trained on RGB images
to perform the perception of multiple modalities. However, Meta-Transformer
processes only a single modality per task. In contrast, MMPedestron is capa-
ble of handling diverse combinations of multiple modalities. Moreover, Meta-
Transformer is exclusively trained on the RGB modality, whereas MMPedestron
is trained on a mixture of multiple modalities. Human-centric generalist
model. Recent studies [8,21,23,46,52] have explored the development of a gen-
eralist model that exploits the commonalities among multiple human-centric
tasks. For example, Tang et al. [46] propose HumanBench, a human-centric
benchmark comprising six downstream tasks, and train a generalist model based
on this benchmark. And UniHCP [8] trains a unified model for human-centric
perception using a combination of 33 datasets. While HumanBench and UniHCP
primarily focus on the RGB modality to obtain a model suitable for multiple
tasks, our focus lies in pedestrian detection and aims to develop a model suitable
for multiple modalities.
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Fig. 3: Overview of our proposed MMPD benchmark. (a) It encompasses a wide range
of modalities, such as RGB, IR, Depth, LiDAR, and Event. (b) It includes diverse
scenarios, including person-centric v.s. crowd, outdoor v.s. indoor, day v.s. night scenes.

3 MMPD Benchmark

In this paper, we introduce Multi-Modal Pedestrian Detection (MMPD) bench-
mark based on existing datasets and our newly collected EventPed dataset to
comprehensively study the challenging task of multi-modal pedestrian detection.
As depicted in Fig. 3, MMPD dataset offers an extensive representation of pedes-
trians, encompassing various modalities, including RGB, IR, depth, LiDAR, and
event, and diverse scenarios, such as different types of occlusion, view-point and
illumination conditions.

3.1 Dataset Composition

MMPD is composed of the following datasets: Objects365-Persons is derived
from Objects365 [41], which is a large-scale RGB-based object detection dataset.
We utilize only the training images related to the “person" category. COCO-
Persons is a subset of COCO [22,30], a well-known RGB-based object detection
dataset, which includes images containing the "person" category. CrowdHu-
man [42] is a widely used RGB-based benchmark dataset for pedestrian de-
tection in crowd scenarios. LLVIP [20] is a visible-infrared paired dataset for
low-light vision, containing 15K RGB-IR image pairs. InOutDoor [34] is an
RGB-Depth paired dataset for pedestrian detection. It contains 6, 316 image
pairs for training and 1, 028 image pairs for evaluation. STCrowd [10] is an
RGB-LiDAR paired dataset for pedestrian perception in crowded scenes. It in-
cludes 5, 262 image pairs for training and 2, 988 pairs for evaluation. EventPed.
To address the lack of paired RGB-Event data, we propose the EventPed dataset
for pedestrian detection. More details are presented in Section. 3.2.

3.2 EventPed Dataset

EventPed dataset is a newly collected RGB-event paired dataset focusing on
pedestrian detection, which can be useful for robotics, autonomous driving, and
surveillance applications. It addresses the scarcity of annotated RGB-event data,
facilitating future research and development.
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Data collection. The EventPed dataset was collected from March 2023 to
July 2023. It encompasses individuals aged between 20 and 70 years recorded in
diverse outdoor scenarios such as parks and sidewalks, encompassing both day
and night conditions. Prior to recording, informed written consent was obtained
from all individuals involved. Our portable data collection device contains a
high resolution event camera [15] (IMX636), and a high-quality RGB camera
(IMX586). The camera height varied across recordings, and event streams were
captured at diverse time intervals ranging from 10 to 20 ms.

Annotation. The dataset underwent manual annotation by well-trained an-
notators. Each individual in the dataset was exhaustively annotated with a full
bounding box. In cases where individuals were partially occluded, annotators
were instructed to complete the invisible parts and provide a full bounding box.
Quality inspections and manual corrections are performed to ensure the anno-
tation quality. We split the annotated data into a training set with 7, 195 image
pairs and a test set with 2, 435 image pairs.

3.3 Evaluation Scenarios

A generalist multi-modal pedestrian detection model is expected to be capable of
dealing with both diverse modalities and different modal combinations. So we es-
tablish two evaluation scenarios for MMPD dataset. Unimodal evaluation. We
feed the model with the input in a single modality and evaluate the model on the
test set of COCO, CrowdHuman, LLVIP, InOutDoor, STCrowd, and EventPed.
For the datasets with multiple modalities, we report the performance with input
in both modalities. Multi-modal evaluation. We choose four datasets with
multiple modalities, i.e. LLVIP, InOutDoor, STCrowd, and EventPed, and eval-
uate the performance of the model with multi-modal input. Metrics. Unless
otherwise specified, we use COCO AP [30](IoU=0.5:0.95, maxDets=100) as the
evaluation metric on all datasets.

4 MMPedestron Model

4.1 Overview

The overview of MMPedestron framework is illustrated in Fig. 4 (a). MMPede-
stron consists of a unified multi-modal encoder and a detection head. The unified
encoder directly takes multi-modal data (e.g . RGB and IR data) as the input,
and generates unified vision tokens with information aggregated from multiple
modalities. These unified tokens are then fed into the detection head to obtain
the final result. Our unified tokens are compatible with various pedestrian detec-
tion heads, and in our implementation, we choose the recent Co-Dino [63] head
for its effectiveness.

4.2 Unified Multi-Modal Encoder

In contrast to previous approaches [2, 56, 57] that employ separate branches for
processing multi-modal data, our MMPedestron utilizes a unified transformer
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Fig. 4: (a) MMPedestron consists of an unified multi-modal encoder and a detection
head. Each stage of the encoder contains a modality-specific patch embedding layer,
several transformer blocks and a modality unifier. The resulting unified tokens from
multiple stages are fed into the detection head to produce detection results. (b) Modal-
ity unifier fuses multi-modal vision tokens with the guidance of MAF and incorporates
the domain knowledge of MAA to the output unified tokens. For clarity, we show the
case of two modalities.

encoder to handle data from all modalities. As shown in Fig. 4 (a), the unified
encoder follows a multi-stage architecture with four hierarchical stages. Each
stage contains a modality-specific patch embedding, a series of stacked trans-
former blocks, and a modality unifier. In line with common practice [14,33,50],
we convert the input data from each modality into a sequence of vision tokens
using a modality-specific patch embedding layer within each stage. Addition-
ally, we prepend two extra learnable tokens, i.e. the modality-aware abstractor
(MAA) and the modality-aware fuser (MAF), to capture the knowledge of input
modality combinations. The multi-modal vision tokens, along with the MAA
and MAF tokens, are combined to form a hybrid token sequence, which un-
dergoes further processing by multiple transformer blocks. Our framework is
compatible with various commonly used vision transformer blocks, and in this
study, we employ the dual vision transformer block [51] for its excellent perfor-
mance and efficiency. The unified multi-modal encoder offers several advantages
over traditional multi-branch architectures. (1) It is more lightweight as different
modalities share most of the parameters. (2) It allows the model to learn general
knowledge across all modalities, enhancing its ability to generalize and adapt to
diverse modalities. (3) It enables more effective and more comprehensive message
passing through the attention mechanism within each transformer block.

4.3 Modality Unifier

Given the presence of multi-modal vision tokens, conventional detection heads
face difficulties in discerning the optimal utilization of these tokens. To address
this issue, we propose a modality unifier module that transforms the hybrid
token sequence into a unified token sequence with the same format as standard
unimodal vision tokens.

Our unifier module employs two additional learnable tokens to guide the
unification process. The Modality-Aware Fuser (MAF) token aims to assess
the importance or relevance of each modality in the multi-modal fusion pro-
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cess. Modality-Aware Abstractor (MAA) token aims to collect the domain
knowledge related to input modalities.

As illustrated in Fig. 4 (b), when faced with multi-modal inputs, we initially
employ a Multilayer Perceptron (MLP) to process the MAF token, obtaining
confidence scores for all modalities: c = Sigmoid(MLP (xMAF)), where xMAF
denotes the feature of the MAF token, and c represents the modality confi-
dence, reflecting the importance of each modality. Subsequently, we fuse multi-
modal vision tokens through weighted averaging, with weights determined by
the predicted modality confidence c. Additionally, we aggregate the information
contained in the MAA token by incorporating it into the unified tokens:

Xuni =

∑m
i=1 (wi ∗ ci ∗Xi)∑m

i=1 (wi)
+ xMAA, (1)

where wi =

{
1, Xi is valid token.
0, Xi is padded empty token.

(2)

Xuni denotes the features of the unified tokens, and xMAA is the feature of the
MAA token. m is the number of modalities, ci and Xi denote the confidence and
token feature of the ith modality, respectively. wi is a factor reflecting whether
the ith modality is valid. If a modality is missing, we pad the corresponding
empty tokens. In such cases, we set wi to 0, indicating that the modality is
absent. Conversely, if a modality is present, we set wi to 1, denoting its validity.
More details are discussed in Section 4.4.

The MAF token and dynamic fusion process in the unifier module allow
for adaptive adjustment of the contribution of each modality based on their
importance. It enables our model to adaptively allocate attention and resources
to different modalities, and to leverage the complementary information provided
by each modality. The MAA token provides the domain knowledge related to
input modalities. It enhances the model’s ability to understand and utilize the
specific characteristics of each modality.

4.4 Multi-Modality Training

We utilize a two-stage training scheduler for MMPedestron. In the RGB pretrain
stage, we train our MMPedestron on the mixture of large-scale RGB datasets,
including Objects365-Persons [41], COCO-Persons [30], and CrowdHuman [42],
to learn the general knowledge about human body. In the multi-modal train-
ing stage, we train the pretrained model on the mixture of CrowdHuman [42],
LLVIP [20], InOutDoor [34], STCrowd [10], and EventPed datasets. The hybrid
training data contains diverse modalities and modality combinations, which is
essential to a generalist multi-modal model. We treat all modalities as 2D im-
age inputs. For the LiDAR data, we project the 3D points into an image with
sparse depth points. For the event data, we integrate the event signals with a
time interval to get a 2D image. When dealing with N input modalities, previ-
ous approaches typically employ N independent branches. In contrast, the MAA
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and MAF enables MMPedestron to handle all modalities with a single shared
branch, effectively reducing the parameter number by a factor of N .

We design a modality dropout strategy to enable our MMPedestron model
to effectively handle both diverse unimodal inputs and their combinations. This
strategy involves randomly dropping a modality from the multi-modal inputs
with a probability denoted as p. The model is compelled to process individual
modalities as well as their joint representations. When a specific modality is
missing in the input, we pad an empty image to the input and mask out all
the padded tokens during the process in the encoder, including the transformer
blocks and the unifier module. For classification, we use quality focal loss [26]
and cross-entropy loss, and for regression, we employ GIOU loss [40] and L1 loss,
following established practices [53,60,63].

5 Experiments

We conducted a comprehensive evaluation of our MMPedestron model on mul-
tiple challenging datasets, assessing its performance through both unimodal and
multi-modal fusion evaluations. Additionally, we examined the transferability of
our model using cross-dataset transfer evaluation.

5.1 Implementation Details

MMPedestron adopts Dual ViT [51] as the backbone, pretrained on ImageNet1K.
The training process consists of two stages: RGB Pretrain Stage. We pre-
train MMPedestron on the combined RGB-based dataset for 12 epochs using
64 NVIDIA V100 GPUs. The RGB pretrain stage requires a total of 27,648
GPU hours. Multi-modal Training Stage. We train MMPedestron on multi-
modality datasets, with modality dropout probability p = 0.3. The entire train-
ing process comprises 550k iterations using 32 NVIDIA V100 GPUs. The multi-
modal training stage requires a total of 1,056 GPU hours. Please refer to Sup-
plementary for more details.

5.2 Unimodal Evaluation

Multi-modal datasets. We first evaluate our MMPedestron model on var-
ious multi-modal datasets (i.e. LLVIP [20], STCrowd [10], InOutDoor [34],
and EventPed) using the unimodal setting. We compare MMPedestron with
a range of single-modality detectors, including two-stage detectors i.e. Faster
R-CNN [39], one-stage detectors i.e. YOLOX [16] and query-based detectors
i.e. Co-Dino [63]. We also compare with a recent multi-modality model Meta-
Transformer [59]. As illustrated in Fig. 2, MMPedestron consistently outper-
forms the competing models across all datasets and modalities. Notably, we
evaluate MMPedestron directly on the test set without further dataset-specific
fine-tuning. These results demonstrate the general capability of MMPedestron
in handling diverse modalities.
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Table 2: System-level comparisons with state-of-the-art RGB-based pedestrian detec-
tion. † means the models with the composite techniques [27]. ↑ means higher is better,
while ↓ means lower is better.

#Param. AP ↑

Faster RCNN-80 [39] 42M 51.9
Faster RCNN-Person [39] 41M 54.1
DINO-80 [53] 218M 62.3
DINO-Person [53] 218M 61.8

UniHCP [8] 109M 58.1
InternImage-XL [49] 387M 64.8
Ours (Direct) 62M 68.2
Ours (Finetune) 62M 71.1

(a) COCO-Persons val dataset

#Param. AP ↑ MR−2 ↓ JI ↑

DETR [4] 41M 75.9 73.2 74.4
CrowdDet [7] 42M 90.7 41.4 82.3
PEDR [28] 41M 91.6 43.7 83.3
D-DETR [62] 40M 91.5 43.7 83.1
S-RCNN [44] 106M 91.3 44.8 81.3
Iter-D-DETR [60] 207M 94.1 37.7 87.1
PATH [46] 320M 90.8 - -
UniHCP [8] 109M 92.5 41.6 85.8
InternImage-H [49] 1.09B 95.4 37.9 86.6
InternImage-H† [49] 2.18B 97.2 31.1 89.7
Ours 62M 97.1 30.8 88.0

(b) CrowdHuman dataset

COCO-Persons dataset. To validate the effectiveness of MMPedestron on
traditional RGB-based detection, we compare it with state-of-the-art pedestrian
detection methods on the widely-used COCO-Persons dataset [30]. We compare
MMPedestron against notable models trained on COCO dataset, i.e. Faster-
RCNN [39] and DINO [53]. Note that these models are originally trained to
handle general 80 classes (as indicated by ‘-80’ in Table 2a). To ensure fair
comparisons, we utilize MMDetection [5] to re-train these models on “Person”
category using the default experimental setting (maked with ‘-Person’ in Ta-
ble 2a). For fair comparisons under similar model size (number of parameters),
we report the results using the ResNet-50 as the backbone. Additionally, we
compare MMPedestron with two unified models trained on large-scale datasets:
UniHCP [8] and InternImage-XL [49]. UniHCP is pretrained with multi-task
learning on a mixture of 33 human-centric datasets, including COCO-Persons
dataset. InternImage-XL model is pretrained on ImageNet22k and then fine-
tuned on COCO dataset. Note that we report the result of InternImage-XL with
Cascade R-CNN 1, because InternImage-H is not publicly available. As shown
in Table 2a, our MMPedestron with direct evaluation demonstrates a significant
performance margin of 3.4 AP against InternImage-XL, which is 6× larger than
MMPedestron. Furthermore, fine-tuning MMPedestron on the COCO-Persons
dataset further improves the performance to 71.1 AP. These remarkable results
on the COCO-Persons dataset provide strong evidence of the effectiveness of
MMPedestron in handling RGB data.

CrowdHuman dataset. In order to assess the efficacy of MMPedestron in
handling complex crowd scenarios, we compare our model with the state-of-the-
art methods on the CrowdHuman benchmark. The evaluation metrics used in
this benchmark include AP, MR−2, and Jaccard index (JI), which are commonly
employed in previous studies [7]. As presented in Table 2b, our MMPedestron
model outperforms its counterparts by a substantial margin, without increasing
1 https://github.com/OpenGVLab/InternImage
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Table 3: Multi-modality fusion evaluation. AP is reported.

Method #Param. LLVIP STCrowd InOutDoor EventPed

Early-Fusion [31] 41M 53.6 54.4 58.3 47.4
FPN-Fusion [47] 65M 57.2 61.5 60.1 61.1
ProbEN [6] 82M 54.8 60.0 62.4 60.1
HRFuser [2] 101M 53.9 49.0 58.6 46.0
CMX [56] 150M 59.6 61.0 62.3 58.0

Ours (RGB Pretrain only) 62M 50.0 59.5 36.8 71.9
Ours (RGB Pretrain + Multi-modal Training) 62M 72.6 74.9 65.7 79.0

the model complexity. Specifically, MMPedestron surpasses PATH [46] (ViT-L),
UniHCP [8] (ViT-B), and Iter-D-Detr [60] (Swin-L) by 6.3% AP, 4.6% AP and
3.0% AP, respectively. Even when compared to state-of-the-art large-scale model,
such as InternImage-H, which is over 30 times larger than our MMPedestron,
our model achieves comparable performance. These results validate the ability
of MMPedestron to handle challenging crowd scenarios.

5.3 Multi-Modal Evaluation

To assess the capacity to integrate information from multiple modalities, we
conducted a comparative analysis between our MMPedestron model and var-
ious modality-fusion approaches, including early-fusion [31], mid-fusion [2, 56]
and late-fusion approaches [6]. Early-Fusion [31] involves concatenating multi-
modal data prior to model input. FPN-Fusion [47] fuses features from various
encoder stages through simple addition. And CMX [56] adopts a transformer-
based model to incorporate the fusion of RGB with various modalities. It was
originally designed for semantic segmentation, but we adapted it to perform
pedestrian detection. HRFuser [2] fuses multiple sensors in a multi-resolution
fashion with multi-window cross-attention blocks. ProbEN [6] trains separate
models for each modality individually and aggregates the predicted bounding
boxes of all models with post-processing. As depicted in Table 3, when compared
to models separately trained on specific datasets, our MMPedestron model con-
sistently outperforms all fusion methods on diverse datasets without requiring
dataset-specific fine-tuning. These results validate the efficacy of MMPedestron
in integrating multi-modal information and its ability to generalize across var-
ious modality combinations. Moreover, we report the results of our MMPede-
stron in the RGB pretrain stage, which only uses the RGB modality input.
Although RGB pretrain could help learn the general knowledge about human
body, multi-modal training significantly improves the detection performance and
helps to learn extensive representation of pedestrians, in Table 3. This result also
demonstrates the necessity of research on multi-modal pedestrian detection.

5.4 Cross-Dataset Transfer Evaluation

Cross-dataset transfer evaluation aims to measure the model’s capability to
adapt to new scenarios. We finetune our MMPedestron on the PEDRo [1] dataset
and compare it with state-of-the-art methods specifically trained on that dataset.
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Table 4: Cross-dataset transfer evaluation.

Method #Param. Val AP Test AP

YOLOv8 [24] 68M - 58.6
Faster R-CNN [39] 41M 66.8 58.0
YOLOX [16] 99M 73.9 68.8
Co-Dino [63] 64M 73.4 65.4
Meta Transformer [59] 155M 67.5 61.1

Ours (10% train data) 62M 79.3 72.7
Ours 62M 81.5 73.3

(a) Pedestrian detection on PEDRo dataset (Event).

Method #Param. AP50

GAFF [55] - 72.9
CFT [37] 208M 77.7
CMX [56] 150M 82.2
Ours 62M 86.4

(b) Multi-category object detection on
FLIR test dataset (RGB + IR).

Table 5: Ablation study on the LLVIP dataset.

MAF MAA Fusion RGB IR

✗ ✗ 61.7 47.5 61.2
✓ ✗ 68.2 (+6.5) 49.8 (+2.3) 68.2 (+7.0)
✓ ✓ 68.9 (+0.7) 52.9 (+3.1) 68.4 (+0.2)

It is important to note that the PEDRo dataset utilizes a distinct representation
for event data, rendering our pre-trained MMPedestron model incompatible for
direct evaluation. The results in Table 4a, demonstrate that even with only 10%
of the training data, our MMPedestron model achieves state-of-the-art perfor-
mance on both Val and Test sets. Furthermore, by fine-tuning MMPedestron on
the complete training set, we obtain even higher performance, achieving a new
state-of-the-art result of 81.5 AP on the Val set and 73.3 AP on the Test set.
The quick adaptation to PEDRo dataset showcases the exceptional generaliza-
tion capacity of our MMPedestron model, which is a result of its multi-modal
training on MMPD dataset.

We perform multi-modality fine-tuning experiments on FLIR dataset [19].
Following [37, 56], we conduct experiments on the “aligned” FLIR dataset [54],
which consists of 4,192 training pairs and 1,013 testing pairs covering three object
categories: ‘person’, ‘bicycle’, and ‘car’. We extend MMPedestron to support all
three categories in FLIR, which further validates its generalization and transfer
ability to novel tasks and domains. As shown in the Table 4b, MMPedestron
achieves state-of-the-art performance on the FLIR test set.

5.5 Ablation Study

We conduct ablation study on the LLVIP dataset to comprehensively assess the
effect of each component in our proposed model in Table 5. The baseline (row #1)
utilizes the Dual-ViT backbone with the Co-DINO head. By comparing the per-
formance of various configurations, we observed significant improvements when
incorporating Modality-Aware Fusion (MAF). Particularly, the Fusion results
showed a notable increase of 6.5 AP, showcasing the effectiveness of MAF in en-
hancing multi-modality fusion. Additionally, the Modality Attention Abstractor
(MAA) component was found to enhance the unification of different modali-
ties. This led to a significant improvement in the lower-performance modality
(RGB), with an increase of 3.1 AP. Consequently, the fusion results were further
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Fig. 5: Visualization of MAF (a, b) and MAA (c, d) tokens. (a,c) are for unimodal
inputs, and (b,d) are for multi-modal inputs.

elevated. These findings highlight the importance of both MAF and MAA in our
model, as they contribute to improved performance by effectively addressing the
challenges associated with multi-modal learning.

5.6 Analysis of MAF and MAA

To gain insights into the properties of our Modality-Aware Fusion (MAF) and
Modality-Aware Abstractor (MAA) tokens, we conducted an analysis by visualiz-
ing distributions of token features for different input modalities with t-SNE [9].
As shown in Fig. 5 (a) and (c), when processing single-modality inputs, both
MAF and MAA samples show clustering patterns corresponding to the respective
input modality. This indicates that our MAF and MAA are “modality-aware”,
and are able to adaptively adjust token features according to the input modal-
ity. Similarly, Fig. 5 (b) and (d) demonstrate distinguishable clustered patterns
for different modality combinations. This adaptability allows our MMPedestron
model to dynamically select appropriate strategies for multi-modal feature fu-
sion according to the specific modality combination. The modality-aware token
features ensure the generalization ability of MMPedestron to diverse modalities
and modality combinations.

5.7 Runtime Analysis

We conduct the runtime analysis of MMPedstron with a batchsize of 1 on one
RTX-4090 GPU in a single thread. MMPedestron achieves near real-time per-
formance (24fps) on the FLIR [19] dataset. Model compilation, pruning, and
quantization can further enhance speed, but they are beyond this paper’s scope.

6 Conclusion

In this paper, we have presented a pioneering approach to multi-modal pedes-
trian detection. We introduced the MMPD benchmark, which is the first large-
scale benchmark specifically designed for developing and evaluating multi-modal
pedestrian detection models. Building upon this benchmark, we proposed MM-
Pedestron, which effectively handles diverse modalities and scenarios. Through
comprehensive experiments, we have demonstrated the effectiveness of our MM-
Pedestron model. We hope our work could serve as a valuable foundation for the
development of future multi-modal generalist pedestrian detection models.
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