
Supplementary material PLS-LSA

Paul Albert1, Jack Valmadre1, Eric Arazo2, Tarun Krishna3,
Noel E. O’Connor3, Kevin McGuinness3

1 Australian Institute for Machine Learning, University of Adelaide
2 CeADAR: Ireland’s Centre for Applied Artificial Intelligence
3 Insight Centre for Data Analytics, Dublin City University

paul.albert@adelaide.edu.au

Supplementary material overview. Section 1 details the training hyper-
parameters for experiments on the CNWL, mini-Webvision and Webly-fg datasets.
Section 2 reports results when training PLS-LSA and PLS-LSA+ on mini-
Webivision using a ResNet50 as well as results for related state-of-the-art algo-
rithms. Section 3 studies if PLS-LSA+ and other SOTA co-training alternatives
produce individual neural networks that are significantly more accurate than non
co-trained strategies. Section 4 studies different strategies for LSA including us-
ing a trusted ID/OOD subset, different alternating strategies and computing
the linear separation using features at different depth in the network. Section 5
shows the complementarity of the noise retrieval metrics used in PLS-LSA and
examples of missed clean examples by one metric but retreived by the other. Sec-
tion 7 reports top-2 and top-5 accuracy results for the Webly-fg datasets. Finally,
Section 8 displays noisy images detected using PLS-LSA for the mini-Webivision
or the Webly-fg datasets.

1 Training details

1.1 CNWL

The Controlled Web Noisy Label (CNWL) [8] proposes a controlled web-noise
corruption of MiniImageNet [18] where some images of the original dataset are
replaced with human curated incorrect samples obtained from web-queries on the
corresponding class. We train on the CNWL at a resolution of 32×32 using a pre-
activation ResNet18 [5]. We train for 200 epochs using a cosine decay scheduling
from a learning rate of 0.1. We optimize the network using stochastic gradient
descent (SGD) with a weight decay of 0.0005. For training augmentations, we use
random cropping and horizontal flipping, for the strong augmentations, we use a
random resize copping strategy followed by RandAugment [4] with parameters
1 and 6. For unsupervised pretraining, we train SimCLR for 1.000 epochs using
the solo-learn [17] library.

1.2 mini-Webvision

Webvision [12] is a real world classification web-dataset over the classes of Im-
ageNet [10] the original paper estimates the noise level in Webvision to be be-
tween 20% to 34%. As in previous research, we train on the first 50 classes
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Table 1: Classification accuracy training on mini-Webvision using ResNet50. We de-
note with † algorithms using unsupervised initialization. We test on the mini-Webvision
valset and ImageNet 1k test set (ILSVRC12). We run PLS and PLS-LSA, other results
are from the respective papers. −− denotes that the papers did not report any results.
We bold the best results. Accuracy results averaged over 3 random seeds ± one std.

Valset M DM †C2D TCL LCI NCR †PLS-LSA †PLS-LSA+

mini-WebVision top-1 76.0±0.2 76.3±0.36 79.4±0.3 79.1 80.0 80.5 82.5±0.2 83.2±0.2

top-5 90.0±0.1 90.7±0.16 92.3±0.3 92.3 −− −− 94.1±0.8 94.8±0.2

ILSVRC12 top-1 72.1±0.4 74.4±0.29 78.6±0.4 75.4 −− −− 79.9±0.2 80.6±0.3

top-5 89.1±0.3 91.2±0.12 93.0±0.1 92.4 −− −− 94.6±0.6 95.2±0.1

(mini-Webvision) which yields 65, 944 training images and using an Inception-
ResNetV2 [16] or a ResNet50 [9] architecture. We train at a resolution of 224×224
for 130 epochs and otherwise the same optimization regime as for the CNWL
dataset (cosine lr decay, SGD, weight decay 0.0005) but with a batch size of
64 and from an initial learning rate of 0.02 (0.01 for ResNet50). The training
augmentations are resizing to 256 × 256 before random cropping to 224 × 224
and random horizontal flipping. The strong augmentations are first resizing to
256×256 then random resize cropping to 224×224 and applying RandAugment
with parameters 1 and 4. For unsupervised pretraining, we train SimCLR for
400 epochs using the solo-learn library.

1.3 Webly-fg

We also evaluate PLS-LSA on the Webly-fine-grained (Webly-fg) datasets [15]
which are real world fine-grained classification datasets build from web queries.
We train specifically on the web-bird, web-car and web-aircraft subsets that re-
spectively contain 200, 196 and 100 classes. Each dataset contains 18.388, 21.448,
13.503 training, and 5.794, 8.041, 3.333 test images. We train a ResNet50 net-
work with a batch size of 32, at a resolution of 448 × 448 for 110 epochs. Our
intial learning rate is 0.006 and we train using cosine decay, SGD and a weight
decay of 0.001). The training augmentations are resizing to 512×512 then crop-
ping to 448×448 and random horizontal flipping. For the strong augmentations,
we resize to 512 × 512 then random resize crop to 448 × 448 and apply Ran-
dAugment with parameters 1 and 4. Unsupervised pretraining is the same as
Webvision but at a resolution of 448× 448.

2 mini-Webvision results with ResNet50

We report in Table 1 results for noise-robust algorithms training a ResNet50 on
the mini-Webvision dataset. We report results for Contrast to Divide (C2D) [22]
that trains DivideMix (DM) [11] from a SimCLR initialization, Twin Contrastive
Learning (TCL) [6] that trains a two-head contrastive network where the distri-
bution of ID and OOD samples are captured by a two mode Gaussian mixture
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model, Label Confidence Incorporation (LCI) [1] that uses a teacher network
trained on noisy data to supervise a noise-free student model and Neighbor Con-
sistency Regularization (NCR) [7] that regularizes samples close in the feature
space to have similar supervised predictions. Similarly to results using Incep-
tionResNetV2 in the main body of the paper, PLS-LSA improves over related
work from 1 to 2 accuracy points and PLS-LSA+ further improves the results
of PLS-LSA by 0.5 to 1 absolute point.

3 Are co-training benefits only limited to network
ensembling at test time ?

Because co-training is now a common strategy for label noise robustness as many
newer methods [3, 14, 21] build up on DivideMix (DM) [11], we aim to find out
if co-training strategies produces better individual networks or if they are better
simply because a network ensemble is used at test time.
We train PLS-LSA+ using the following co-training strategies: an independent
approach (Indep) where the only interactions the two networks have is the test
time prediction ensemble, the DivideMix co-training strategy (DM) where a net-
work predicts noisy samples for the other and semi-supervised imputation is done
using the ensemble prediction of the networks, a naive voting strategy (Vote)
where the noisy samples are selected when detected as noisy by both networks
(also ensembling for SSL imputation) and our co-training strategy (Ours) where
we use the voting strategy but use a co-guessing strategy for the pseudo-loss of
PLS (one network validates the SSL imputation for the other).
We report results training PLS-LSA+ using these co-training strategies for noise
ratios 0.2 and 0.8 on the CNWL dataset in Table 2. The results are displayed
as best accuracy for the ensemble (Ens) and for the individual (Indiv) networks.
We additionally report the p-value obtained from a T-test of the current strat-
egy against the independent one to evaluate if the improvement of the current
co-train strategy are statistically better than the independent strategy.
We find that our co-training is the strategy producing the most statistically
significantly more accurate individual networks (p < 0.05) and that the semi-
supervised co-validation strategy is important to acheive improved individual
networks (Ours vs Vote). We recommend that future label noise research uti-
lizing co-training strategies to conduct similar experiments to prove that the
co-training strategy is beneficial beyond network ensembling.

4 Human labeled subset

4.1 Improved noise retrieval using a trusted subset

We visualize here the noise retreival capacities of PLS, RRL, WPLS and WRRL

by plotting the Receiver Operating Characteristic Curves (ROC) when identi-
fying noisy samples on the CNWL dataset under 20% and 80% noise. Although
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Table 2: Is co-training better than network ensembling ? We report the p-value of each
strategy against the independent one. CNWL dataset. We bold the best accuracy
and underline p-values under 0.05

20% noise 80% noise

Indep DM Vote Ours Indep DM Vote Ours

Ens. 66.15±0.23 66.24±0.22 66.23±0.18 66.64±0.37 50.61±0.49 50.83±0.01 50.76±0.48 51.88±0.36

p-value 1 0.72 0.74 0.19 1 0.20 0.85 0.20

Indiv. 63.95±0.42 64.56±0.46 64.52±0.13 64.71±0.28 47.50±0.48 48.34±0.10 48.38±0.74 49.07±0.31

p-value 1 0.06 0.015 0.007 1 0.05 0.28 0.03
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Fig. 1: ROC for different noise-retrieval metrics. We report PLS (loss-based) and RRL
(feature-based), the refined detection when they are used as a support set for the
logistic regressor (WPLS and WRRL respectively) and results where trusted examples
(100, 1k or 10k) are used for training the logistic regressor. Features extracted after
the block 2 of a PreAct ResNet18.

this is not a case we study in this paper, we additionally report here the perfor-
mance of utilizing a human annotated subset (oracle) to compute W . We run
experiments where we train the logistic regressor on 10.000 (10k), 1.000 (1k)
and 100 randomly selected and ID/OOD-annotated samples. Figure 1 reports
the results. We find that WPLS and WRRL import on the metrics that are based
on. As little as 100 trusted samples provide a strong noise detection especially
in high noise ratios. We leave this information for future work.

4.2 PLS-LSA with a trusted subset

We utlize here the trusted subset computed in the previous subsection to train
PLS-LSA/ Results and the comparison against our unsupervised solution can
be found in Table 3. We observe that for up to 40% noise corruption, our unsu-
pervised approach performs on par with using 100 to 1.000 trusted samples yet
the added supervision of even 100 trusted ID/OOD samples becomes beneficial
for the 60% and 80% noise scenarios.
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Table 3: Training PLS-LSA using trusted subsets. CNWL dataset with various noise
levels. PLS-LSA uses WPLS for the linear separation while others use a trusted subset
e.g W100. Results averaged over 3 runs ± one std

Noise ratio 0.2 0.4 0.6 0.8

PLS-LSA 64.43±0.21 61.14±0.35 57.18±0.30 49.53±0.46

100 64.51±0.34 61.48±0.20 58.07±0.33 50.35±0.43

1k 64.62±0.31 61.83±0.18 58.16±0.55 50.84±0.38

10k 64.88±0.31 62.07±0.30 58.61±0.25 51.43±0.40

Table 4: Different alternating strategies for LSA

Noise ratio 0.2 0.8

modulo 2 64.43±0.21 49.53±0.46

random 64.44±0.02 48.32±0.17

random sample 63.15±0.24 46.21±0.58

4.3 Different strategies to alternate feature and loss detection

We study here different strategies for alternating between Z and W . We propose
to compare the approach proposed in the main body of the paper (modulo 2)
against a random choice every epoch with a probability of 50% (random) or
a random choice for each training sample (random sample) at a given epoch
instead of using the same strategy for all samples. Results are displayed for
the CNWL dataset under noise perturbations of 0.2 and 0.8 in Table 4. We
observe that alternating randomly between Z and W is similarly accurate than
regulated alternation every other epoch (modulo 2). Doing a random selection at
the sample level (random sample) is however less accurate. These results appear
to evidence that maintaining a selection logic (linear separation or small-loss)
for a period of time of at least one epoch in our case is beneficial.

4.4 Computing the linear separation at different depth

We study here the influence of computing the linear separation on features at
different depth in the network. We run PLS-LSA utilizing features extracted
after blocks 0-3 in the ResNet18 architecture as well as utilizing the contrastive
projection (block 4 in this case). The results can be found in Table 5. We find that
features extracted at block 1 produce the more accurate networks and that the
accuracy degrades when using deeper layers. These results are coherent with the
observed noise retrieval accuracy using the linear separation in the main body
of the paper. For every experiment where we run PLS-LSA, we use average-
pooled then L2 normalized features at the end of the 2nd block of our ResNet
architecture (feature dimension 128) for W .
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Table 5: Using features after different ResNet blocks to compute WPLS , CNWL.

Noise 0.2 0.4 0.6 0.8

0 64.19±0.38 60.66±0.41 57.00±0.15 48.41±0.10

1 64.43±0.21 61.14±0.35 57.18±0.30 49.53±0.46

2 63.79±0.27 60.35±0.29 56.92±0.16 49.25±0.62

3 63.41±0.36 60.19±0.14 56.52±0.27 49.01±0.29

4 63.73±0.03 59.92±0.03 55.79±0.17 48.45±0.78
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Fig. 2: Clean samples missed by our linear separation but retrieved by PLS or RRL.
PLS-LSA trained on the CNWL 20%.

5 Missed important samples

5.1 Complementary noise detections

We report how complementary our linear separation retrieval is with a generic
small loss approach by plotting every epoch of training PLS-LSA how much of
the missed clean samples is retrieved by either PLS or RRL. Figure 2 displays
the results where we observe that up to 80% of the missed samples are retrieved
and that the further the PLS-LSA training progresses, the less clean samples
our linear separation misses (from 40% of the total clean samples at the start of
training to less than 20% at the end).

5.2 LSA improves small loss noise detection

Another observation we make of the mutual benefits of our linear separation
alternating is the improved noise retrieval of the original PLS metric (small loss)
when training PLS-LSA as opposed to PLS alone. Figure 3 reports the AUROC
for the PLS noise detection metric retrieving noisy samples in the PLS or PLS-
LSA configurations. We observe that the small loss retrieval of PLS is improved
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Fig. 3: PLS-LSA improves the small loss noise retrieval of PLS. CNWL under 20% or
80% noise.

when trained with LSA, highlight the complementarity and resulting mutual
improvement of each metric.

5.3 Visualizing missed clean samples

Figure 4 displays examples of clean samples missed by our linear separation de-
tection. We display images for classes 0, 15, 17, 25, 36, 45, 59, 61, 95 and 96 of the
CNWL dataset (randomly selected). We notice how most of the missed samples
are the target object displayed on a uniform background free of distractors. We
also report in Figure 5 the opposite scenario: clean images missed by PLS but
successfully identified as clean by our linear separation. In this second scenario,
we observe that the images missed by PLS but retrieved by our linear separation
appear to be more difficult images with a cluttered background or presenting a
small instance of the target class.

6 Additional results for CLIP ViT architectures and
other noise robust algorithms

6.1 CLIP architectures

We provide here some results on training PLS-LSA on ViT architectures pre-
trained using a CLIP-like framework [13]. We obtain pretrained weights from the
open-clip repository [2] and finetune the ResNet-50 and ViT-B/32 architectures
on the CNWL and Webivison datasets. Results are reported in Table 6 where
we add non-robust training with mixup and PLS as baselines. We find that LSA
scales well when applied to the CNWL dataset but Webvision improvements are
less convincing, supposedly because the margin for improvement is small. These
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Fig. 4: Examples of clean samples missed by our linear separation WPLS but correctly
recovered by PLS (green). 20% noise CNWL. Repeated from the main body for con-
venience
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Fig. 5: Examples of clean samples missed by PLS but correctly recovered by our linear
separation WPLS (green). 20% noise CNWL.
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Table 6: PLS-LSA with CLIP. Top-1 accuracy

Dataset CNWL 0.4 CNWL 0.8 Webvision

ViT-B/32
mixup 84.06 78.94 83.80
PLS 85.72 80.04 85.12

PLS-LSA 86.70 82.22 85.20

ResNet-50
mixup 77.54 69.56 81.88
PLS 77.72 70.04 82.36

PLS-LSA 78.60 71.78 82.64

Table 7: LSA applied to ProMix. Top-1 accuracy with a PreActivation ResNet18.

Dataset CNWL 0.4 CNWL 0.8 Webvision (32x32)
ProMix 60.70 46.54 64.80
ProMix-LSA 64.00 50.96 68.12

PLS-LSA+ 63.42 52.03 69.16

early results suggest that LSA is generalizable to transformer architectures and
different manners of contrastive pre-training.

6.2 ProMix-LSA

We report here additional results when training LSA with ProMix [19] the cur-
rent leader of the CIFAR-N datasets [20] leaderboard 4. We compare ProMix-
LSA with PLS-LSA+ as ProMix utilizes an ensemble of two networks to pre-
dict. We report results on the CNWL dataset and Webvision at the resolution
of 32 × 32 as ProMix requires an amount of VRAM too large to train at full
resolution with our resources. ProMix-LSA largely improves over ProMix alone
in all scenarios.

7 Top-n accuracy web-fg datasets

We report Top-2 and Top-5 accuracy results of PLS-LSA on the Web-fg datasets
in Table 8. We observe that top-2 accuracy offers a significantly improvement
over top-1 classification which indicates that PLS-LSA rarely catastrophically
fails as if the target class is not the most accurate prediction is is often the
second best.

8 Example of detected noisy samples

Figure 6 reports examples of training samples we detect as noisy with PLS-LSA
and Figures 7, 8 and 9 report detected noisy examples on Web-car/bird/aircraft.

4 http://noisylabels.com/
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Table 8: Top-K classification accuracy of PLS-LSA on the Webly-fg datasets

Web-Aircraft Web-bird Web-car
Top-1 87.82 79.47 86.76
Top-2 95.11 84.73 94.03
Top-5 97.54 93.92 97.57

Tiger shark

Hen

Magpie

Great grey
owl

Common
newt

Eft

Bullfrog

Tree frog

Tailed frog

Whiptail

Fig. 6: Examples of detected noisy samples in Webvision
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Fig. 7: Examples of detected noisy samples in Web-car
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Fig. 8: Examples of detected noisy samples in Web-bird
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Fig. 9: Examples of detected noisy samples in Web-aircraft
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