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Abstract. Reconstructing intensity frames from event data while main-
taining high temporal resolution and dynamic range is crucial for bridg-
ing the gap between event-based and frame-based computer vision. Previ-
ous approaches have depended on supervised learning on synthetic data,
which lacks interpretability and risk over-fitting to the setting of the
event simulator. Recently, self-supervised learning (SSL) based methods,
which primarily utilize per-frame optical flow to estimate intensity via
photometric constancy, has been actively investigated. However, they
are vulnerable to errors in the case of inaccurate optical flow. This paper
proposes a novel SSL event-to-video reconstruction approach, dubbed
EvINR, which eliminates the need for labeled data or optical flow es-
timation. Our core idea is to reconstruct intensity frames by directly
addressing the event generation model, essentially a partial differential
equation (PDE) that describes how events are generated based on the
time-varying brightness signals. Specifically, we utilize an implicit neural
representation (INR), which takes in spatiotemporal coordinate (x, y, t)
and predicts intensity values, to represent the solution of the event gener-
ation equation. The INR, parameterized as a fully-connected Multi-layer
Perceptron (MLP), can be optimized with its temporal derivatives super-
vised by events. To make EvINR feasible for online requisites, we propose
several acceleration techniques that substantially expedite the training
process. Comprehensive experiments demonstrate that our EvINR sur-
passes previous SSL methods by 38% w.r.t. Mean Squared Error (MSE)
and is comparable or superior to SoTA supervised methods. Project page:
https://vlislab22.github.io/EvINR/.

1 Introduction

Event cameras [13,55] are novel sensors that offer numerous advantages over tra-
ditional frame-based cameras, including low power consumption, high dynamic
range (HDR), and high temporal resolution [34]. However, their unique imag-
ing paradigm presents a challenge when applying vision algorithms designed
for frame-based cameras. To address this challenge and bridge the gap between
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Fig. 1: Connection between event generation model and EvINR: Event gen-
eration model reveals the relation between discrete events and continuous temporal
intensity changes, described as the event generation equation (Eq. 4). EvINR utilizes
an INR to solve Eq. 4 and recovering a continuous function of intensity w.r.t. time,
implicitly parameterized with a fully connected MLP.

event-based and standard computer vision [10,15,17,18,36], many methods have
been proposed to reconstruct intensity frames from events.

Early methods primarily rely on hand-crafted integrators or filters, resulting
in significant loss of detail in reconstructed results [3,22,28,40,59]. More recently,
deep learning-based methods [6, 35,41,49,53,64] have emerged, typically super-
vised by large-scale synthetic datasets generated using an event simulator [14,19].
However, the interpretability of these methods is limited due to the ‘black-box’
nature of the neural networks. Furthermore, the performance of these methods
is constrained by the domain gap between synthetic and real-world data [49],
leading to suboptimal results if the event simulator’s settings do not accurately
match those of the inference data. To address these issues, some researchers have
explored self-supervised learning (SSL) frameworks [31,60], aiming to eliminate
the dependency on labeled synthetic data. Nonetheless, these approaches still
depend on event-based optical flow estimation, which is prone to over-fitting,
occlusions, and non-convergence issues [44, 45]. As a result, the reconstructed
frames often suffer from the loss of textural details and various artifacts.

To address these challenges, we revisit the event generation model [13], which
forms a fundamental link between events and intensity. The event generation
model can be expressed as a partial differential equation (PDE), describing
how events are triggered by logarithmic intensity changes that exceed a cer-
tain threshold. This PDE, known as the event generation equation, establishes
a direct connection between discrete events and the partial derivative of the
continuous intensity function w.r.t. time. Our key insight is that, solving the
event generation equation offers an ideal self-supervised solution for event-to-
video reconstruction, thereby eliminating the need for synthetic data or optical
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flow estimation. However, several properties of event data make solving the equa-
tion nontrivial: 1) events can be triggered at extremely high frequencies (up to
108/s), which results in a large volume of data and a heavy computational bur-
den. 2) events are inherently noisy, particularly in extreme visual conditions [51],
which pose challenge to the robustness of solvers. 3) events do not capture the
initial intensity, which makes determining the boundary values challenging.

Recently, implicit neural representations (INRs) have gained popularity for
solving the inverse problems in 3D reconstruction or image super-resolution [8,
26,46] by parameterizing complex signals via deep neural networks. In this work,
we find that INRs possess several key advantages that render them particularly
suitable for solving the event generation equation: they inherently accommo-
date a large volume of event data, exhibit high noise tolerance, and
are flexible to add additional loss terms to regulate initial value.

In light of this, we propose a novel SSL framework, termed EvINR, that
employs an INR to represent the solution of the event generation equation. Our
EvINR can be directly optimized by minimizing the residual between its tem-
poral derivatives and local intensity changes estimated from event data based
on the event generation model (Sec. 3.2). Moreover, we incorporate a spatial
regularization term that regularizes the relative values of adjacent pixels by con-
straining the magnitude of spatial gradients, which effectively reduces noise in
the reconstruction process (Sec. 3.2). Although the basic implementation of Ev-
INR yields acceptable results, its convergence on seconds-long event sequences
takes minutes, limiting its real-world applicability, especially in online scenarios.
To expedite EvINR’s training process, we introduce several acceleration tech-
niques, including frame-based optimization, coarse-to-fine training, and model
ensembling. These approaches reduce the training time from minutes to seconds
while not compromising the reconstruction quality (Sec. 3.4).

Moreover, most approaches are typically evaluated on event datasets cap-
tured by DAVIS sensors [27, 42, 49, 61], making it difficult to evaluate their sta-
bility and robustness to other types of event camera [1, 2, 39]. For this reason,
we collected a new event dataset using an ALPIX-Eiger event camera [1], with
well-aligned events and intensity frames.

In summary, our paper makes three key contributions: (I) We propose Ev-
INR, a concise SSL framework that solves the event generation equation via im-
plicit neural representations for event-to-video reconstruction. (II) Our EvINR
substantially outperforms previous SSL methods [31, 40, 59] and attains com-
parable, or even superior, performance compared to state-of-the-art supervised
methods [35,49,53]. (III) We collect a real-world dataset with an ALPIX-Eiger
event camera, complementary to the datasets captured by DAVIS cameras.

2 Related Works

Implicit Neural Representations (INRs) have emerged as a powerful tool
for parameterizing signals, such as images, videos, and audio, in a continu-
ous manner using neural networks [46]. Compared to traditional discrete sig-
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Fig. 2: Overview of EvINR. A fully connected MLP is used to implicitly solve the
event generation equation. The temporal gradient of the MLP is supervised by temporal
intensity changes of events, and the spatial gradient is penalized to reduce noise.

nal representations, INRs offer the advantage of being able to be sampled at
arbitrary resolutions with fixed memory requirements. As a result, INRs have
found widespread applications in various fields, including 3D scene represen-
tation [25, 26, 32], video representation [7], generative models [29, 43, 47], and
model compression [50]. A unique property of INRs is that they can be ef-
fectively learned from the derivatives of signals, such as the normals of 3D
shapes [30,46,58] and the gradients of images [46]. Such a characteristic has moti-
vated us to approach the task of event-to-video reconstruction by optimizing the
INR of video from its temporal derivatives. Previous research has investigated
the potential of INR for novel view synthesis using event data [20,24,38]. These
approaches reconstruct 3D neural radiance fields using multiple event sequences
with known camera poses from a stationary scene. Most similar to our work,
E-CIR [48] uses polynomial to regress the intensity function, which may only
represent a short time interval (e.g., the exposure time of an image). In contrast,
our method employs INR, which can represent longer time of intensity change.
Event-based Video Reconstruction has been a hot topic in the literature.
Early attempts [3, 9, 21] address this problem based on the photometric con-
stancy, which describes the relationship between intensity gradients and optical
flow. Other approaches [28, 40] are based on direct event integration without
estimating optical flow. Rebecq et al . [35] developed the first DL-based frame-
work, called E2VID, to reconstruct intensity frames from events in an end-to-
end manner, outperforming earlier techniques by a significant margin. E2VID
was updated by some following research, trying to tackle problems of inference
speed [41], the cold start problem [6], and training strategy [49]. These methods
are supervised and learned using the synthetic dataset obtained via the event
simulators [14,19] due to the lack of real-world datasets with well-aligned events
and intensity frames. Therefore, the generalization capability of these methods
is limited by the simulator-to-real gap [49].

To address this problem, Federico et al . [31] proposed an SSL framework with
a network to estimate optical flow and another network to reconstruct intensity
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frames based on the photometric constancy. Zhang et al . [60] updated this idea
into a linear inverse problem that can be solved using modern linear solvers
without using deep learning. However, these methods either assume optical flow
is known or estimate the optical flow using contrast maximization [62,63]. Con-
sequently, their performance cannot be guaranteed unless high-quality optical
flow can be obtained. In contrast, our approach is based solely on the physi-
cal event generation model, leading to a more straightforward solution that also
demonstrates significantly improved performance and greater flexibility.

3 Method

Overview: Our objective is to reconstruct intensity frames from events in a
self-supervised manner, without the need for end-to-end training or optical flow
estimation. To accomplish this, we have reformulated event-based video recon-
struction as solving the event generation equation. We employ an INR that is
supervised solely by event data to represent the intensity function. An overview
of our approach can be seen in Fig.2. In Sec. 3.1, we explain the event genera-
tion model and its connection to event-based video reconstruction. In Sec. 3.2,
we detail how to train an EvINR by supervising its spatial and temporal gradi-
ents. Techniques to speed up the training of EvINR for online applications are
discussed in Sec. 3.3. Finally, in Sec. 3.4, we describe our collected dataset using
the ALPIX event camera [1].

3.1 Preliminary: Event Generation Model

We begin by providing a brief overview of the event generation model [13], which
forms the theoretical foundation for our approach. Let I(x, y, t) denote the in-
tensity of the spatial location (x, y) at time t in a video. Since event cameras
operate with logarithmic intensity, we denote L(x, y, t) = log I(x, y, t).

An event camera comprises a frame of independent pixels that respond to
changes in the logarithmic intensity signal and produce sequences of sparse and
asynchronous events. An event (xi, yi, ti, pi) is triggered when the logarithmic
intensity change surpasses a threshold C since the previous event was triggered at
the same pixel. where (x, y) is the spatial location of the pixel, t is the timestamp,
and p ∈ {−1, 1} is the polarity of the logarithmic intensity change.

For simplicity, let us consider the temporal changes in logarithmic intensity
of a single pixel with fixed spatial coordinates and disregard the spatial terms
(x, y). We can describe an event ei on that pixel using the Dirac delta function
as follows:

ei(t) = pi · C · δ(t− ti). (1)

Therefore, the logarithmic intensity increment ∆L = L(t2) − L(t1) in a time
interval [t1, t2] can be represented by the accumulation of events, which can be
expressed as:

∆L =

∫ t2

t1

∑
i

ei(t)dt. (2)
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Assuming a short time interval and ignoring noise, we can approximate the log-
arithmic intensity increment by its first-order temporal derivative using Taylor
expansion:

∆L

t2 − t1
=

∂L((t1 + t2)/2)

∂t
. (3)

By substituting Eq. 2 into Eq. 3, we derive the event generation equation
(Eq. 4), which bridges the discrete event data with the continuous temporal
derivatives of logarithmic intensity:

∂L((t1 + t2)/2)

∂t
=

1

t2 − t1

∫ t2

t1

∑
i

ei(t)dt. (4)

The left-hand side of Eq. 4 represents the partial derivative of logarithmic inten-
sity with respect to time, while the right-hand side can be calculated by accu-
mulating events. Intuitively, event-based video reconstruction can be formulated
as solving Eq. 4, i.e., finding a logarithmic intensity function that satisfies the
equation. However, as stated earlier, solving Eq. 4 can be non-trivial due to
the large amount, high noise rate of event data, and unknown boundary inten-
sity values. To address these challenges, we employ INRs to solve Eq. 4 as they
naturally scale up to large data and have high noise tolerance [20]. Boundary
intensity values can also easily be regularized by injecting natural image priors
as additional loss functions.

3.2 Learning INRs from Events

We aim to learn an INR FΘ given an event stream {ei}Ni=0. Here, Θ represents
the parameters of a fully connected MLP that predicts the logarithmic intensity
value L̂ at any spatiotemporal coordinate (x, y, t). We adapt the event frame
representation [35] and stack the given events uniformly into T event frames.

Temporal Supervision The INR is optimized by directly minimizing the tem-
poral loss between the predicted logarithmic intensity change ∆L̂ and the loga-
rithmic intensity change estimated by event accumulation ∆L. Here ∆L̂ can be
derived by accumulating events as Eq. 2 and ∆L̂ is the change of L̂ with respect
to t obtained by performing double back-propagation [33] of FΘ:

∆L̂ =
∂FΘ((t1 + t2)/2)

∂t
· (t2 − t1), (5)

Here we adopt the mean squared error (MSE) loss for temporal supervision:

Ltemp = (∆L−∆L̂)2, (6)

where ∆L and ∆L̂ are given by Eq. 2 and Eq. 5, respectively.
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Spatial Regularization Although the temporal supervision can estimate the
intensity function, the results may still contain unnatural artifacts as the INR
network FΘ has no prior knowledge of the initial intensity values of each pixel.
To address this issue, we introduce a spatial regularization term that encourages
the solution to be in the space of natural-looking images. We adopt Tikhonov
regularization [4] that penalizes the spatial gradients of logarithmic intensity:

Lreg = (
∂FΘ

∂x
)2 + (

∂FΘ

∂y
)2. (7)

It is worth noting that we do not employ more complex regularization meth-
ods, such as CNN denoisers [56] as used in [60], because they typically utilize
large network models that can significantly slow down the training process.

Optimizing EvINR The overall objective is given by the equation:

L = Ltemp + λLreg, (8)

where Ltemp and Lreg were introduced in Sec. 3.2 and Sec. 3.2, respectively, as
the temporal supervision and spatial regularization term. λ is a hyper-parameter
used to adjust the weight of the spatial regularization term.

Tone-mapping The output of the EvINR is the logarithmic intensity of the
reconstructed frames. We first use the exponential function to convert the pre-
dicted logarithmic intensity values to high dynamic range (HDR) intensity values
I ∈ [0,∞):

I(x, y, t) = exp(FΘ(x, y, t)). (9)

Then, we adopt the Reinhard function [37] to map the HDR intensity values
into the low dynamic range [0, 1]:

Γ (I) = (
I

I + 1
)γ . (10)

where γ is a hyper-parameter used to control the contrast of Γ (I). We assess
our reconstruction performance by applying Γ (I) in all experiments.

3.3 Accelerating EvINR

While solving the event generation equation using the basic implementation
of EvINR, as described in Sec. 3.3, yields satisfactory reconstruction results,
it is not efficient enough for online tasks. Optimizing one INR network takes
about 20 minutes, and a network can only represent approximately 1 second of
a sequence. Reducing the training time or increasing the sequence time leads to
severe performance degradation. To enable online usage for EvINR, we propose
several techniques to reduce the training time and increase the representation
capacity for EvINR, as illustrated in Fig. 3.
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Fig. 3: Overview of acceleration techniques. (a) and (b) illustrate the difference
between the basic coordinate-based and our frame-based optimization, respectively. (c)
depicts our proposed coarse-to-fine training scheme and network ensembling technique.

Coordinate-based to frame-based optimization: The basic EvINR algo-
rithm is designed to learn a mapping from 3D coordinates (x, y, t) to the log-
arithmic intensity L. However, this coordinate-based optimization requires the
network to ’remember’ H×W×T coordinate-to-logarithmic intensity mappings,
which can be highly complex and lead to slow convergence. To address this is-
sue, we propose a frame-based optimization scheme that learns a mapping from
timestamps t to the logarithmic intensity of all pixels at that timestamp. The
frame-based optimization scheme can be represented as:

FΘ(t) = [L(i, j, t)]1≤i≤H,1≤j≤W , (11)

where the right hand-side represent a matrix that contains all logarithmic in-
tensity of all pixels at t. The frame-based optimization approach requires the
network to remember only T coordinate-to-logarithmic intensity mappings, re-
sulting in a significant reduction in complexity and faster convergence. Empirical
results show that this approach reduces the convergence time by two orders of
magnitude, from minutes to seconds. The comparison between coordinate-based
and frame-based optimizations is illustrated in Fig. 3 (a) and (b).
Coarse-to-fine training: We adopt a coarse-to-fine training scheme, which
enables the network to learn overall logarithmic intensity changes before focusing
on finer details. We structure the training process into s distinct stages, at each
of which we increase the temporal resolution by a factor of 2. Initially, we divide
the event sequence into N segments of equal length and optimize the EvINR
in accordance with Eq. 6 over a specified number of iterations. Subsequently,
we proceed to bisect each of these N segments into two smaller ones, ensuring
that they contain an equal number of events. For all the experiments, we set the
number of stages s to 3 and scheduled the upsampling to occur after 100 and
200 iterations, respectively. This approach accelerates training by reducing the
number of event frames needed in the early stages by approximately 2 times.
Network ensembling: As each EvINR network requires only about 1GB of
GPU memory, we further leverage network ensemble techniques [16] to train N
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EvINR networks simultaneously on a single GPU to achieve higher parallelism.
This approach enables us to exploit the computational resources of modern GPUs
more effectively and speed up the training process. We keep overlap periods be-
tween nearby networks to keep logarithmic intensity predictions constant among
all networks. Fig. 3(c) depicts the coarse-to-fine training process and network
ensembling techniques employed in our approach.

3.4 Dataset Collection

Most event-to-video reconstruction approaches are typically evaluated on event
datasets collected using DAVIS sensors [5], such as IJRR [27], HQF [49], MVSEC
[61], and CED [42]. Recently, other types of event cameras [1, 2, 39] have been
developed, which share the same event generation model with DAVIS sensors
but may differ in detailed configurations and settings. Therefore, it is essential
to verify the generalization capability of existing methods and our EvINR on
those new types of event sensors.

To fill the gap, we introduce a new real-world dataset, called the ALPIX
Event Dataset (AED), which is collected using an ALPIX-Eiger event cam-
era [1], featuring static scenes accompanied by gradual camera motions. The
camera provides well-aligned RGB frames and color events. The RGB frames
have a resolution of 3264×2448 and the events have a resolution of 1632×1224.
The AED dataset includes seven video sequences with diverse scenes, such as
streets, buildings, indoor scenes, textures, and tools, and each approximately
lasts for ten seconds. Note that, in this paper, we only focus on reconstruct-
ing grayscale frames to keep consistency with previous works [31, 60] and also
for a fair comparison. Therefore, we first demosaic the RGB frames and events
according to the Quad Bayer pattern, resulting in intensity frames with a reso-
lution of 816× 612 and event data with a resolution of 408× 306. Details on the
post-processing of AED dataset can be found in the supplementary material.

4 Experiments

4.1 Experiments Settings

Datasets: We conduct experiments to evaluate the effectiveness of our proposed
method using three datasets: IJRR [27], HQF [49], and our AED dataset. The
IJRR dataset consists of intensity frames and events in 25 real scenes and 2
synthetic scenes, captured by a DAVIS240C camera [5]. HQF dataset provides
14 event data sequences captured with two DAVIS240C cameras, delivering well-
exposed and clear intensity frames. The spatial resolution of both the IJRR and
HQF datasets is 240× 180. The AED dataset contains 7 event sequences with a
resolution of 408× 306. More details of the exact time split can be found in the
supplementary material.
Evaluation Metrics: We evaluate the efficacy of our method using several
image quality metrics, including mean squared error (MSE), structural similarity
(SSIM) [52], and learned perceptual image patch similarity (LPIPS) [57].
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Fig. 4: Qualitative comparison with baseline methods on IJRR(Row 1&2), HQF (Row
3&4) and AED(Row 5&6).

Implementation Details: We use a SIREN network [46] with three hidden
layers and 512 neurons per layer as our INR network. We partition each event
sequence into sub-sequences lasting 5 seconds each and concurrently train all sub-
sequences using model ensembling for 300 iterations. We first stack the events
within 1

32 second into an event frame and temporal upsample the event frames
in 100 and 200 iterations, as described in Sec. 3.3. We adopt the Adam optimizer
[23] with a learning rate of 1e−4 and exponentially reduce the learning rate every
10 iterations with a decay rate of 0.95. The weight of spatial regularization λ
is set to 0.05, and γ in Eq. 10 is set to 0.6. The activated threshold C is set to
1 for the IJRR and HQF datasets and 0.25 for the AED dataset. The training
process takes approximately 8 seconds on a single RTX3090 GPU.

4.2 Evaluation of Video Reconstruction

We assess the effectiveness of our approach by comparing it against eight state-
of-the-art (SoTA) methods, classified based on the amount of data required for
training. The methods are categorized into supervised learning (SL) methods
that utilize synthetic ground-truth intensity frames for supervision and self-
supervised learning (SSL) methods that rely solely on event data. Specifically, we
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compare against: 1) Five SL methods: FireNet [41], E2VID [35], FireNet+ [49],
E2VID+ [49], and ET-Net [53]. 2) Three SSL method: SSL-E2VID [31], HF [40]
and ELRP [60]. Reconstructed results for all methods were generated at each
timestamp of the intensity frame. We use optical flow estimation from the
FlowNet of SSL-E2VID [31] for ELRP [60]. We apply Contrast Limited Adap-
tive Histogram Equalization (CLAHE) [54] to both ground truth and synthesized
frames before evaluation, following [31]. Note that the quantitative results for
FireNet [41], E2VID [35], FireNet+ [49], E2VID+ [49], and ET-Net [53] are
referred from a recent benchmark paper [11]. For the visual comparison, we ob-
tained the visualization results by downloading the publicly available checkpoints
and test them in the local environment.

Table 1: Comparison of quantitative results on the IJRR, HQF, and AED datasets.
Bold values indicate the best results among all methods, while underlined values indi-
cate the best results among SSL methods.

Methods IJRR HQF AED
MSE SSIM LPIPS MSE SSIM LPIPS MSE SSIM LPIPS

SL

FireNet [41] 0.131 0.502 0.320 0.094 0.533 0.441 0.074 0.298 0.579
E2VID [35] 0.212 0.424 0.350 0.127 0.540 0.382 0.056 0.424 0.500

FireNet+ [49] 0.063 0.555 0.290 0.040 0.614 0.314 0.094 0.232 0.566
E2VID+ [49] 0.070 0.560 0.236 0.036 0.643 0.252 0.074 0.345 0.462
ET-Net [53] 0.047 0.617 0.224 0.032 0.658 0.260 0.084 0.312 0.482

SSL

SSL_E2VID [31] 0.097 0.473 0.409 0.070 0.480 0.464 0.094 0.316 0.453
HF [40] 0.164 0.334 0.658 0.133 0.232 0.670 0.080 0.240 0.943

ELRP [60] 0.080 0.437 0.485 0.074 0.450 0.474 0.084 0.305 0.473
Ours 0.047 0.628 0.251 0.048 0.531 0.333 0.067 0.458 0.366

The quantitative results are presented in Table 1. Our method demonstrates
superior performance compared to the best SL methods, with improvements of
7%, 13%, and 4% in terms of MSE, SSIM, and LPIPS respectively on the IJRR
dataset [27]. Although the gap between our method and SL methods widens
on the HQF dataset [49] due to the lower event density, our method remains
comparable. On the AED dataset, our method outperforms the state-of-the-art
SL methods, E2VID+ and ET-Net, by a clear margin for all three metrics. No-
tably, our method shows a significant improvement over previous SSL methods.
In particular, compared with SSL-E2VID, it improves MSE, SSIM, and LPIPS
by 35%, 25%, and 21%, respectively.

A qualitative comparison of our method with the baseline methods is depicted
in Fig. 4. Our method produces intensity frames with better contrast and overall
visual quality, compared with other methods that suffer from issues such as
foggy effects, artifacts, and loss of detailed structures. It is worth noting that the
performance of E2VID+ and ET-Net degrades significantly on the AED dataset,
which suggests that their training strategy may overfit the DAVIS sensor setting.
Additional results can be found in the supplementary material.
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Fig. 5: The impact of removing the spatial regularization and coarse-to-fine training.

Table 2: Ablation of the spatial regularization term (Reg.) and coarse-to-fine training
(C2F.) on the IJRR [27] dataset.

MSE SSIM LPIPS Time(s) FPS
Base 0.063 0.542 0.357 17.29 13.77
Base+Reg. 0.044 0.612 0.275 17.44 13.64
Base+C2F. 0.061 0.566 0.343 7.94 31.33
Full Model 0.047 0.658 0.251 8.08 29.45

4.3 Ablation Study

We conduct ablation experiments on the IJRR dataset to assess the significance
of each individual component of our method, and the results are presented in
Tab. 2. Our method’s basic implementation, which doesn’t include spatial regu-
larization term as described in Sec. 3.2 or use coarse-to-fine training as described
in Sec. 3.3, is called Base. We also evaluate the performance of two modified ver-
sions of the full model: Base + Reg., which adds a spatial regularization term
(Eq. 7) with λ = 0.05, and Base + C2F, which uses coarse-to-fine training.
Experimental results show that both spatial regularization and coarse-to-fine
training contribute to the improved performance of our full model. Fig. 5 con-
firms the effectiveness of these two modules, showing that removing the spatial
regularization term introduces noticeable noise (e.g., in the background), while
removing the coarse-to-fine training scheme leads to an increase in training time
and missing details (e.g., in the people’s clothes and the book).

4.4 Discussions

Training speed: To assess the training speed of EvINR, we conducted an anal-
ysis using various model ensembling configurations on the whole Calibration
sequence from the IJRR dataset [27]. We divide the event sequence, which had
a total duration of 50 seconds, into N partitions, with each partition having a
duration of τ seconds. Subsequently, we trained N EvINR models in parallel,
incorporating the model ensembling techniques outlined in Sec. 3.4. The exper-
imental findings are presented in Table 3. By training 10 EvINR models, each
corresponding to 5 seconds of the event sequence, we achieved a performance
gain of over 26%, while only requiring an additional 14% of training time com-
pared to training a single EvINR model on the entire sequence. However, we
observed a significant drop in performance when increasing the partition size to
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Table 3: Impact of hyper-parameters of model ensembling on the training speed and
reconstruction performance.

N τ MSE SSIM LPIPS Time(s) FPS
1 50 0.084 0.46 0.380 15.71 75.66
5 10 0.0688 0.600 0.253 16.91 70.31
10 5 0.0625 0.612 0.244 18.32 64.90
50 1 0.0875 0.488 0.343 29.43 40.39

50, suggesting that a 1-second sequence is insufficient for EvINR to converge to
a stable solution of the event generation equation. We also note that the optimal
choice of hyper-parameters may differ for different event sequences due to the
per-scene optimization nature of our INR approach.
Event enhancement: Our approach provides a smooth and continuous rep-
resentation of event data by representing events triggered within a small time
window ∆t as ∂FΘ

∂t ∆t. This event representation automatically reduces noise
and preserves critical information through INR optimization, making it highly
robust to noise. Fig. 6 compares the denoising results of our INR representation
with several SoTA denoising methods [12,51].

Event Frame DF EvGait EvINR

Fig. 6: Qualitative comparison with baseline methods of event stream denoising.

Early frames reconstruction: [6] suggested that RNN-based techniques for
video reconstruction, e.g . E2VID [35], require an initialization period to achieve
satisfactory results. Consequently, the initial frames generated by these methods
may be of poor quality, restricting their usefulness to short event sequences.
Conversely, our proposed approach is capable of producing realistic outcomes
using a minimal number of events. Fig. 7 illustrates a comparison of the first
frame generated by our method and RNN-based techniques, demonstrating our
ability to rapidly create high-quality outputs with minimal input.
Inference speed: Compared to other SoTA approaches, our method offers a
significant improvement in terms of inference speed, as demonstrated in Tab. 4.
The main reason for this improvement is that other methods require converting
event data into event frames or voxel grids during the inference period, which
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SSL-E2VID[30]

E2VID[34] E2VID+[47] ET-Net[51]

EvINR GT

Fig. 7: The reconstructed initial frame from different compared methods.

Table 4: Comparison of inference time in terms of frames-per-second (fps) at two
resolutions from IJRR [27] and AED dataset respectively.

Resolution FireNet E2VID ET-Net Ours
(240, 180) 118.24 100.96 36.1 178.19
(408, 306) 28.83 28.56 18.27 55.37

adds significant overhead. However, our method only requires the spatiotemporal
coordinates as input, thus avoiding this issue.

5 Conclusion

This paper introduced EvINR, a SSL method for event-to-video reconstruction
that relieves the need for synthetic data or optical flow estimation. We, for the
first time, show that high-quality videos can be reconstructed in a self-supervised
and interpretable way without time-consuming end-to-end training. Our method
is based on directly solving the event generation model via optimizing an INR
whose temporal derivative is self-supervised by events and spatial derivative
is regularized to reduce artifacts. Additionally, we propose several acceleration
techniques that significantly reduce the training time of EvINR, making it appli-
cable for online tasks. Experiments show that our approach significantly outper-
forms the previous SSL methods, and is competitive with the SoTA supervised
methods. Our approach also demonstrates superior interpretability and robust-
ness to various event dataset. Overall, our work contributes to the advancement
of event-to-video reconstruction and offers a promising direction for future re-
search that combines INRs with event data.
Limitations and Future Work: The current parameter size of EvINR takes
up approximately the same amount of storage as the original event data. In
future work, we plan to explore network pruning and quantization techniques to
further reduce the parameter size.
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