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Abstract. The open world is inherently dynamic, characterized by ever-
evolving concepts and distributions. Continual learning (CL) in this dy-
namic open-world environment presents a significant challenge in effec-
tively generalizing to unseen test-time classes. To address this challenge,
we introduce a new practical CL setting tailored for open-world visual
representation learning. In this setting, subsequent data streams system-
atically introduce novel classes that are disjoint from those seen in pre-
vious training phases, while also remaining distinct from the unseen test
classes. In response, we present Dynamic Prompt and Representation
Learner (DPaRL), a simple yet effective Prompt-based CL (PCL) method.
Our DPaRL learns to generate dynamic prompts for inference, as op-
posed to relying on a static prompt pool in previous PCL methods. In
addition, DPaRL jointly learns dynamic prompt generation and discrim-
inative representation at each training stage whereas prior PCL methods
only refine the prompt learning throughout the process. Our experimen-
tal results demonstrate the superiority of our approach, surpassing state-
of-the-art methods on well-established open-world image retrieval bench-
marks by an average of 4.7% improvement in Recall@1 performance.

Keywords: Dynamic Prompt Generation - Continual Learning - Open-
World Visual Representation Learning

1 Introduction

Continual learning (CL) without catastrophic forgetting is a challenging task in
practice as retraining with old data is prohibitively expensive when data volume
grows [10}/1423]. Tt is particularly challenging for real-world applications in the
open-world |2|5], where new concepts keep emerging and distribution shifts are
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Fig. 1: Illustration of the distinctions between our problem setting and traditional set-
tings. In our work, we aim to address the problem where training splits have no class
overlaps. (a) Closed-world setting: both training and testing classes are identical. (b)
Continual learning (CL) in closed-world setting: training classes are split into multiple
divisions and are introduced through various CL stages. (c¢) Open-world setting: train-
ing and testing classes remain separate. The aim is to learn a robust representation
from training classes that generalize to unseen classes. (d) Open-World Continual
Representation Learning (Our Problem Setting): continual learning tailored for
an open-world scenario. We sequentially introduce training classes over multiple CL
stages, ensuring they remain distinct from test-time unseen classes.

inevitable. Recent studies on Prompt-based Continual Learning (PCL) [32}[38]
39| demonstrated success in mitigating catastrophic forgetting without access to
any past data. However, they heavily focus on the closed-world setting where
test-time categories come from those encountered in various training stages.

Whereas in practice, the world is dynamic and concepts evolve over time
and new categories are often introduced after a model is trained. Consider, for
instance, an image retrieval system for clothing brands in online e-commerce.
During training, one would gather images of all existing clothing brands available
to train a model. However, after deployment, the system encounters new brands.
The new data collected for system upgrade, constituting a new training stage,
will likely include brands that are disjoint to those in older stages. Furthermore,
the system will constantly face new brands at test-time that are disjoint to any
of those encountered in the previous training stages and is expected to generalize
well to those new categories.

Thus, to comprehensively evaluate the ability of a model in retaining semantic
information from continuous streams of data for generalization to new concepts
at test-time for practical applications, we propose a new continual open-world
representation learning setting, as illustrated in Figure (d) In this setting, dif-
ferent data streams comprise distinct classes, and test-time classes are disjoint
to those encountered in all training phases. Our setting is notably more chal-
lenging than the previous closed-world CL scenario. It closely mirrors real-world
demands on recognition systems, where, during any evaluation stage, the test set
consists of unseen entities to the training process up to that point. This setup
reflects the need for practical recognition systems to encode general semantic
information from training-time classes and apply this knowledge to new, unseen
concepts without access to older training data during system updates.
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We start with evaluating state-of-the-art PCL methods [32,38,[39] in our
proposed setting and find that they fail to generalize with the absence of past
data. For example, in our experiments, the gap between the paragon of standard
training with all data in one phase and the best PCL baseline (Coda) shows up to
20% gap in Recall@1 (Table[l)), significantly larger than the 5% gap in the closed-
world setting, which suggests that prior PCL methods encounter difficulties and
are less effective in the open-world setting.

To tackle this challenging yet practical open-world CL setting, we introduce a
simple yet effective method called Dynamic Prompt and Representation Learner
(DPaRL). Unlike previous prompt pool based PCL methods [32,(38}[39] that
depend on a static prompt pool (Figure (a)) for test-time predictions. Notably,
DPaRL trains an innovative dynamic prompt generation network jointly with
the discriminative representation backbone model (Figure [2[(b)), departing from
the prompt-only learning paradigm in prior PCL methods.

Our key insight lies in that simply combining the fixed prompts learnt over
training classes does not generalize well to unseen test-time classes in the practi-
cal open-world setting. On the other hand, the on-the-fly dynamically generated
prompts in our method exhibit a stronger capability of capturing the diverse
semantics spread across the numerous divisions of classes observed during the
different training stages of continual learning, improving generalization to test-
time unseen classes. This is achieved through the proposed dynamic prompt
generation network, which possesses stronger representation power with a learn-
able mapping function compared to the traditional approach of combining mul-
tiple prompts in a static prompt pool. Additionally, unlike prior PCL methods,
DPaRL jointly updates the dynamic prompt generation process and the dis-
criminative representation backbone weights, facilitating maximized interaction
and comparison between old concepts and newer ones to encapsulate diverse
semantics that aid generalization to unseen test-time classes.

Consequently, over the four open-world image retrieval benchmarks on cars,
online catalogs, products, and species images where the task is to search for the
most similar images belonging to the same class as the query, via a distance mea-
surement in an embedding space, DPaRL achieves significant accuracy boosts.
It improves the average Recall@1 performance by absolute 4.7% and 9.1% com-
pared to state-of-the-art continual learning methods, from 76.1% to 80.8% over
10 CL stages and from 68.0% to 77.1% over 100 CL stages, respectively.

In summary, our contributions are three folds:

1. We establish a new practical setting on continual visual representation learn-
ing in the open-world.

2. We introduce a simple yet powerful method, Dynamic Prompt and Represen-
tation Learner (DPaRL), which dynamically generates prompts while effec-
tively updating the discriminative representation backbone. This enhance-
ment improves generalization for unseen open-world classes at test time.

3. We outperform state-of-the-art continual learning methods in the proposed
practical setting, both rehearsal-free and rehearsal-based.
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Fig. 2: Prior PCL methods combine prompts from a static prompt pool trained on the
training class distribution, leading to a loss of generalization capability when facing
unseen classes during test time. Our work introduces a Dynamic Prompt Generation
network that generates dynamic prompts on the fly by integrating a given image with
stage tokens, followed by a specialized mapping function and adjustable discriminative
representation backbone weights, providing generalizable prompts for unseen testing
classes, distinguishing it from prior PCL methods.

2 Related Work

Continual learning. Continual learning (CL) has been recognized for decades
as a crucial research domain, focusing on the ongoing adaptation of models over
time. Early works primarily centered around regularization-based methods in
an effort to address catastrophic forgetting [1,21L|43] by introducing regulariza-
tion between its current and previously learned parameters. However, they often
underperform when faced with complex datasets.

A separate line of work, architecture-based approach, involves expanding the
network architecture in response to new learning phases [20,26[291/30.42|. While
these methods generally outperform regularization-based counterparts, they do
so at the cost of introducing additional parameters. Recent advancements include
rehearsal-based methods that incorporate a memory component for storing past
data [4}[6l7,[15,/28]. This archived data aids in training newer stages, typically
yielding superior performance compared to other CL techniques. Yet, this data
retention can introduce privacy concerns and significant memory overhead.

Given these constraints, rehearsal-free strategies are gaining attention in the
community. These aim to mitigate catastrophic forgetting without relying on his-
torical data. A prominent method within this category uses model inversion to
produce rehearsal images [9,(13}/31,/41]. However, model inversion is computation-
ally intensive and time-consuming. Additionally, these methods lag significantly
in performance when compared to their rehearsal-based counterparts.

Recent developments have witnessed the rise of prompt-based approaches |27,
32,134, 137H39,45]. These strategies offer robust protection against catastrophic
forgetting by learning a small set of parameters, or prompts, instead of directly
training all parameters. For instance, L2P [39] employs a pool of prompts, se-
lecting suitable ones for insertion based on input data clustering. Building on
this concept, DualPrompt [38] presents general prompts designed to encapsu-
late shared knowledge across various learning stages. Advancing this further,
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the state-of-the-art method CodaPrompt [32] facilitates end-to-end training by
incorporating an attention mechanism for prompt combination within a pool.
However, during inference, the above works rely on the combination of prompts
from a static pool learned from training to feed into a frozen backbone model,
which has limitations in cases where testing data has distribution shifts or dis-
joint classes from the training data. This motivates us to design a Dynamic
Prompt and Representation Learner (DPaRL) to address these drawbacks.

Open-World Visual Representation Learning. In open-world visual rep-
resentation learning, the model learns discriminative representations that align
distances between representations with their semantic similarities, and uses these
knowledge for testing on unseen classes. Previous works in this domain have pri-
marily focused on designing loss functions [11{17,|24] for enhanced accuracy.
Recently, several studies |2/12] have demonstrated the effectiveness of utilizing
pre-trained visual foundation models and fine-tuning them to achieve significant
performance improvements. While open-world visual representation learning has
been under investigation for an extended period, there has been limited explo-
ration within the continual learning (CL) framework for this task. [44] inves-
tigated biometric datasets using a regularization-based CL approach. However,
the investigation into state-of-the-art prompt-based CL methods remains miss-
ing. Furthermore, as their studies primarily centered on biometric data, there is
a pressing need to explore established continual learning benchmarks specific to
open-world visual representation learning in more natural settings.

3 Methodology

In this section, we introduce our open-world Continual Learning (CL) setting
and motivate our Dynamic Prompt and Representation Learner (DPaRL).

3.1 Problem Setting

Two fundamental visual representation learning settings are the closed-world and
open-world paradigms. In a closed-world setting (as depicted in Figure a)),
the training and testing data classes are entirely identical. Conversely, the open-
world setting (illustrated in Figure [I|c)) presents a more practical scenario.
Here, training and testing classes are entirely distinct, thus requiring the model
to learn representations that generalize to unseen concepts.

When faced with continuous streams of data for visual recognition system
updates, built upon the closed-world paradigm, Figure b) showcases the well-
known continual learning setting for image recognition. In this work, we intro-
duce a new practical setting: Open-World Continual Representation Learning as
shown in Figure d). Instead of testing on seen classes of the various training
stages thus far, the testing classes are entirely disjoint to those faced in different
training stages, necessitating the model to not only learn continually but also
generalize to new concepts, making it a more dynamic and challenging setting.
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Fig. 3: Illustration of our proposed method: Dynamic Prompt and Representation
Leaner (DPaRL). We dynamically generate prompt tokens on the fly from Dynamic
Prompt Generation (DPG) networks by integrating information from stage tokens and
image tokens. The [CLS| token from DPG is converted to prompt tokens via a linear
mapping function. The generated prompt tokens are added to the backbone ViT and
trained with a loss function. The learnable parameters include the current stage token,
weights in mapping function, weights in backbone, and weights in loss function.

3.2 Prompt-based Continual Learning Paradigm

Prompt-based Continual Learning (PCL) methods [32}|38,[39] use a pre-trained
Vision Transformer (ViT) as a discriminative backbone for closed-world image
classification, as shown in the Figure (a). These methods create a prompt pool
with multiple prompt tokens, updating only the learnable parameters in this
pool during training. In inference, the learned prompt pool is static, and PCL
methods select tokens from this pool to feed into multiple ViT backbone layers
for predictions. Our method adopts this PCL paradigm but adapts to the open-
world representation learning setting with a prototypical metric learning loss.
Additionally, we introduce a dynamic prompt generation (DPG) network to
replace the static prompt pool for effective joint learning with the discriminative
representation backbone model, as detailed below.

3.3 Dynamic Prompt and Representation Leaner (DPaRL)

Overall Pipeline. In the open-world setting where training and testing classes
are disjoint, existing prompt pool designs in PCL [32,38}39] exhibit limitations,
i.e., limited separation between intra- and inter- testing class distance distribu-
tions as shown in Figure [f] and large performance gap from paragon in Table [I]
To mitigate, we first propose dynamically generating prompts by blending the
given image information and continual learning stage’s information through a
dynamic prompt generation (DPG) network. It aims to provide better repre-
sentation power compared to the prompt pool design, which combines a fixed
prompt pool trained from the training class distribution. Moreover, we enhance
the capability of the discriminative representation backbone model to more ef-
fectively generalize to the open-world concepts through a joint dynamic prompt
and representation learning paradigm. We refer to Figure for detailed design
differences between our approach and prior prompt pool-based methods.
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Dynamic Prompt Generation Network. In order to retain information from
each CL stage of our Dynamic Prompt Generation (DPG) process, we introduce
stage tokens, denoted as S. During training stage ¢, we train a stage token .Sy
while freezing the previous stage tokens S;_(4_1) ~ S;—1 in a first-in-first-out
(FIFO) queue manner, where ¢ is the max queue size. Guided by the ablation
study detailed in Section [£.4] we typically set ¢ = 5 using a FIFO order to aim
for both high accuracy and scalability. This ensures that the knowledge from the
previous stages remains unchanged, and the total number of stage tokens limits
by the queue size without linearly scaling with stage numbers. Within the deep
neural network such as ViT, the self-attention block facilitates the integration of
information between the stage-wise tokens and the instance-wise image tokens.

As illustrated in Figure [3) the DPG produces a [CLS] token to dynamically
acquire task-specific high-level information for prior knowledge of class-level fea-
tures. However, it differs in size from the prompt tokens required by the discrim-
inative backbone model (right side of Figure . To address this, we introduce a
mapping function between the [CLS| token and the prompt tokens.

A straightforward approach is to employ a single linear layer for dimension-
ality transformation. However, such a method introduces an excessive number of
additional parameters, and the resulting over-parameterization can lead to over-
fitting of the highly compressed [CLS]| token information. To tackle this issue,
we impose a constraint on the weight parameter W = ABT € RCn»*Cout where
A € RCn*E B ¢ RCuxE ensuring a maximum rank of R < min(Ciy, Cout)-
This constraint is inspired by the success of the LoRA technique |16]. The exper-
imental results in Section [£.4] illustrate the critical importance of the low-rank
mapping function design for our DPG module. Moreover, we apply Dropout [33|
and LayerNorm [3| to this low-rank linear mapping function

Mapping(z) = Layer Norm(LowRank Linear(DropOut(z))), (1)

which further helps to avoid overfitting and stabilize training.

With the help of this specialized mapping function along with a pre-trained
neural network, the prompt P is dynamically obtained from the input image I
and stage tokens St 4 := S;_(q—1) ~ S¢:

P = Mapping(Network([S;,q; I])). (2)

We reshape P to a size of N, x C' x L, where N, is the number of prompts, C
is the channel dimension, and L indicates the number of layers where prompts
are applied to the backbone model. The generated prompts are inserted across
the first L layers in the ViT backbone. In our DPG approach to prompting,
we follow the technical foundations of prompting from the prior state-of-the-art
PCL methods [32,/38]. This is because we want to make fair comparison with the
previous work, and our primary focus is on the formation of prompt. The prompt
for the [-th layer, denoted as P, € RNVXY_is partitioned into { P, s, P, } € R XC
and is prefixed to the input token embedding for both key and wvalue in the
attention mechanism [36]. This can be formulated as:

hi = Attention(X,W,, [Pe; X|W, [Py; X]W,)). (3)
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Here, we omit layer index [ for brevity, and 7 is head index in multi-head self-
attention of transformer architecture.

Joint Dynamic Prompt and Representation Learning. Differing from
prior PCL methods [32/38}|39] that freeze the backbone model (on the right side
of the pipeline in Figure a)) during training, we propose our Dynamic Prompt
and Representation Learner (DPaRL), to jointly learn the dynamic prompt gen-
eration with the discriminative representation learning backbone (on the right
side of Figure b) and Figure . This approach aims to maximize the capabil-
ity of entire pipeline to integrate old-stage concepts and new ones to encapsu-
late diverse semantics that aid generalization to open-world unseen classes and
unknown domain shifts. Leveraging parameter-efficient fine-tuning techniques,
our DPaRL successfully maximizes accuracy performance and minimizes catas-
trophic forgetting simultaneously. The overall framework is depicted in Figure
Note that the DPG encoder weights (on the left side of the pipeline) for prompt
generation are frozen in our method, while the learnable parameters include
stage tokens, weights in the mapping function and representation loss function,
as well as the discriminative representation backbone weights.

4 Experiments

In this section, we empirically evaluate the effectiveness of our Dynamic Prompt
and Representation Learner (DPaRL) in the established challenging continual
open-world visual representation learning.

4.1 Datasets & Evaluation Metric

Datasets. We conducted our training and testing across 4 prominent open-world
image retrieval benchmarks: Cars [19], In-Shop [22], SOP |25] and iNat2018 |35].
We evaluate baselines and our proposed method following our practical contin-
ual open-world visual representation learning setting. In this dynamic scenario,
classes are introduced incrementally at each learning stage, and the testing phase
encompasses classes that have not been encountered during training. Our exper-
iments consist of 10 or 100 stages, with the total training classes approximately
distributed uniformly across these stages. The detailed data information includ-
ing number of classes and samples are provided in the Supplementary Material.
For inference, we use the entire testing dataset across all CL stages since there is
no overlap between training and testing classes. Thus, our objective is to learn
class relations while maintaining generalization across CL stages.

Evaluation Metric. To evaluate model performance, we compute the Recall@1
metric using the [CLS]| token at the last layer of the discriminative representation
backbone network. Given our goal to optimize the model’s adaptability through-
out the CL phases, we report average Recall@1 across all CL sta]%e. Let R,, be the

Recall@1 performance at stage n, then we report Ry = Ni ey Bn where N,
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is the total number of stages. We also report the forgetting score Fy by follow-

ing [32,38] to measure the performance drop on the same unseen testing dataset

across different training stages, that is, Fy = ﬁ 2522 max (0, R, —
i m

R,). We stress that Ry holds greater importance as it captures both learning
capacity and forgetting, while Fy merely offers supplementary context.

4.2 Baselines and Implementations
Baselines. We validate 3 types of representative baselines:

— Rehearsal-based: Experience Replay (ER) [7],

— Regularization-based: Learning without Forgetting (LwF) [21]

— Rehearsal-free prompt-based: Learning to Prompt (L2P) 39|, DualPrompt
[38], and CodaPrompt [32].

Implementations Details. Consistently across all methods, we adhere to the
training setups by following [32]. Specifically, we utilize the Adam optimizer 18]
with a batch size of 128 to train for 20 epochs to ensure comprehensive model
convergence. The learning rate is cosine decaying with an initial value of 0.001.

We utilize ArcFace [11] as the training loss function as it is a prevalent choice
in open-world representation learning to achieve state-of-the-art performance |2].
For new-stage training, the prototype weights in the loss function of old training
stages are appended to the new training stage as initialization. All prototype
weights in the loss function, including those corresponding to the classes for old
and new stages, are trainable during each training stage.

For established PCL techniques, we maintain the prompt lengths and loca-
tions for L2P [39], DualPrompt |38], and CodaPrompt |32] as suggested in these
works. For our DPaRL method, in each CL stage, we incorporate a learnable
stage token with the first-in-first-out (FIFO) order and a max size of 5 tokens
based on insights from Section[d:4] We apply our specialized mapping function in
the DPG module to avoid over-fitting and stabilize training. We adopt LoRA [16]
as the PEFT method to update backbone weights as guided by Section [£.5]

4.3 Performance Comparison with Prior Arts

Table [I] shows a comprehensive performance comparison with various CL meth-
ods across all four open-world image retrieval tasks. We adopt the official code-
base of CodaPrompt [32] for the implementation of PCL baselines including L2P
[39], DualPrompt [38], and CodaPrompt [32]. Additionally, we report the per-
formance of representative rehearsal-based and regularization-based approaches,
i.e., ER [7] and LWF [21], respectively, for a more comprehensive comparison.
Note that, for a fair comparison, all methods use the pre-trained ViT-Base on
ImageNet-21k as the backbone model, as shown on the right side of Figure [3]
From the results in the Table [I] we observe that the performance trend of
PCL-based methods (L2P, DualPrompt, CodaPrompt, our DPaRL) is similar to
what was observed in the closed-world image recognition task [32], where PCL
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Table 1: Performance on 4 open-world image retrieval benchmarks with 10 CL stages.
We report the averaged Recall@! (Ry) and Forgetting Score (Fn) across all continual
learning stages, the results are averaged over 3 runs. We present the LowerBound with
the zero-shot performance of ImageNet-21k pre-trained ViT-B/16 backbone. Upper-
Bound denotes the upper bound performance when trained on the entire dataset at
a single stage. All PCL methods, including L2P, DualPrompt, CodaPrompt, and our
DPaRL, utilize the same pre-trained encoder, ViT-B/16 on ImageNet-21k, to generate
the prompt tokens. The numbers in brackets show the Recall@1 improvement of our
DPaRL over the previous best baselines, with the previous best baseline underlined.

Dataset Cars |19] In-Shop |22] SOP |25] iNat2018 |35 Average
Metric Rv(1) Fv()| Bnv(t) Fn()| Rv() Fv()[ Bv(1) Fn(A)| Bv(t) Fnv()
LowerBound 53.86 - 47.16 - 62.85 - 71.74 - 58.90 -
UpperBound 85.96 - 89.28 - 85.21 - 82.68 - 85.78 -
ER [7] 65.38 0.49 82.99 2.48 65.38 0.50 36.94 18.58| 62.67 5.51
LwF |21] 56.53 2.91 81.52 3.39 66.18  13.20| 39.69 33.81| 60.98 13.33
L2P |39 56.27 0.00 67.85 0.00 76.88 0.40 78.95 0.00 69.99 0.10
DualPrompt |38] 55.54 0.00 65.56 0.00 77.04 0.66 78.71 0.03 69.21 0.17
CodaPrompt |32] 65.23 0.36 78.61 0.00 81.62 0.01 78.97 0.01 76.11 0.10
DPaRL (Ours) 73.22(17.8) 0.03 [86.28(13.3) 0.02 |83.69(12.1) 0.07 |80.02(11.0) 0.03 80.80(14.7) 0.09

methods outperform other continual learning approaches by a significant mar-
gin on both recall@1 metric Ry and forgetting score F’ NEL aligning with findings
from previous research [32}38,/39]. This suggests that PCL methods are strong
baselines for continual learning on both closed-world image recognition tasks and
open-world visual representation learning tasks. Notably, our DPaRL approach
consistently outperforms other methods across all datasets, resulting in an aver-
age Recall@1 boost of 4.7% over the leading previous method, CodaPrompt |32].
This supports our hypothesis about the limitations of the conventional PCL de-
sign in open-world scenarios.

In the following, we provide step-by-step guidance on the design choices of
our DPaRL. Additional analysis and results are presented in the supplemen-
tary material, covering the superior performance of DPaRL in few-shot settings,
effectiveness of DPaRL in closed-world benchmarks, dynamic changes in the ac-
curacy curve across CL stages, and robustness of DPaRL against various DPG
encoders. Due to space limitations, we refer to the supplementary material for a
more comprehensive exploration of these aspects.

4.4 Effectiveness of Dynamic Prompt Generation

To solely investigate the effectiveness of our Dynamic Prompt Generation design,
we freeze the backbone weights similar to prior PCL methods [32,38,39] in our
DPaRL and denoted as the DPG method.

4 PCL methods consistently achieve forgetting scores close to zero, indicating that
performance continually improves. This trend is also evident in the dynamic change
of accuracy curve in the supplementary material, highlighting that PCL methods
serve as robust baselines for addressing catastrophic forgetting in open-world tasks.
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Fig. 4: Histogram of L2 distance between a pair of samples with embedding features
extracted by Coda (SOTA PCL method) and our DPG (the naive version of
DPaRL with freezing backbone weights). Left and right figures are distributions of the
seen and unseen classes in training and testing Cars dataset, respectively. Our
DPG exhibits enhanced separation between inter- and intra-classes, particularly on
open-world unseen test classes.

We visualize the distributions of L2 distance between pairwise samples within
intra- and inter-classes of CodaPrompt (Coda) and our DPG in Figure [ to
assess generalizability. A good model should ezhibit distinguishable distributions
between intra- and inter-classes for both closed-world seen classes and open-world
unseen classes. Coda, employing a static prompt pool design, achieves a notable
separation on closed-world intra- and inter-classes but exhibits a close distri-
bution for open-world intra- and inter-classes, impeding effective generalization
to unseen test classes. In contrast, our DPG shows a more distinct separation,
with an average gap of 0.14 (twice as large as Coda’s gap) between inter- and
intra-class distances in testing data. This indicates better generalizability with
a dynamic prompt generation mechanism for unseen classes.

Moreover, accuracy results with Recall@1 in Table 2] and Table [ reveal that
our DPG significantly outperforms the best baseline (Coda), with an average of
9.1% boost in 100 CL stages and 3.2% boost in 10 CL stages, respectively. This
highlights the superiority of Dynamic Prompting Generation design, particularly
in practical scenarios involving a large number of stages. In the next Section 4.4.1
and Section 4.4.2, we investigate the importance of our design components of
stage tokens and mapping function in the DPG network.

4.4.1 Effectiveness of Stage Tokens

In our DPaRL design with Dynamic Prompt Generation (DPG), we introduce
stage tokens to retain information on old training stages, and we impose a max
limit on the number of stage tokens (Ms:y tor = 5) to control storage and
computation costs as the number of stages scales up, e.g., Ngig = 100. Hence,
when the stage number goes beyond the max limit Mgy tor, We replace some
of previous stage tokens. Our hypothesis is that the earlier stage information
learned from previous stage tokens can propagate into the later ones. In this
section, we conduct ablations in a practical CL setting with a large number of
stages (100 stages) to study the impact of stage tokens.



12 Y. Kim et al.

Table 2: Impact of stage tokens with a large number of CL stages, Ny = 100.
Recall@1 results on In-Shop, SOP, and iNat2018 datasets are reported. It’s worth
noting that the Cars dataset is relatively small, preventing its division into 100 stages.
DPG is a naive version of our DPaRL method by freezing the backbone weights.

Method |# Stage Token Order In-Shop SOP  iNat Average
L2P |39 N/A N/A 48.39 70.39 76.82 65.20
Dual |38| N/A N/A 52.50 73.76 76.91 67.72
Coda [32] N/A N/A 5296  73.92 76.98 |  67.95
DPG None N/A 71.18 80.04 77.57 | 76.26 (18.31)
DPG 5 FIFO (default)| 72.05 80.81 78.29 | 77.05 (19.10)
DPG 5 FILO 71.76  80.60 78.12 | 76.83 (18.88)
DPG 5 Random 72.00 80.83 78.20 | 77.01 (19.06)
DPG 10 FIFO 72.15 80.81 78.28 | 77.08 (19.13)
DPG 100 full-size baseline | 72.20 80.84 78.37 | 77.14 (19.19)

With and without stage token. From Table [2, DPG with 5 stage tokens
achieves a noticeable accuracy improvement over DPG without stage tokens,
77.05 vs. 76.26 on average, indicating the importance of stage token for retaining
stage-wise class information in old training stages.

Impact of the order. We conduct ablations on three different orders: first-
in-first-out (FIFO), first-in-last-out (FILO), and randomly replacing one stage
token (Random). Tablereveals that FIFO performs the best on average. FILO
achieves slightly lower accuracy. Nevertheless, the Random method achieves per-
formance very close to the best, indicating the robustness of our DPG design
to different orders of stage tokens. We hypothesize this due to stage informa-
tion learned from previous ones effectively propagating to the new stage tokens,
regardless of the order or the location where the new stage token is inserted.

Selection of maximum limit M, k. When the stage number is large
(Nstg = 100), keeping a maximum token number of 5 achieves comparable per-
formances (77.05 vs. 77.14 on average) to that of the full token number baseline
with Myt +or = 100. This signifies a highly effective selection with a constant
number of stage tokens to achieve high accuracy, as well as good scalability with
respect to the stage number. Hence, we use Mty tor = 5 throughout this paper.

4.4.2 Effectiveness of Mapping Function

In our DPaRL framework (Figure[3)), as elaborated in Section we introduce a
mapping function to match the size of [CLS| token and prompt tokens. We apply
rank-R constraint to avoid overfitting and reduce the memory consumption from
the fully-connected layer inside the mapping function. To measure the sensitivity
of parameter R, we conduct experiments with varying R from 64 to 768.

The results for both In-Shop and iNat in Table [3]indicate the existence of an
optimal rank with R,,; = 256 that strikes a balance between accuracy and the
number of parameters, saving 2/3 of the total parameters compared to the full
rank case. This default rank R,,; = 256 is subsequently used for all experiments.

Note that when the rank reaches 768, representing the full rank of the map-
ping function essentially serving as a fully-connected layer, a significant per-
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Table 3: Impact of the rank of weight matrix inside the mapping function on our DPG
design. Recall@1 results on In-Shop and iNat2018 with 10 CL stages are reported.

Rank ‘ 64 128 256 384 512 768
In-Shop 82.33 83.17 84.09 83.86 82.98 71.40
iNat2018 | 79.21 79.85 80.02 79.74 79.63 78.98
#Parameters| 2.0M 3.9M 7.9M 12.0M 16.1M 23.5M

formance drop of 12.69% is observed for the In-Shop dataset in Table [3| This
suggests that an overparameterized expanding layer results in a severe accuracy
degradation for a highly compressed [CLS] token, indicating the importance of
our design. Moreover, our design has a robust rank range from 128 to 384, which
closely matches the accuracy performance of the peak result.

4.5 Effectiveness of Dynamic Prompt and Representation Learner

Previous PCL methods [32,/381/39] freeze backbone weights of the discriminative
model to reduce catastrophic forgetting. However, this approach could limit ac-
curacy performance as it doesn’t provide the degree of freedom to update the
backbone, particularly in open-world setting where data distribution and domain
shifts naturally exist. In this section, we explore effective ways to update back-
bone weights jointly with our dynamic prompt learning. We explore 3 approaches
here: 1) fine-tuning (F7') the entire backbone weights, 2) parameter-efficient fine-
tuning (PEFT) with AdaptFromer [8] (Adapter) or Low-Rank Adaptation [16]
weights on the backbone (LoRA), and 3) joint prompt generation and represen-
tation learning on the backbone weights (Coda and DPaRL, w/ X).

Table [] shows that vanilla FT or fine-tuning with PCL methods not only
leads to lower accuracy but also suffers from higher catastrophic forgetting com-
pared to DPG. While, LoRA gets higher accuracy (4+10.4% on average) and
reduces forgetting (-2.3% on average) compared to vanilla FT, as well as out-
performs Adapter, indicating a more effective way to update the backbone. Still,
LoRA is less effective than DPG, with an average accuracy gap of 1.7% and a for-
getting gap of 0.6%, indicating the superiority of our DPG design for open-world
CL problems. Lastly, our joint Dynamic Prompt and Representation Learner
(DPaRL) with LoRA improves average accuracy by 3.2% and reduces forgetting
by 0.5% compared to LoRA-only baseline. It also boosts accuracy by 1.4% on
average compare to DPG method without updating backbone weights at a neg-
ligible cost of 0.09 forgetting raises, indicating the effectiveness of our DPaRL
design to maximizing accuracy without causing catastrophic forgetting issues.
Therefore, unless stated otherwise, we adopt joint learning with dynamic prompt
generation with LoRA as our default DPaRL method in this paper.

4.6 Performance on Closed-World Setting in Other Domains

In this section, we assess the effectiveness of our DPaRL method in domains
other than the established image retrieval benchmarks such as medical image
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Table 4: Accuracy performance (Ry,T ) and forgetting scores (Fn,J)) in 10 CL
stages with different fine-tuning methods: fine-tuning (FT) the entire backbone weights,
PEFT with prompt tuning (Coda and our DPG), Adapter [8], and LoRA [16].

Dataset Cars In-Shop SOP iNat2018 Average

Metric Fx) P | Ba) P | e (@ [ B Fv@ | B (@
Coda |32, freeze(frz) backbone | 65.23 0.36 78.61 0.00 81.62 0.01 78.97 0.01 76.11 0.10
DPG (Ours), frz backbone 70.62 0.00 84.09 0.00 82.69 0.00 80.02 0.01 79.36 0.00

FineTune |32 57.57 5.04 82.23 0.54 73.45 2.23 55.69 3.84 67.24 2.91
Adapter |8| 64.59 2.47 83.94 0.00 82.18 0.06 .27 0.31 76.99 0.71
LoRA |16 67.77 0.99 83.29 0.40 81.97 0.27 77.47 0.79 77.63 0.61
Coda, w/ FT 50.03 12.79 82.29 0.45 74.03 3.29 57.42 4.39 65.94 5.23
Coda, w/ Adapter 64.39 0.86 83.56 0.45 81.98 0.05 78.56 0.06 7712 0.36
Coda, w/ LoRA 69.06 1.23 82.79 0.33 82.51 0.25 79.12 0.34 78.37 0.54
DPaRL, w/ FT 65.00 4.61 82.36 0.33 74.24 2.71 56.73 4.12 69.58 2.94
DPaRL, w/ Adapter 68.47 1.00 85.72 0.01 82.57 0.01 78.04 0.03 78.70 0.26

DPaRL, w/ LoRA (default)| 73.22 0.03 86.28 0.02 83.69 0.07 80.02 0.22 80.80 0.09

domain. However, there are no available open-world benchmarks so we follow
the standard closed-world setting in Figure [1] (b). We conduct experiments on
MedMNIST [40], which consists of approximately 700K biomedical images. It
includes 7 datasets, each with 7~11 classes. We evenly split the classes into 3 CL
stages and report the average top-1 accuracy over each stage. Results in Table
demonstrate that DPaRL generalizes well to the medical domain, outperforming
other methods with an average improvement of 6.50%. For additional tasks in
other domains, please refer to the supplementary material.

Table 5: Top-1 (%) on medical data MedMNIST [40]. Our DPaRL surpasses other
PCL methods by 6.50% on average.

Methods Blood Derma OrganA OrganC OrganS Path Tissue Average
L2P 56.03  34.00 61.12 52.87 46.25  56.39  41.29 49.71
Dual 66.28  33.16 65.42 57.79 48.22  60.69 40.34 53.13
Coda 57.37  33.72 65.41 65.98 46.82  79.85 32.30 54.49
DPaRL (Ours)| 70.49 38.71 70.39 71.29 51.23 81.44 43.38 | 60.99(16.50)

5 Conclusion

In this paper, we introduce a practical setting for continual visual representation
learning in the open-world. Existing continual learning methods fail to generalize
well in this proposed setting. To mitigate this challenge, we propose Dynamic
Prompt and Representation Learner (DPaRL), to enhance the adaptability and
performance in continual learning for open-world visual recognition. Our method
consistently demonstrates superior performance across various open-world im-
age retrieval datasets and settings, by dynamically generating prompts from a
deep neural network coupled with a dedicated mapping function, and effectively
updating the discriminative representation backbone. Notably, it overcomes the
intrinsic constraints found in static prompt pool designs, thereby expanding the
limits of model generalization in open-world scenarios.
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