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Abstract. Recent neural implicit representations (NIRs) have achieved
great success in the tasks of 3D reconstruction and novel view synthesis.
However, they require the images of a scene from different camera views
to be available for one-time training. This is expensive especially for
scenarios with large-scale scenes and limited data storage. In view of this,
we explore the task of incremental learning for NIRs in this work. We
design a student-teacher framework to mitigate the catastrophic forgetting
problem. Specifically, we iterate the process of using the student as the
teacher at the end of each time step and let the teacher guide the training
of the student in the next step. As a result, the student network is
able to learn new information from the streaming data and retain old
knowledge from the teacher network simultaneously. Although intuitive,
naively applying the student-teacher pipeline does not work well in our
task. Not all information from the teacher network is helpful since it
is only trained with the old data. To alleviate this problem, we further
introduce a random inquirer and an uncertainty-based filter to filter
useful information. Our proposed method is general and thus can be
adapted to different implicit representations such as neural radiance field
(NeRF) and neural surface field. Extensive experimental results for both
3D reconstruction and novel view synthesis demonstrate the effectiveness
of our approach compared to different baselines.

Keywords: NIRs · Incremental learning · Knowledge distillation

1 Introduction

Recent neural implicit representations (NIRs) [34, 50, 55, 59] such as NeRF
and neural surface field have attracted increasing attention in the last few years
because of their great success in novel view synthesis and 3D reconstruction. The
key to these representations is to memorize the volume density or SDF value
and view-dependent color of every spatial point in the scene with a multi-layer
perceptron (MLP). Although the simple MLP networks implicitly represent the
3D scenes precisely, they require all images of a scene from different camera views
to be available for a one-time training. This is expensive especially for scenarios
with large-scale scenes and limited data storage. In view of this limitation, we
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Fig. 1: Visualization of the 3D reconstruction by MonoSDF [59] and our approach under
the incremental setting. MonoSDF fails to reconstruct 3D surface observed at t = 0
after being trained with new data because of the forgetting problem. In comparison,
our approach is able to reconstruct both previously seen and new data.

explore an important task of incremental learning for NIRs in this work. In the
incremental setting, the model trains on the current data without accessing any
previous data, but tests on both current and previous data.

The main challenge for incremental learning is the catastrophic forgetting
problem [41], where the network trained on only new incoming images drastically
forgets the previously learned knowledge. This is evident from the result of
MonoSDF [59] in Fig. 1, where the network is trained continuously with new
incoming data captured along the yellow trajectory. The triangles represent
camera views at different time steps, and green denotes the camera view at
the current time step and gray ones for previous steps. We can see that the
model fails to reconstruct the 3D scene observed at t = 0 after being trained
with new data. The catastrophic forgetting problem is widely discussed in the
incremental learning literature [1, 2, 27,31,62], and the most related work to ours
is Continual Neural Mapping (CNM) [54]. CNM is the first work that introduces
the incremental setting for 3D reconstruction using the Signed Distance Function
(SDF). A data-replay strategy [25] is adopted in CNM to mitigate the forgetting
problem. However, the data-replay still requires part of the previous training
data to be stored. Additionally, CNM only shows results for SDF-based 3D
reconstruction, while we aim for a general pipeline for different NIRs such as
NeRF and neural surface field.

In this work, we propose a student-teacher pipeline to tackle the catastrophic
forgetting problem in incremental NIRs. Specifically, we first train the model with
currently available data, and then use the trained model as the teacher model
with knowledge distillation strategy [17] to self-supervise the student network.
We iterate this process by using the student as the teacher at the end of each
time step, and letting the teacher guide the training of the student in the next
step. As a result, the student is able to learn from the newly available data
and preserve the old knowledge from the teacher simultaneously. Furthermore,
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we also propose an alternate optimization strategy such that the new data and
knowledge from the teacher can be effectively imparted to the student.

The aim of introducing the teacher network is to impart the knowledge
obtained from the previous training steps to the current student network. R2L [49]
uses random input views to distill information from a well-trained NeRF to a
compact network. However, the teacher network is trained only with the old views
in our case and thus is unable to generate useful knowledge for the unseen views.
To solve this problem, we further introduce a random inquirer and an uncertainty-
based filter for filtering useful knowledge. We adopt the self-supervised uncertainty
modeling from [20] to predict the uncertainty of the network for each input ray.
The inquirer randomly generates camera views for the uncertainty module and
the filter removes the uncertain queries based on a confidence score. Intuitively,
the uncertainty module would only have high confidence for the previously seen or
similar data, and hence it is able to filter out the incorrect knowledge generated
from the random query.

We evaluate the effectiveness of our proposed approach on two popular
NIRs, NeRF [34] and MonoSDF [59]. Extensive experimental results on both 3D
reconstruction and novel view synthesis show that our approach mitigates the
catastrophic forgetting problems effectively without storing previous training data.
Specifically, our method significantly improves 39.6% and 61.3% over MonoSDF
in terms of F1 on the large-scale datasets ICL-NUIM [16] and Replica [45].
Moreover, our approach outperforms NeRF by 36.3% and 63.9% in terms of
PSNR on the object-scale 360Capture [34] and large-scale ScanNet [11] datasets,
respectively. Our contributions are summarized as follows:

– We explore the incremental learning task for general NIRs.
– We propose a student-teacher pipeline to mitigate catastrophic forgetting in

incremental learning.
– We design the uncertainty filter and the random inquirer to generate and

select useful information for the student network.
– We significantly outperform baselines by a large margin for both 3D recon-

struction and novel view synthesis.

2 Related Work

Neural Implicit Representation. The neural implicit representations (NIRs) [10,
26,28,52,56] have shown remarkable potential in various computer vision tasks,
such as novel view synthesis [5, 6, 34] and 3D reconstruction [3, 47, 59]. The
pioneering work NeRF [34] introduced a simple yet effective MLP network to
implicitly capture the 3D scene and propose a differentiable rendering method for
generating novel view images. Many follow-up works have attempted to enhance
NeRF to fully exploit their potential, such as real-time rendering [40,57], faster
training [8,15,29,35], sparse view [42,58], generalizable model [9, 51], lightning
changing [32, 33], better representation [4, 60], etc. Some recent works [50, 55]
proposed neural implicit surfaces and incorporated the signed distance function
(SDF) into NeRF for smooth and accurate surface reconstruction. MonoSDF [59]
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further leveraged monocular depth and normal priors to achieve more detailed
reconstruction for larger 3D scenes. Despite the great success, existing NIRs
suffer from the catastrophic forgetting problem when continuously learning from
streaming data. In view of this problem, we focus on the under-explored and yet
important incremental settings for NIRs in this paper.
Incremental Learning. Incremental learning is a classical machine learning
problem where only partial data is available for training at each step. Existing
methods typically fall into three categories [12]: data replay [7, 22,30,39,43,44],
parameter regularization [1,21,27,38], and parameter isolation [2,14,31,53]. In this
paper, we revisit some classical incremental approaches to build strong baselines.
Specifically, PTAM [22] introduced keyframes replaying (KR) to avoid forgetting,
MAS [1] measured the parameter importance for each task and regularized the
important parameters, PackNet [31] assigned parameters subsets explicitly to
different tasks by constituting binary masks, POD [13] and AFC [19] employed
knowledge distillation on the intermediate network features. CNM [54] is the first
work on incremental learning for neural surface field, which reconstructs 3D surface
from streaming depth inputs using a reply-based method [25]. CLNeRF [63]
applies the data replay on NeRF for novel view synthesis. However, their method
still requires access to some of the previous data to prevent forgetting and they
mainly focus on the SDF or NeRF representation. In comparison, our approach
can be adapted to different NIRs without access to any previous data.
NIR-SLAM and Large-scale NeRF. Traditional simultaneous localization
and mapping (SLAM) [23,36,37] is able to reconstruct 3D scenes with streaming
data, which share similar spirits with our incremental setting. Recently, some
works such as iMAP [46] and NICE-SLAM [64] have adopted neural implicit
representation as the scene representation in SLAM and achieved promising per-
formance. These approaches mitigate the forgetting problem by storing keyframes,
as done in traditional SLAM. The drawback of using keyframes is that memory
usage will increase accordingly as the scene gets larger. On the other hand, Recent
NeRFusion [61] and Block-NeRF [48] handle large-scale scenes by incrementally
reconstructing a global scene representation by fusing local voxel representations.
However, the voxel-based representation requires substantial storage and the
fusion stage requires all the images of a scene. Moreover, all those approaches
work on one specific neural implicit representation while we propose a general
approach, which is also memory-efficient.

3 Preliminaries

3.1 Neural Implicit Representations

In this section, we present a unified formulation for the currently dominant
NIRs including NeRF [34] and neural surface field [55, 59]. The principal idea is
to use a simple neural network such as MLPs to memorize the color c = (r, g, b),
volume density σ for each location x = (x, y, z) and camera view direction
d = (θ, ϕ) in a 3D scene. While existing neural surface field predicts SDF value
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which is then converted to density, we use (c, σ) = F (x,d) to represent both
NeRF and neural surface field networks in this paper for simplicity. The per-pixel
RGB c(r) value of an image can be rendered with N 3D points taken along the
ray r from the camera center to the pixel as:

c(r) =
N∑
i=1

Ti

(
1− exp(−σiδi)

)
ci, (1)

where Ti = exp(−
∑i−1

j=1 σjδj) is the accumulated transmittance along the ray r
from camera center to ith 3D point, δi indicates the distance between ith sample
and (i + 1)th sample. Since the whole pipeline is differentiable, the rendering
output can be directly supervised by the RGB image:

L = Lrgb + [Leik] + [Lprior], where Lrgb =
∑
r∈R

(
||c∗(r)− c(r)||22

)
(2)

represents the rendering loss. c∗(r) denotes the ground truth color and R repre-
sents a group of rays from one or more camera views. Leik is the SDF regularizer
for neural surface field [50, 55, 59], and Lprior represents the geometry prior
term [59]. Generally, the prior term consists of depth and normal priors. More
details about the depth and normal priors are provided in supplementary material.
Note that Lrgb is the fundamental term for both NeRF and neural surface field.
Leik and Lprior are prior terms used in [59], which we denote with [.].

3.2 Catastrophic Forgetting of NIRs

Despite the impressive performance, existing NIRs require training on the
entire set of images covering all views. In practice, this may not be feasible in
the scenario of limited data storage or streaming data, which may require the
network to be trained on new data without revisiting old ones. This may lead to
the catastrophic forgetting of existing NIRs, where the network quickly forgets
previously learned knowledge while acquiring new knowledge. To address this
issue, we explore the task of incremental learning for NIRs with the goal of
mitigating the catastrophic forgetting problem.

4 Our Method

In this section, we first introduce the incremental setting for NIRs. We then
represent our proposed student-teacher pipeline with an uncertainty based filter
and an alternative optimization strategy.

4.1 Problem Definition

We consider a common scenario in the robotics or vision community, where
T + 1 groups of data D = {D0,D1, · · · ,DT } come in sequentially. The data
for each time step t consists of N pairs of images It and the corresponding
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Fig. 2: The overall framework of our proposed student-teacher pipeline. At time step
t, The student network learns simultaneously from the currently available data Dt

and the previously learned knowledge from the teacher network. The input of the
teacher network is generated with the random inquirer. The output is filtered with an
uncertainty based filter for useful information selection. V denotes the differentiable
volume renderer.

camera poses P t, i.e., Dt = {dt0, dt1, · · · , dtN}, where dtn = (Itn, P
t
n). Generally, the

camera poses do not overlap between different time steps. The task of incremental
learning for NIRs aims to continually learn from the newly arriving data Dt and
also preserve the knowledge from previously seen data D0:t−1.

4.2 Overview

The overall framework of our approach is illustrated in Fig. 2. It comprises
a student and a teacher network, both sharing the same architecture with a
density branch, a color branch, and an uncertainty branch. At each time step
t, the student learns simultaneously from the currently available data Dt and
the previously learned knowledge from the teacher network. The student model
trained in this step is then utilized as the teacher model in the next step and
imparts its acquired knowledge to the next student. We iterate this process
throughout the training process. To explore the knowledge space of the teacher
network, we design a random inquirer that generates camera views for the teacher
network. However, the teacher network can generate erroneous information for
randomly generated views because it only trains on previously seen data D0:t−1.
We further design an uncertainty branch to predict uncertainty scores and select
only reliable information from the teacher network.

4.3 Supervised Learning

At each time step t, we utilize the available data Dt to train the student
network directly with rendering loss. Except for the density and color, we also
predict the uncertainty value for each input to measure the confidence.
Uncertainty Modeling. We adopt the self-supervised uncertainty formulation
from [20] to model the uncertainty of the network for each input ray. This for-
mulation has also been used in previous NeRF-W [32] to distinguish the static



Uncertainty-filtered Incremental Knowledge Distillation for NIR 7

and transient scenes. With a different objective, we aim to indicate the confi-
dence of the network on the current input. Specifically, we build an additional
branch that shares the same input as the color branch to predict the uncertainty
(c, σ, β) = F (x,d). We adopt Softplus as the activation function on the uncer-
tainty for stable training. Finally, we compute the pixel-wise uncertainty from
each sample point using the same volume rendering technique as the color:

β(r) =
N∑

n=1

Ti

(
1− exp(−σjδj)

)
β̂i + βmin, where β̂i = log

(
1 + eβi−1

)
, (3)

Ti represents the accumulated transmittance expressed by Eqn. (1), and βmin

denotes a hyper-parameter that ensures the minimum uncertainty following [32].
Supervised Optimization. The objective function of supervised training is:

Lsup =
∑
r∈R

( ||c∗(r)− ct(r)||22
2

+
||c∗(r)− ct(r)||22

2 ∗ βt(r)2
+ log

(
βt(r)

)
+ η

)
, (4)

where η denotes the margin of the uncertainty regular term to avoid negative
values. Note that we only need to supervise the color and the uncertainty is
implicitly learned from the loss function. Intuitively, on one hand, the network
needs to predict a high uncertainty value when the color prediction is inaccurate
in order to minimize the loss function. On the other hand, the regularization
term log(βt(r)) prevents the network from predicting infinite uncertainty.

4.4 Knowledge Distillation

The network trained with only the currently available data at each time step
tends to forget the previously learned knowledge, referred as the catastrophic
forgetting problem. To prevent this, we further introduce a teacher network to
impart the previously learned knowledge to the current model.

Student-teacher Modeling. At each time step t, the student network Ft

concurrently learns from the teacher network Ft−1 and the new coming data Dt.
The student network is then used as the teacher network after each step. We
iterate the process of using the student as the teacher at the end of each step,
and let the teacher guide the student in the next step. As a result, the student
network can learn both new knowledge from Dt and old knowledge from Ft−1

and hence mitigate the forgetting problem. To facilitate the knowledge imparting
from the teacher to the student network, we introduce a knowledge distillation
loss [17]. Moreover, we initialize the parameters of the student network with that
of the teacher network. This initialization strategy also helps to mitigate the
forgetting problem since the parameters are learned from previously seen data.

Random Inquirer. The role of the teacher network is to impart old knowl-
edge, which means the inputs should be the same as the training data from
the previous time steps. However, the previous training data is not accessible
under the incremental setting. To solve this problem, we design a constrained
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random inquirer to generate inputs for the teacher network. For scenes where
the camera moves along a trajectory, we randomly generate camera views in
the range of each degree of freedom of the camera matrix from the previous
data. Specifically, we store the range of six values in the camera matrix, i.e.,
r = (xmin, xmax, ymin, ymax, zmin, zmax, αmin, αmax, βmin, βmax, γmin, γmax), at
each time step t. We first randomly choose a time step k from 0 : t− 1 at time
step t, and then randomly generate a group of the six values in the range of rk
to compute the camera matrix.

Uncertainty-based Filter. The role of the random inquirer is to explore
the knowledge space of the teacher network such that we can extract useful
information, i.e. the knowledge from previous time steps. However, the teacher
network might output incorrect knowledge since it has been trained only on
D0:t−1, while the input generated from the random inquirer covers the whole
dataset. To overcome this issue, we utilize the uncertainty module as described
in Sec. 4.3 for useful knowledge selection. Specifically, we take the average of the
output uncertainty value over rays from one camera view, and only select camera
views with an uncertainty smaller than a threshold βthr, i.e.:

R∗ ← R∗ ∪Rv, if
1

NRv

∑
r∈Rv

(
βt(r)

)
< βthr. (5)

Rv is the rays for camera view v generated from the random inquirer, NRv
is

the number of rays samples, and R∗ is the collection of data samples we use for
knowledge distillation. Intuitively, the network tends to output lower uncertainty
for previously seen data compared to unseen ones, and thus we can use R∗ to
approximate the unavailable data from the previous training step. Note that the
selection is conducted in terms of camera views, i.e. average over all ray samples
instead of a single ray. This is empirically shown to better distinguish the seen
and unseen images.

Distilled Optimization. Finally, we use the teacher network to guide the
student network via a knowledge distillation loss:

Ldis =
∑
r∈R∗

( ||ct−1(r)− ct(r)||22
2

+
||ct−1(r)− ct(r)||22

2 ∗ βt(r)2
+ log

(
βt(r)

)
+ η

)
, (6)

where ct−1(r) and ct(r) represent the output color of the teacher and student
model, respectively. R∗ denotes useful data selection from Eqn. (5). With knowl-
edge distillation, the student network is able to preserve the previously learned
knowledge throughout the whole training process.

4.5 Iterative Optimization

We propose an iterative optimization mechanism to enable the student network
to learn simultaneously from the current data Dt and knowledge from the teacher



Uncertainty-filtered Incremental Knowledge Distillation for NIR 9

Table 1: Comparison with baselines on the ICL-NUIM. (Best and second best results
are highlighted in bold and underlined, respectively.)

MonoSDF [59] MonoSDF* [59] CNM [54] MAS [1] PackNet [31] KR [22] POD [13] AFC [19] Ours
F1↑ 64.71 89.68 69.93 66.40 76.03 86.78 84.52 86.17 90.32
CD↓ 5.94 2.64 5.42 5.84 4.39 3.02 3.32 3.10 2.60

Table 2: Comparison with baselines on the Replica. (Best and second best results are
highlighted in bold and underlined, respectively.)

MonoSDF [59] MonoSDF* [59] iMAP [46] NICE-SLAM [64] CNM [54] MAS [1] PackNet [31] KR [22] POD [13] AFC [19] Ours
F1↑ 53.63 86.18 - - 67.52 58.75 61.99 79.67 72.59 74.96 86.52
CD↓ 8.58 2.94 4.99 2.93 6.54 7.98 7.49 3.99 4.56 4.20 3.11

network. Specifically, we alternatively optimize the supervised loss Eqn. (4) and
the knowledge distillation loss Eqn. (6), i.e.:

L =

{
Lsup + [Leik] + [Lprior], if i is even
Ldis + [Leik] + [Lprior_dis], otherwise

, (7)

where i denotes the iteration number, Lprior_dis represents that the prior comes
from the teacher network instead of the pre-trained model as in the Lprior.

5 Experiments

5.1 Experimental Settings

We apply our approach to currently dominant implicit representations NeRF [34]
and neural surface field [59], and show results for both novel view synthesis and
3D reconstruction.
Dataset. The previous NIRs conducted experiments on different types of
scenes, thus we consider the following datasets to cover: a) Object-scale scenes,
i.e. 360Capture [34]; b) Large-scale synthetic scenes, i.e. ICL-NUIM [16] and
Replica [45]; c) Large-scale real-world scenes, i.e. ScanNet [11]. For incremental
setting, we divide the images of each scene and the corresponding camera poses
into 10 time steps D = {D0,D1, · · · ,D9}.
Baselines. We compare against a) the main baselines NeRF [34] and MonoSDF [59]
under both incremental and batch training settings; b) SLAM-based NIRs
iMAP [46] and NICE-SLAM [64]; c) Reply-based NIRs CNM [54] and KR [22]
(replay 10 keyframes following iMAP [46]), ; d) Four representative incremental
learning baselines MAS [1], PackNet [31], POD [13], AFC [19].
Evaluation Metrics. For 3D reconstruction, we follow MonoSDF [59] to report
Chamfer Distance (CD) and F1 score with a threshold of 5cm. For novel view
synthesis, we follow NeRF [34] to report PSNR, SSIM, and LPIPS.
Backbone for 3D Reconstruction. In the 3D reconstruction experiments,
we adopt MonoSDF [59] as our backbone. Our network F consists of an SDF
network, a color network, and an uncertainty network. The density network
consists of eight fully connected (FC) layers with 256-channel, the color and
uncertainty networks are both two FC layers with 256-channel. We train our
network with a batch size of 1024 rays, where each ray samples 96 points.
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Table 3: Quantitative comparison with baselines on the 360Capture dataset. We show
results for each step test datasets D0,D3,D6,D9 and the average performance over
D0:9, respectively. All models are incrementally trained on the 10-step training datasets.

Method
Test Dataset (PSNR↑ / SSIM↑ / LPIPS↓)

D0 D3 D6 D9 Average on D0:9

NeRF [34] 16.10 / 0.468 / 0.276 14.97 / 0.407 / 0.357 15.50 / 0.512 / 0.323 18.18 / 0.636 / 0.217 15.56 / 0.468 / 0.317

NeRF* [34] 24.27 / 0.781 / 0.177 23.81 / 0.767 / 0.184 22.86 / 0.738 / 0.188 20.75 / 0.684 / 0.227 22.81 / 0.741 / 0.198

MAS [1] 18.15 / 0.552 / 0.273 16.42 / 0.500 / 0.332 16.95 / 0.525 / 0.374 17.35 / 0.551 / 0.340 17.02 / 0.513 / 0.341

PackNet [31] 17.21 / 0.497 / 0.349 17.09 / 0.491 / 0.378 17.01 / 0.489 / 0.390 14.45 / 0.417 / 0.447 16.52 / 0.474 / 0.388

KR [22] 18.76 / 0.629 / 0.225 19.50 / 0.625 / 0.238 21.14 / 0.682 / 0.213 19.46 / 0.657 / 0.328 19.68 / 0.642 / 0.240

POD [13] 18.54 / 0.585 / 0.269 17.29 / 0.502 / 0.317 18.17 / 0.542 / 0.270 18.31 / 0.573 / 0.291 17.79 / 0.561 / 0.291

AFC [19] 19.01 / 0.603 / 0.258 19.19 / 0.621 / 0.252 19.37 / 0.639 / 0.240 19.45 / 0.643 / 0.233 19.30 / 0.632 / 0.241

Ours 22.48 / 0.701 / 0.188 22.16 / 0.694 / 0.208 21.07 / 0.682 / 0.173 19.82 / 0.658 / 0.221 21.21 / 0.672 / 0.211

Table 4: Quantitative comparison with baselines on the ScanNet dataset. We show
results for each step test datasets D0,D3,D6,D9 and the average performance over
D0:9, respectively. All models are incrementally trained on the 10-step training datasets.

Method
Test Dataset (PSNR↑ / SSIM↑ / LPIPS↓)

D0 D3 D6 D9 Average on D0:9

NeRF [34] 12.61 / 0.580 / 0.396 11.59 / 0.505 / 0.571 15.65 / 0.578 / 0.470 25.95 / 0.876 / 0.145 13.78 / 0.576 / 0.460

NeRF* [34] 22.55 / 0.824 / 0.244 22.23 / 0.850 / 0.231 24.53 / 0.860 / 0.211 25.51 / 0.881 / 0.150 23.55 / 0.852 / 0.212

iMAP [46] 10.85 / 0.581 / 0.472 19.53 / 0.808 / 0.300 19.19 / 0.789 / 0.326 20.88 / 0.794 / 0.328 18.80 / 0.761 / 0.340

MAS [1] 16.40 / 0.669 / 0.366 12.15 / 0.595 / 0.512 15.76 / 0.684 / 0.455 22.22 / 0.812 / 0.303 15.76 / 0.673 / 0.402

PackNet [31] 12.74 / 0.535 / 0.488 11.99 / 0.604 / 0.456 13.60 / 0.630 / 0.429 11.49 / 0.550 / 0.457 12.75 / 0.592 / 0.439

KR [22] 14.03 / 0.598 / 0.392 12.72 / 0.583 / 0.525 16.69 / 0.691 / 0.396 22.02 / 0.801 / 0.271 16.04 / 0.663 / 0.397

POD [13] 15.23 / 0.639 / 0.399 12.83 / 0.597 / 0.472 15.27 / 0.660 / 0.420 22.10 / 0.812 / 0.268 15.35 / 0.661 / 0.407

AFC [19] 16.28 / 0.657 / 0.412 14.92 / 0.640 / 0.437 16.32 / 0.663 / 0.408 22.58 / 0.843 / 0.254 16.38 / 0.684 / 0.382

Ours 21.74 / 0.812 / 0.224 20.21 / 0.825 / 0.296 23.90 / 0.851 / 0.224 25.30 / 0.876 / 0.162 22.59 / 0.841 / 0.230

Backbone for Novel View Synthesis. In the novel view synthesis experiments,
we adopt NeRF [34] as our backbone. Specifically, our network F consists of
a density network, a color network, and an uncertainty network. The density
network consists of eight fully connected (FC) layers with 256-channel, the color
and uncertainty networks are both one FC layer with 128-channel. We train our
network with a batch size of 1024 rays, 64 points per ray for the coarse network
and 64 + 128 points per ray for the fine network. We adopt AlexNet [24] to
compute LPIPS.

5.2 Results on 3D Reconstruction

We first evaluate our approach for the neural surface field based representation.
We adopt MonoSDF as the backbone and show 3D reconstruction results on the
large-scale datasets ICL-NUIM and Replica.

ICL-NUIM. We show the results of our approach and the baselines on the
ICL-NUIM dataset in Tab. 1. We can see that the performance of MonoSDF drops
significantly when trained under incremental setting compared to the results
under batch training (MonoSDF*). Note that batch training means that all data
are available for one-time training, which is the upper bound of incremental
training. The incremental baselines only achieve minor improvement compared
with MonoSDF with the exception of KR. However, KR requires more memory
as shown in Tab. 7. In comparison, our approach improves over the MonoSDF
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baseline by 39.6% in F1 and is even slightly better than batch training while
keeping a low memory usage.
Replica. We further show results on the Replica dataset in Tab. 2. We can
see that MonoSDF and incremental baselines (MAS, PackNet, and KR) suffer
from the forgetting problem, which can be evident from the performance drop
compared to MonoSDF*. Our approach improves MonoSDF by 61.3% for F1
and also achieves similar performance with batch training. Compared to the
SLAM-based baselines, our model outperforms iMAP by a large margin and is
only slightly worse than NICE-SLAM. The better performance of NICE-SLAM
can be attributed to the use of more powerful representations compared to our
backbone MonoSDF. Moreover, the memory usage of SLAM-based baselines is
larger than ours and increases as the scene gets larger, as discussed in Sec. 5.5.
Note that we compare with different baselines on the two datasets since CNM
and SLAM-based NIRs (iMAP, NICE-SLAM) show results on the ICL-NUIM
and Replica, respectively.
Qualitative Results. We further show the qualitative comparison of the ICL-
NUIM and Replica datasets in Fig. 3. We can see that the MonoSDF baseline
learns well for the current scene (scenes outside the red box) but fails on previously
seen scenes (highlighted with red boxes) completely. In comparison, our approach
is able to reconstruct detailed geometries for both current and previous scenes,
achieving similar quality with “MonoSDF*” and ground truth.

5.3 Results on Novel View Synthesis

We then evaluate our approach for the novel view synthesis task. We adopt
NeRF as our backbone and show results for the 360Capture and ScanNet datasets.
The four columns D0,D3,D6,D9 denote the testing dataset at the corresponding
time step. The results are obtained from the final model, which has been trained
incrementally on all views D0:9. Thus D9 is the test dataset of current views and
D0:8 are the test datasets of previous views.
360Capture. We show the results of our approach and baselines on the 360Cap-
ture dataset in Tab. 3. We can see that the NeRF baseline suffers from the
forgetting problem, leading to a large performance drop on the testing data at
previous steps D0,D3,D6. The incremental baselines (MAS, PackNet, and KR)
mitigate the forgetting problem to some extent with limited improvement. In
comparison, our approach is able to perform consistently well on previous testing
data with improvements over the NeRF baseline by 39.6%, 48.0%, and 35.9% for
D0,D3,D6, and 36.3% for D0:9 in PSNR.
ScanNet. We further show results for the more challenging large-scale ScanNet
dataset in Tab. 4. We can see that both the NeRF baseline and incremental
baselines perform poorly on the testing datasets of previous time steps because
of the severe forgetting problem caused by little overlap between images in this
dataset. Benefiting from the student-teacher pipeline, our method still achieves
promising results with significant improvements over incremental baselines (MAS,
PackNet, and KR) and SLAM-based baseline iMAP. Comparable performance
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Table 5: Ablation studies of proposed modules on ICL-NUIM and 360Capture datasets.

Method
ICL-NUIM 360Capture
F1↑ CD↓ PSNR↑ SSIM↑ LPIPS↓

w/o s-t 64.71 5.94 15.56 0.452 0.405

w/o filter 81.63 3.82 19.39 0.639 0.248

Ours 90.32 2.60 21.21 0.672 0.211
w/ P 0:t 89.50 2.65 21.38 0.673 0.207

Table 6: Ablation studies of generalizability to different models on ScanNet dataset.

Method Baseline Ours
NeRF [34] 13.78 / 0.576 / 0.460 22.59 / 0.841 / 0.230

Tri-MipRF [18] 20.34 / 0.712 / 0.339 27.02 / 0.854 / 0.190
ZipNeRF [6] 21.78 / 0.739 / 0.302 27.85 / 0.876 / 0.172

is also achieved with batch training NeRF*, which further demonstrates the
effectiveness of our approach.

Qualitative Results. We further show qualitative comparison on the ScanNet
scene 101 and 360Capture scene V asdeck in Fig. 4. As we can see, the original
NeRF suffers from the catastrophic forgetting problem and outputs images on
previous time steps D0,D3,D6 with severe artifacts including noise and blur. In
comparison, our approach generates realistic images with comparable quality to
the batch training. This suggests the effectiveness of our proposed approach in
mitigating the forgetting problem.

5.4 Ablation Study

Proposed Module. As shown in Tab. 5, we conduct ablation studies for both
neural surface field and NeRF representations on the ICL-NUIM and 360Capture
datasets, respectively. We verify the contribution of our proposed components
student-teacher modeling (s-t) and uncertainty-based filter (filter) by removing
each component at a time. As can be seen that the performance drops when each
component is removed. Specifically, our approach becomes the original NeRF
or MonoSDF when the student-teacher modeling is removed, and the model
fails completely. Without the uncertainty-based filter, the performance drops
significantly for incremental 3D reconstruction task on the ICL-NUIM dataset.
This is because the output of the teacher network is not necessarily correct for
any input generated from the random inquirer, and the incorrect information
can mislead the student during the knowledge distillation. Additionally, we also
show results when the camera poses of previous time steps are stored, denoted as
w/ P 0:t. We can see that we achieve comparable performance with this scenario
although we do not store any data from the previous time step.

Generalize to different NeRF models. We also apply our proposed approach
to the most recent NeRF models, including Tri-MipRF [18] and ZipNeRF [6],
to show the generalization over different backbones. As shown in Tab. 6, we
consistently outperform different backbones on ScanNet.
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Fig. 3: Qualitative comparison on the ICL-NUIM and Replica datasets. Both ‘MonoSDF’
and ‘Ours’ models are incrementally trained on the 10-step training datasets. The red
boxes are the previously learned views.
Table 7: The memory usage analysis for all baselines and Ours on Replica dataset.

MonoSDF [59] MonoSDF* [59] iMAP [46] NICE-SLAM [64] CNM [54] MAS [1] PackNet [31] KR [22] POD [13] AFC [19] Ours
Memory(MB) 0 300 30 30 2 16 11 30 33 19 3

5.5 Memory Analysis

As Tab. 7 shown, we further provide the memory usage analysis for all
methods presented in Tab. 1 and Tab. 2. Among the baselines, iMAP, NICE-
SLAM, CNM, KR, and POD require additional space to store keyframes, MAS,
PackNet, and AFC need memory to save the importance score or masks for
network parameters. POD, AFC, and ours use a distillation strategy that stores
the teacher model. The batch training method MonoSDF* requires much more
memory than other baselines for storing a full batch of data. We can conclude
that our model achieves better performance with smaller memory usage based
on the memory usage (Tab. 7) and the performance comparison (Tab. 2).

Memory replay technique plays a crucial role in mitigating the forgetting
problem in existing SLAM-based methods [46, 64] and incremental NIRs [54,63].
These approaches require additional memory allocation to store the previously
seen data. To understand the relationship between memory utilization and
performance, we conducted experiments using the strongest baselines NICE-
SLAM with varying memory capacities on the large-scale scene Apartment [64],
as shown in Fig. 5. We can see that performance improves as memory usage
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Fig. 4: Qualitative comparison on the ScanNet and 360Capture datasets. ‘NeRF’ and
‘Ours’ models are incrementally trained on the 10-step training datasets. D0,D3,D6

denote the results of previous views from each time step test datasets and D9 is the
results of current views from the latest test dataset.
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Fig. 5: Comparison of Ours and NICE-SLAM with different memory usage.

increases from 0 to 5,000MB (equivalent to the batch training method MonoSDF*).
In comparison, our approach performs similarly to MonoSDF* (5.12cm) while
maintaining minimal memory consumption (around 3MB).

6 Conclusion

In this paper, we explore the task of incremental learning for Neural Implicit
Representations (NIRs). We propose a student-teacher pipeline for mitigating
the catastrophic forgetting problem. To improve the effectiveness of the data
provided by the teacher network, we further design a random inquirer and an
uncertainty-based filter for useful knowledge distillation. Supervised learning and
knowledge distillation are iteratively utilized for the combination of preserving
old information and learning current new data. Experiments on both 3D recon-
struction and novel view synthesis demonstrate that our model achieves great
improvement compared to baselines under the incremental setting.
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