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Abstract. Training a classifier on web-crawled data demands learning
algorithms that are robust to annotation errors and irrelevant exam-
ples. This paper builds upon the recent empirical observation that ap-
plying unsupervised contrastive learning to noisy, web-crawled datasets
yields a feature representation under which the in-distribution (ID) and
out-of-distribution (OOD) samples are linearly separable [2]. We show
that direct estimation of the separating hyperplane can indeed offer
an accurate detection of OOD samples, and yet, surprisingly, this de-
tection does not translate into gains in classification accuracy. Digging
deeper into this phenomenon, we discover that the near-perfect detec-
tion misses a type of clean examples that are valuable for supervised
learning. These examples often represent visually simple images, which
are relatively easy to identify as clean examples using standard loss- or
distance-based methods despite being poorly separated from the OOD
distribution using unsupervised learning. Because we further observe
a low correlation with SOTA metrics, this urges us to propose a hy-
brid solution that alternates between noise detection using linear sep-
aration and a state-of-the-art (SOTA) small-loss approach. When com-
bined with the SOTA algorithm PLS, we substantially improve SOTA
results for real-world image classification in the presence of web noise
https://github.com/PaulAlbert31/LSA

1 Introduction

Developing learning algorithms that are robust to label noise promises to enable
the use of deep learning for a variety of tasks where automatic but imperfect
annotation is available. This paper studies the specific case of web-noisy datasets
for image classification. A web-noisy dataset [25,33] is in fact the starting point
for most generic image classification datasets, before human curation and label
correction is conducted. To create a web-noisy dataset, the only required human
intervention is the definition of a set of classes to be learned. Once the classes are
defined, examples are recovered by text-to-image search engines, sometimes aided
by query expansion and image-to-image search. Since the text surrounding an
image on a web-page may not be an accurate description of the semantic content
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of the image, some training examples will incorrectly represent the target class,
leading to a degradation of both the model’s internal representation and its final
decision. Research has identified that, in the case of web-noisy datasets, out-of-
distribution (OOD) images are by far the most dominant form of noise [3].

We propose to build upon the observations made in SNCF [2], who observed
that representations learned by unsupervised contrastive algorithms on OOD-
noisy datasets displayed linear separability between in-distribution (ID) and
OOD images. We extend this observation to web-noisy datasets containing OOD
images where we notice that the separation is not as good as SNCF observed on
synthetically corrupted datasets. Upon further investigation, we however notice
that the separation is recovered when evaluating intermediate representations,
computed earlier in the network. Another limitation of SNCF we aim to address
is the reliance on clustering to retrieve the noisy samples so we propose to directly
estimate the linear separator. We compute an approximated linear separation
using SOTA noise-robust algorithms [1, 24] to obtain an imperfect clean/noisy
detection, which we then use to train a logistic regression on the unsupervised
contrastive features. This produces an accurate web-noise detection.

Interestingly, when substituting our more accurate noise detection for the
original detection metric in naive ignore-the-noise algorithms and subsequently
the noise robust algorithm PLS [1], we observe a decrease in classification ac-
curacy. In fact, we identify that few simple yet important clean examples are
missed by our linear separation although they are correctly retrieved by SOTA
noise detection [1,24]. Because we find that our linear separation is decorrelated
these SOTA noise detectors, we propose a detection strategy that combines lin-
ear separation (which achieves high specificity and sensitivity) and SOTA noise-
detection approaches (which correctly retreive those few important samples) by
alternating each every epochs. We combine this noise detection with PLS to cre-
ate PLS-LSA which we find to be superior to existing noise-robust algorithms
on a variety of classification tasks in the presence of web-noise. We contribute:

1. A novel noise detection approach that extends the work of SNCF [2] to web-
noisy datasets where we improve the detection of OOD samples present in
web-noise datasets by explicitly estimating the linear separation between ID
and OOD samples. We demonstrate that this detection strategy is weakly
correlated to existing small-loss and distance-based approaches.

2. An investigation into the disparity between noise retrieval performance and
classification accuracy of noise-robust algorithms.

3. A novel noise correction approach, Linear Separation Alternating (LSA),
that combines linear separation with uncorrelated SOTA noise detection.

4. A series of experiments and ablation studies, including a voting co-training
strategy PLS-LSA+ that concurrently trains two models. We conduct these
experiments on controlled and real-world web-noisy datasets to demonstrate
the efficacy of our algorithm PLS-LSA.
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2 Related work

Detection and correction of incorrect labels The most popular approach
to tackle label noise is to explicitly detect ID samples with incorrect labels, either
because they are harder to learn than their clean counterparts or because they
are distant from same-class training samples in the feature space. Noise detection
strategies include evaluating the training loss [5,10,23,28], the Kullback-Leibler
or Jensen-Shannon divergence between prediction and label [40], the entropy or
the confidence of the prediction [3,18] or the consistency of the prediction across
epochs [35]. An alternative is to measure the distance between noisy and clean
samples in the feature space: RRL [24] detects noisy samples as having many
neighbors from different classes and NCR [16] regularizes training samples with
similar feature representations to have similar predictions, reducing noisy label
overfitting. We also note here that all recent label noise algorithms utilize the
mixup [43] regularization which has proven to be highly robust to label noise [5].

While many noise-robust algorithms have proposed loss-based or distance-
based noise detection metrics, the distinct advantages and biases of each strategy
remain unexplored. Furthermore, considering that loss-based and distance-based
detections are sufficiently decorrelated, combining the strengths of these distinct
metrics is appealing, yet has not been previously explored. This paper observes
the decorrelation of some noise detection metrics and proposes a non-trivial
combination that improves generalization noise-robust algorithms over either
metric taken independently.

Out-of-distribution noise in web-noisy datasets In web-noisy datasets,
OOD (or open-world) noise is the dominant type [3]. Since ID noise is still present
in small amounts in web-noisy datasets, algorithms propose concurrently detect
ID and OOD noise. EvidentialMix [29] and DSOS [3] use specialised losses that
exhibit three modes when evaluated over all training samples. Each of the modes
are observed to mostly contain clean, OOD and ID noisy samples. A mixture
of gaussians is then used to retrieve each noise type. SNCF [2] observed that
unsupervised contrastive learning trained on a web-noisy dataset learns repre-
sentations that are linearly separated between ID and OOD samples and use
a clustering strategy based on OPTICS [4] to retrieve each noise type. The
linear separability of in-distribution (ID) and out-of-distribution (OOD) repre-
sentations noted in SNCF holds promise but has yet to be transitioned from
synthetically corrupted to web-noisy data. This paper aims to address this gap.

Unsupervised learning and label noise Optimizing a noise robust (un)-
supervised contrastive objective together with the classification loss can help
improve the representation quality as well as detect OOD samples in the feature
space. ScanMix learns SimCLR representations as a starting point for noise-
robust contrastive clustering [30] and SNCF [2] observes linear separability on
unsupervised iMix features [22]. Unsupervised contrastive features have also been
used to initialize networks prior to noise-robust training in PropMix [10] and
C2D [46] or used as a regularization to the supervised objective in RRL [24].
While unsupervised initialization or regularization has been employed to enhance
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the generalization accuracy of networks trained under label noise, our primary
focus lies in its ability to detect noisy samples before starting the supervised
learning phase. We aim to enhance the linear separation observed in SNCF,
particularly by extending it from synthetically corrupted to web-noisy datasets
and by eliminating the requirement for clustering.

In this review, we find that unsupervised learning shows promise in identi-
fying OOD images even before noise-robust supervised training begins. While
many algorithms demonstrate an effective identification of OOD images in syn-
thetically corrupted datasets, their generalization to web-noisy datasets is non-
evident. Furthermore, although we observe a high correlation between loss-based
and distance-based metrics, neither correlates directly with the linear detection
observed in SNCF. We propose to evaluate the disparities between these metrics
and to explore potential combinations to enhance noise detection, surpassing the
capabilities of each metric taken independently.

3 Linear Separation Alternating (LSA)

This section details the contributions of this paper and the alternating noise
detection strategy we use to combat label noise. We consider in this paper the
case of a noisy web-noisy image dataset D = {xi,yi}Ni=1 of size N where the im-
ages X = {xi}Ni=1 are associated with a classification label {yi}Ni=1 ∈ {1, . . . C}.
We denote vectors with bold letters. The classification labels are expected to be
possibly mis-assigned, i.e. incorrectly characterize the target object in the image
they are assigned to (label noise). The clean or noisy nature of the training sam-
ples is unknown. Our goal is to learn an accurate classifier Φ(x) that performs
an accurate classification despite the label noise present in X . In our case, we
consider that Φ is a neural network.

3.1 Identifying OOD images in web-noisy datasets

This section proposes to detect OOD images in web-noisy datasets by building
on the detection of SNCF [2]. SNCF observes that an unsupervised algorithm
trained on a web-noisy dataset containing OOD images will learn linearly sepa-
rable representations for the ID and OOD samples in the dataset. While this is
primarily an empirical observation, it was hypothesized to be a consequence of
the uniformity and alignment principles of contrastive learning [38]. The align-
ment principle in contrastive learning encourages samples with similar visual
features to cluster together while the uniformity principle encourages training
samples to be uniformly distributed in the feature space. OOD images cannot
satisfy the alignment principle since they are visually different from all other im-
ages in the dataset and are pushed by all ID samples on one side on hypersphere,
becoming linearly separable from the ID samples [2]. As an aside, this hypoth-
esis implies that the linear separation may not occur when training on visually
similar out-of-sample images, a problem which we will revisit in the following
sections. Importantly, the separability of ID and OOD samples only occurs for
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Fig. 1: Extending the work of [2] we observe that for web noise (CNWL), ID and OOD
samples become more separable in earlier representations in the network

samples the unsupervised algorithm is trained on and cannot generalize to new
unseen OOD images.

Although SNCF [2] observed the ID/OOD separation on synthetically cor-
rupted datasets, i.e CIFAR-100 [20] corrupted by ImageNet32 [9], Figure 1 fur-
ther described below shows that we do not observe as good a separation when
moving to the web-noisy CNWL [18] but that the separability improves when
looking at earlier representations. The weaker separability of OOD/ID images
in web-noisy datasets compared to artificially corrupted datasets is explained by
OOD images in web-noise datasets retaining weak semantic similarities with ID
images. This is particularly true at the text level, which exhibited relevant sim-
ilarities for the search engine during dataset creation. We propose that stronger
separation occurs in low-level representations because they are more generic.
Earlier representations easily align ID images of the same class due to shared
low-level semantics, while OOD samples only become overfit in deeper layers,
thus making separation increasly more difficult. A lesser corruption of earlier
representations by label noise has for example been observed in [28].

Linear separation improves in deeper layers Our first contribution is then
to observe that although the linear separation between ID and OOD is less evi-
dent in web-noisy datasets, it improves again when using earlier representations.
Figure 1 gives an overview of the linear separability of ID and OOD images in
the CNWL dataset [18] (web-noise) compared to the CIFAR-100 dataset [20]
artificially corrupted with OOD images from ImageNet32 [9] using the unsu-
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pervised algorithm SimCLR [8] to pre-train a PreActivation ResNet18 [15]. To
compute the lower level features, we average-pool then L2 normalize represen-
tations at the end of each ResNet block. To compute the linear separability, we
utilize the clean-noisy oracle to train a non-penalized logistic regressor to pre-
dict noise from the unsupervised features. The linear regressor is then evaluated
on a held-out noisy test set previously unseen by the regressor. We report the
area under the ROC curve (AUROC) for the logistic regressor to identify cor-
rect/incorrect training samples. Our train/test split for evaluation of the linear
classifier comprises 45, 000 training and 5, 000 testing images, and is constructed
from the full 50, 000 training images available for the overall classification task,
all of which were used in unsupervised representation learning.

Estimating the linear separator A straight-forward approach to estimating
the linear separation is to task human annotators to label randomly selected
samples as ID or OOD, thus fulfilling the oracle role in Section 3.1. This strat-
egy is usually referred to as learning to combat label noise with a trusted subset
T̂ = {xi, ẑi}Ki=1 where ẑi = 1 means that the image xi is OOD (ẑi = 0 for ID).
Although we will show in the supplementary material that a good approximation
for the linear separator can be achieved even given a small human-labeled sub-
set of 100 images, most state-of-the-art noise robust algorithms do not rely on
ID/OOD human annotations. We thus propose to estimate T̂ in an unsupervised
manner. The unsupervised strategy of SNCF [2] is to use a clustering approach
based on OPTICS [4]. We propose in this paper to avoid clustering and instead
to train the linear separation using an unsupervised ID/OOD subset T̂ .

We propose to build T̂ using unsupervised noise detection metrics z(xi,yi) =
ẑi [1,23,24,26,27]. We will examine recent examples of loss-based and distance-
based noise detections later in the paper. Given T̂ estimated from Z = {zi}Ni=1,
we can train the linear regressor to effectively refine the estimated noisiness
of a training sample (xi) to Lr(xi, zi) = wi where Lr is a linear classification
algorithm. Effectively, given the initial noise detection Z and the unsupervised
contrastive features, we produce an improved one W = {wi}Ni=1, the linear-
separation detection.

We find that, although an unsupervised T̂ contains detection errors, we still
accurately estimate the linear separation due to the natural outlier robustness
of linear classifiers. We additionally attempted to construct T̂ by selecting only
the M most confidently clean/incorrect samples according to the metric z but
found that it lead to a less accurate W .

3.2 Does better noise detection imply better classification?

We aim to quantify the accuracy benefits of W over loss-based or distance-
based noise detection strategies. We select PLS [1] for the loss-based approach
(small loss strategy as in [5, 10, 23, 40]) and RRL [24] for the distance-based
approach (similar to [16,27,30]). To avoid interacting with complex noise-robust
mechanisms, we employ an ignore-the-noise algorithm whereby we train on the
detected clean samples only using a cross-entropy loss. To obtain the RRL and
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Table 1: Using multiple noise detection metrics to train a naive noise-ignoring algo-
rithm on the CNWL datset. We report noise retreival performance and classification
accuracy. None signifies training without noise removal. We bold the best results and
underline the worst, higher is better. Results averaged over 3 random seeds ± std

Noise ratio ↓ Metric → None PLS RRL WPLS WRRL Oracle

0.2
AUROC − 66.4±0.2 58.4±0.2 84.9±0.2 84.9±0.0 100

Clean recall − 81.9±0.1 94.6±0.4 89.3±0.1 89.3±0.1 100
Noise recall − 50.9±0.4 22.3±0.4 80.5±0.4 80.5±0.1 100

Accuracy 56.9±0.1 59.5±0.1 58.9±0.2 58.6±0.2 58.0±0.1 60.2±0.2

0.8
AUROC − 58.1±0.1 54.8±0.2 63.4±0.2 62.3±0.1 100

Clean recall − 86.7±0.2 90.8±0.1 95.1±0.4 93.4±0.0 100
Noise recall − 29.5±0.1 18.8±0.3 31.7±0.1 31.2±0.1 100

Accuracy 38.5±0.1 45.1±0.2 43.1±0.2 41.3±0.2 41.7±0.1 46.2±0.2

PLS detection, we train the algorithms using the official code and utilize the
noise detection at the end of training. We then estimate WPLS and WRRL as
detailed in Section 3.1 using unsupervised SimCLR features. Table 1 reports
the results on the CNWL under 20% and 80% web noise where we report noise
detection performance by computing an AUROC curve and the clean or noisy
recall as well as the classification accuracy of the ignore-the-noise algorithm.

Surprisingly, we observe that although WRRL/PLS improves the noise metrics
in terms of AUROC and noise recall, using it to detect the noise decreases the
classification accuracy of Φ. This implies that W mis-identifies important samples
needed to achieve high accuracy classification.

3.3 Clean samples missed by the linear separation

Following the observation of missing important samples in the previous section,
we take a look at the clean images missed by W . We observe that missed clean
samples predominantly represent the target object on a uniform background
(typically black or white). In the context of ID and OOD separation through the
alignment and uniformity of unsupervised contrastive learning presented in Sec-
tion 3.1, this observation suggests that the unsupervised contrastive algorithm
aligns uniformly colored background using this simple visual cue and indepen-
dently of the ID or OOD class depicted. This problem is similar to the case
where the OOD noise is structured, i.e. contains subsets of highly similar OOD
images (humans holding OOD objects would be a common example).

Although W misses important examples, because these depict the target ob-
ject with no distractors in the background, we suggest that they will easily be
detected by the original SOTA noise detection metrics, biased toward detect-
ing simple to fit or highly representative samples. In fact, we show in Figure 2
randomly selected clean examples missed by WPLS most of which are correctly
retrieved by PLS. Examples for the opposite scenario can be found in the sup-
plementary material.
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Fig. 2: Examples of clean samples missed by our linear separation WPLS but correctly
recovered (green) by a small loss approach, here PLS. 20% noise CNWL.

3.4 Linear Separation Alternating

Because PLS and RRL retreive samples that W misses, we aim to quantify the
correlation between these noise detection metrics to justify their complemen-
tarity. We observe in Figure 3 that while the noise detection of RRL and PLS
remain correlated during training (> 0.8 Pearson correlation) our linear separa-
tion W is much more decorrelated with either RRL or PLS (< 0.5). This low
correlation further motivates the complementarity of W with SOTA noise de-
tection approaches. We also notice that using either PLS or RRL for the trusted
subset T̂ leads to very similar linear separation as WPLS and WRRL are highly
correlated, explained by RRL and PLS being highly correlated to begin with.

To combine W and Z (PLS or RRL), we experiment with multiple combina-
tion strategies including voting or successive use (see Section 4.2). We find that
alternating every epoch between W and PLS or RRL to be the better strategy.
One dominant advantage of the alternating strategy is that it prevents forgetting
one noise-detection over the other, effectively avoiding a form of confirmation
bias [6] where mis-detections become hard to correct. We name this alternating
noise detection strategy Linear Separation Alternating or LSA. Results compar-
ing combination strategies are available in the experiments, Section 4.2.

3.5 PLS-LSA

LSA is independent from the noise-robust algorithm used whether it performs
distance-based or loss-based noise detection. We choose to build on PLS [1], a
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Fig. 3: Low correlation of our linear separation with the PLS and RRL metrics trained
on CNWL with 20% web noise. WPLS/RRL denotes using PLS or RRL for T̂ .
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Fig. 4: Illustration of the noise detection of PLS with LSA (PLS-LSA). We use Z to
estimate the linear separation W on even epochs.

semi-supervised strong baseline in web-noise robust algorithms. The following
is a quick overview of the PLS algorithm [1]. In PLS, the network predicts two
noisiness estimation metrics: a general noisiness z(xi,yi) = zi that estimates if
a sample is clean zi = 1 or noisy zi = 0 (small loss based, using a two mode
gaussian mixture [5, 23]) and the pseudo-loss prediction p(xi, ỹi, zi) = pi that
estimates whether a semi-supervised imputation ỹi is a trustworthy correction
for a noisy sample (pi = 1). PLS optimizes 3 losses :

Lsup(xi,yi, zi) = −zi × yi × log(softmax(Φ(xi))), (1)
Lssl(xi, ỹi, pi) = −pi × ỹi × log(softmax(Φ(xi))) (2)

and Lcont a supervised contrastive objective [22] that uses a SimCLR augmented
view x′

i and is sensitive to pi whose definition we refer to the original paper [1].
The final training loss in PLS without subscripts is

LPLS(x,x
′,y, z, p) = Lsup(x,y, z) + Lssl(x, ỹ, z, p) + Lcont(x,x

′,y, p) (3)

We call our version of PLS using LSA, PLS-LSA where we pretrain Φ using
SimCLR and replace Z with W on even epochs, i.e. on even epochs we compute
pi = p(xi, ỹi, wi) and Lsup(xi,yi, wi). For W we use features extracted in the
second ResNet block, an ablation can be found in the supplementary material.
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3.6 Semi-supervised imputation and Co-training

Because PLS-LSA lacks some common additions to the recent noise-robust lit-
erature, we propose to use a stronger data augmentation for semi-supervised
imputation and introduce an optional voting co-training strategy. We modify
the PLS label imputation strategy as follows: given x′′

i augmented using Ran-
dAugment [12], we modify the semi-supervised loss of PLS to

Lssl(xi,x
′′
i , ỹi, pi) = −pi × sg(softmax(Φ(xi)))× log(softmax(Φ(x′′

i ))) (4)

where sg(.) is the stop gradient operation. This imputation strategy is in line
with recent semi-supervised classification research [31,42].

PLS-LSA+ is a co-training strategy for PLS-LSA that uses two co-trained
networks. We use a voting approach where the two networks vote for noisy
samples detection zi, wi and pi as well as for classification at test time. Our voting
noise detection is different from previous approaches [14,23,30] where networks
predict noisiness for each other. Additionally, before voting on pi we introduce
a co-guessing strategy where a semi-supervised prediction ỹi of network 1 is
evaluated as correct by network 2. The naive strategy would be each network
evaluating if their own guess is correct which introduces more confirmation bias.

4 Experiments

4.1 Structure of the experiments section

We structure the experiment section as follows. First we study different com-
bination strategies for PLS and WPLS . We then conduct an ablation study of
PLS-LSA to highlight the importance of each of our proposed addition over PLS.
We finally compare PLS-LSA with SOTA algorithms on the Controlled Noisy
Web Labels (CNWL) dataset [17] and real world datasets mini-Webvision [25]
and Webly-fg [33]. The CNWL dataset corrupts miniImageNet [37] with human
curated web-noisy examples. The dataset proposes noise ratios ranging from 20
to 80%. Following previous research, we train on the CNWL at a resolution
of 322 using a PreActivation ResNet18 [15]. mini-WebVision is a subset of the
first 50 classes of Webvision [25] which mimic ImageNet [21] classes. We train
on mini-WebVision at a resolution of 2242 using an InceptionResNetV2 [34].
The Webly-fg datasets are noisy datasets that target fined-grained classification
of aircrafts, birds or cars. We train at a resolution of 4482 using a ResNet50
initialized either on ImageNet as done in previous research or using SimCLR.
All datasets contain unidentified web-noisy samples, which are either OOD or
ID noisy (mislabeled). We compare the performance of noise-robust algorithms
trained on web-noisy datasets by their ability to accurately classify a clean valida-
tion set. More detailed experimental settings are available in the supplementary
material.

Our experimental settings are the same as used in PLS [1] and comparable
to evaluation settings used in the algorithms we compare with. Unless otherwise
specified, we initialize our networks using SimCLR [8] and solo-learn [36].
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Table 2: Best strategy to combine PLS and WPLS on the CNWL.

Noise ratio 0.2 0.4 0.6 0.8

PLS 62.30±0.24 59.11±0.28 54.26±0.20 48.71±0.36

WPLS 62.97±0.23 60.41±0.05 52.18±0.12 47.11±0.08

AND 62.66±0.34 58.80±0.41 54.82±0.15 48.19±0.11

OR 58.79±0.40 58.27±0.34 50.57±1.11 45.93±0.69

WPLS −→PLS 62.88±0.46 59.89±0.14 52.34±0.12 48.88±0.23

PLS−→ WPLS 63.49±0.12 60.21±0.12 55.36±0.84 49.23±0.21

LSA 64.20±0.16 60.98±0.24 55.64±0.30 49.73±0.13

Oracle 64.10±0.10 61.45±0.22 56.04±0.39 50.19±0.48

Table 3: Ablation study CNWL

Dataset mini 20% mini 80%

Baselines

mixup 57.27±0.39 38.48±0.24

mixup + SimCLR 57.03±0.10 39.62±0.28

PLS 62.83±0.39 45.80±0.72

PLS + SimCLR 62.39±0.14 47.21±0.63

PLS ours 63.25±0.24 48.03±0.38

PLS-LSA ablation

PLS-LSA 64.61±0.51 48.20±0.16

PLS-LSA no SimCLR 64.04±0.27 47.29±0.27

PLS-LSA no DA 63.25±0.21 43.55±0.45

PLS-LSA no SimCLR DA 61.83±0.55 43.75±0.35

PLS-LSA+ ablation

PLS-LSA+ 66.52±0.10 52.03±0.32

PLS-LSA+ no SimCLR DA 66.34±0.27 47.68±0.59

Table 4: Ablation study We-
bvision

Algorithm Webvision

mixup 77.99
mixup + SimCLR 78.88
PLS 79.01
PLS-LSA 81.36
PLS-LSA no SimCLR 78.68
PLS-LSA no DA 79.00
PLS-LSA no SimCLR DA 76.80

4.2 Combining PLS and WPLS

We investigate here mulitple strategies for PLS-LSA combining the decorrelated
W and PLS so that we can maximize classification accuracy on the held out
validation set. We propose to use AND or OR logic operators (clean is false
and noisy true), sucessive noise detection where we train using either metric
for the first half of training and then switch to the other for the remainder
(WPLS −→PLS and PLS−→ WPLS) or our alternating approach (LSA) where
either metric is alternatively used every epoch. Table 2 displays our results.

We find that two strategies are superior to the PLS baseline: the second best
strategy is PLS−→ WPLS , explained because the simple samples WPLS misses
are less important to get right in later training steps when the network has
already learned strong base features for each class. The LSA strategy is the
best approach overall, we believe this is because training the algorithm on both
detection regularly allows to learn from the clean training examples provided
by both metrics while avoiding over-fitting either metric’s defects. These results
solidify LSA as the better alternative for combining W and PLS.
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Table 5: CNWL [18] (32× 32). We run PLS and PLS-LSA; other results are from [1].
We report top-1 best accuracy and bold the best results with and without co-training.
Accuracy results averaged over 3 random seeds ± one std.

No co-training Co-training

Noise level M MM FaMUS SNCF PLS PLS-LSA DM SM PM LRM MDM PLS-LSA+

20 49.10 51.02 51.42 61.56 63.25±0.24 64.43±0.21 50.96 59.06 61.24 56.03±0.5 64.40 66.52±0.10

40 46.40 47.14 48.03 59.94 60.42±0.23 61.14±0.35 46.72 54.54 56.22 50.69±0.3 61.40 63.42±0.42

60 40.58 43.80 45.10 54.92 55.34±0.38 57.18±0.30 43.14 52.36 52.84 46.81±0.3 56.20 59.41±0.30

80 33.58 33.46 35.50 45.62 48.03±0.20 49.53±0.46 34.50 40.00 43.42 38.24±0.2 47.80 52.03±0.32

4.3 Ablation study

We conduct an ablation study to evaluate the importance of each of our design
choices in Table 3. We first ablate on the CNWL dataset under 20% and 80%
noise. We evaluate the improvements of SimCLR when added to a simple noise
robust training using Mixup or the original PLS algorithm. Interestingly we ob-
serve that unsupervised initialization has little effect on validation accuracy for
lower noise ratios. We also report PLS (ours) which denotes our improved version
of PLS (PLS-LSA without LSA) which uses SimCLR initialization and improved
data augmentations. Our version performs slightly better when compared to the
original PLS. The second part of the table ablates elements from PLS-LSA: Sim-
CLR initialization, stronger data augmentation (DA) or both (nothing). Strong
data augmentations appears to be an important element of PLS-LSA. This is
explained by our semi-supervised imputation strategy being largely dependent
on stronger data augmentations whereas another SSL imputation strategie (i.e.
MixMatch [7] used in PLS) would be better suited when not having access to
stronger DA. Interestingly, PLS-LSA does not catastrophically fail when we re-
move the SimCLR initialization. This hints towards observing the linear separa-
tion without self-supervised pre-training and shows that the alternating strategy
provides stability though to the original PLS detection. We finally observe that
PLS-LSA+ nothing manages to use co-training to maintain a high accuracy in
the lower noise scenario even if we remove SimCLR initialization and strong DA.

We additionally run ablations experiments on mini-Webvision to measure
impacts in the real world. Results are available in Table 4. In this context,
SimCLR initialization appears to play a more important role than on the CNWL
and is important to maintain a good classification accuracy with PLS-LSA.

4.4 SOTA comparison on the CNWL dataset

We compare with related SOTA on the CNWL dataset corrupted with 20, 40, 60, 80%
web noise in Table 5. We report the accuracy results of both PLS-LSA and PLS-
LSA+. The noise-robust algorithms we compare with are Mixup [43] a noise
robust regularization, FaMUS [39] a meta learning approach and sample cor-
rection algorithms: DivideMix (DM) [23], MentorMix (MM) [18], ScanMix [30],
PropMix (PM) [10], SNCF [2], LongReMix (LRM) [11], Manifold DivideMix
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Table 6: Classification accuracy for training on mini-Webvision using InceptionRes-
NetV2. We denote with † algorithms using unsupervised initialization. We test on
the mini-Webvision valset and ImageNet 1k test set (ILSVRC12). We run PLS and
PLS-LSA, other results are from SNCF [2]. We bold the best results. Accuracy results
averaged over 3 random seeds ± one std.

No co-training Co-training

Testset M MM RRL FaMUS PLS FLY †PLS-LSA DM ELR+ DSOS †SM RM SNCF+ †PLS-LSA+

mini-WebVision top-1 75.44 76.0 77.80 79.40 79.01±0.33 80.96 81.28±0.11 77.32 77.78 78.76 80.04 79.91 80.24 82.08±0.28

top-5 90.12 90.2 91.30 92.80 92.05±0.46 93.56 94.12±0.09 91.64 91.68 92.32 93.04 93.61 93.44 94.16±0.10

ILSVRC12 top-1 71.44 72.9 74.40 77.00 76.15±0.35 −− 78.32±0.74 75.20 70.29 75.88 75.76 77.39 77.12 79.19±0.52

top-5 89.40 91.10 90.90 92.76 92.53±0.23 −− 94.64±0.20 90.84 89.76 92.36 92.60 94.26 94.32 94.84±0.25

(MDM) [13] and PLS [1]. We find that PLS-LSA improves over existing ap-
proaches even when these use a co-training strategy (PLS-LSA only uses one
network). PLS-LSA+ further improves the classification accuracy by 2 to 5 ab-
solute points across noise levels.

4.5 Real world datasets

We now evaluate PLS-LSA on real world datasets. For mini-Webvision we add to
the comparison a robust loss algorithm Early Learning Regularization (ELR) [26],
as well as additional sample correction algorithms: Robust Representation Learn-
ing (RRL) [24], DSOS [3], RankMatch (RM) [45] and LNL-Flywheel (FLY) [19].
We also report our results on the webly fine-grained datasets as well as for
Co-teaching [14], PENCIL [41], SELFIE [32], Peer-learning [33] and Progressive
Label Correction (PLC) [44] which are all sample correction algorithms.

mini-Webvision We train PLS-LSA on mini-Webvision and report test results
on the validation set of mini-Webvision and well as on the validation set of Im-
ageNet2012 [21] in Table 6. We outperform co-training methods with PLS-LSA
using only one network and PLS-LSA+ sets a new state-of-the-art by improving
over PLS-LSA in terms of top-1 accuracy but we notice no significant improve-
ments for top-5 accuracy. We report additional results when training a ResNet50
on mini-Webvision in the supplementary material where we observe similar im-
provements of PLS-LSA and PLS-LSA+ when compared to related works.

Webly-fg datasets We train PLS-LSA on the Webly-fg datasets [33] that
present the added challenge of fine-grained classification over mini-Webvision.
We report results on the bird, car and aircraft subsets in Table 7. Because other
methods use ImageNet weights for pre-training, we report results using either
ImageNet or SimCLR pretraining to exhibit the linear separation between ID
and OOD noise. We find that PLS-LSA only marginally improves over PLS even
in the case where we use self-superivsed features. We found that learning strong
SimCLR features for Webly-fg datasets is challenging due to the fine grained
nature of the dataset. It could be the case that using a different set of data
augmentations or a different self-supervised algorithm would help improve our
performance further. PLS-LSA+ improves 0.7 to 0.8 points over PLS-LSA.
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Table 7: Comparison against state-of-the-art algorithms on the fine grained web
datasets, we run PLS-LSA and bold the best results. Results for other algorithms
from [1]. Top-1 best accuracy.

Initialization Algorithm Web-Aircraft Web-bird Web-car

ImageNet

CE 60.80 64.40 60.60
Co-teaching 79.54 76.68 84.95

PENCIL 78.82 75.09 81.68
SELFIE 79.27 77.20 82.90

DivideMix 82.48 74.40 84.27
Peer-learning 78.64 75.37 82.48

PLC 79.24 76.22 81.87
PLS 87.58 79.00 86.27

PLS-LSA 87.70 79.20 86.58
PLS-LSA+ 88.42 79.77 87.24

SimCLR PLS-LSA 87.82 79.47 86.76
PLS-LSA+ 88.51 80.03 87.50

5 Conclusion

This paper builds on the previously observed linear separation of ID and OOD
images in unsupervised contrastive feature spaces in the context of label noise
datasets. We observe that the linear separation of ID and OOD features is not as
evident as previously observed when moving to real-world data yet becomes ap-
parent again when looking at lower level features. Instead of relying on clustering
as done in previous research, we propose to compute the linear separation using
an approximate ID/OOD detection using state-of-the-art noise-robust metrics.
Although we find our noise detector to be highly accurate, we do not observe
classification accuracy gains when compared to less accurate SOTA noise de-
tectors. We evidence that the few samples we mis-identify are crucial to train
a strong classifier. We combine our detection together with PLS by alternat-
ing the noise detection approach every epoch to create PLS-LSA. We further
develop a co-train schedule using two networks to produce PLS-LSA+. Our re-
sults improve the SOTA classification accuracy on real-world web noise datasets.
Because we only empirically observe the linear separation in earlier layers, we
stress the need for further theoretical analysis of the phenomenon and encourage
further research in this direction. Other future work we recommend is to study if
intelligent alternating strategies could be developed to combine both detection
approaches based on the current noise detection bias in the network. We also
suggest that further attention be given to whether the linear separation can be
enforced from a random initialization and as training progresses to remove the
need for pretraining.
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