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Abstract. Recent vision-language pre-training models have exhibited
remarkable generalization ability in zero-shot recognition tasks. Previous
open-vocabulary 3D scene understanding methods mostly focus on train-
ing 3D models using either image or text supervision while neglecting
the collective strength of all modalities. In this work, we propose a Dense
Multimodal Alignment (DMA) framework to densely co-embed different
modalities into a common space for maximizing their synergistic benefits.
Instead of extracting coarse view- or region-level text prompts, we leverage
large vision-language models to extract complete category information
and scalable scene descriptions to build the text modality, and take im-
age modality as the bridge to build dense point-pixel-text associations.
Besides, in order to enhance the generalization ability of the 2D model
for downstream 3D tasks without compromising the open-vocabulary
capability, we employ a dual-path integration approach to combine frozen
CLIP visual features and learnable mask features. Extensive experiments
show that our DMA method produces highly competitive open-vocabulary
segmentation performance on various indoor and outdoor tasks.

Keywords: 3D Scene understanding · Open-vocabulary · Multimodal
alignment

1 Introduction

3D scene understanding, which aims to achieve accurate comprehension of objects
as well as their attributes and relationships within a scene, has gained signif-
icant attention in recent years due to its popular applications in autonomous
driving [32], virtual reality (VR) [2,40,50] and robot navigation [3], etc. However,
the annotation of large-scale 3D data is very costly [7,11], impeding the training
of generalizable models for open-vocabulary scene understanding. Though many
existing methods [9,10,20,29–31,41,46,58] have achieved significant advancements
in recognizing closed-set categories for specific tasks, they fail to identify novel
categories and other types of queries [42] without 3D supervision, hindering the
application of existing 3D scene understanding methods to real-world settings,
where the number of possible classes is unlimited.

https://github.com/lslrh/DMA
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In contrast to the limited 3D data, modalities such as images and texts
are more abundantly available. Existing pre-trained multimodal models, such as
CLIP [43] and ALIGN [24], have shown impressive zero-shot recognition ability by
training on large-scale noisy image-text pairs, and have been successfully adapted
for open-vocabulary classification [53, 54], detection [5, 38] and segmentation
tasks [33, 47, 52]. Based on these observations, researchers have attempted to
use image or natural language modalities to provide supervisory signals for
learning 3D representations [13,36,42,55]. Some methods use fixed 2D features
as supervision and distill the knowledge from either the pre-trained 2D encoder
of CLIP [36] or 2D open-vocabulary segmentation (OVSeg) models [42] into 3D
representations (NeRF or point clouds). However, they overlook the fact that 3D
models can in turn enhance 2D models by leveraging the strong 3D structural
information. Besides, the 2D OVSeg models compromise their open-vocabulary
ability since they are primarily fine-tuned on in-vocabulary datasets. There are
also some methods that directly align 3D features to semantic captions [13,45,55].
However, they only capture coarse image- or region-level descriptions without
establishing dense point-to-text correspondences or exploiting image features that
involve rich semantic contexts and more variations. Though some methods [53,54]
simultaneously leverage visual and textual supervisions, they only conduct coarse
multimodal alignment for object-level point cloud classification.

In order to leverage the synergistic benefits of multiple modalities for dense
prediction tasks, we propose a dense multimodal alignment (DMA) strategy to
co-embed 3D points, image pixels, and text strings into a shared latent space. To
build dense associations across different modalities, the primary bottleneck is how
to obtain rich and reliable text descriptions without relying on manual labeling. To
this end, we generate two types of prompts using large Vision-Language Models
(VLMs). Firstly, we employ the tagging model such as RAM [57] to detect as
many categories as possible from an image, ensuring alignment with complete
semantic patterns. Considering that category names might not provide sufficient
details and contextual information, we incorporate Multimodal Large Language
Models (MLLM) such as LLaVA [35] to generate linguistically expressible scene
descriptions, thereby enhancing the scalability of text queries. In addition, we
use the GPT to filter out the noise in the generated texts for improving the
reliability. As a result, we establish a highly scalable and informative text
modality, enhancing the overall understanding of 3D scenes.

As for the image modality, we adopt a dual-path integration strategy
to extract robust 2D features as supervision. Specifically, we employ the FC-
CLIP [56] as the feature extractor. On one hand, we fix its CLIP visual encoder to
maintain the open-world recognition ability. On the other hand, by fine-tuning its
mask head, we incorporate 3D structural priors into 2D features, better adapting
the model to 3D dense tasks. Then we build triplets of points, pixels, and their
corresponding texts by taking image modality as the bridge. Given the generated
triplets of different modalities and their dense correspondences, we finally adopt
the mutually inclusive loss function to align multiple modalities. In this
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way, we can effectively unleash the potential of existing foundation VLMs and
maximize the complementary effects of multiple modalities.

In summary, (1) we first present a dense multimodal alignment framework,
which establishes dense correspondences among points, pixels and texts, to
learn robust 3D representations for open-vocabulary 3D scene understanding.
(2) To generate complete and scalable language modality without relying on
manual annotations, we leverage a tagging model and an MLLM to extract
category information and scene descriptions, respectively. (3) Finally, to improve
the segmentation ability without compromising the open-vocabulary ability, we
integrate 3D priors into 2D features by fine-tuning the 2D mask head with the
backbone frozen. Extensive experiments demonstrate the outstanding open-world
3D segmentation ability of our DMA model on various indoor and outdoor tasks.

2 Related Work

Open-Vocabulary 3D Scene Understanding. 3D scene understanding is
a popular research topic in computer vision. Most previous methods [10, 15,
19, 20, 58] focus on training models on manually labeled close-set categories,
and have yielded promising performance on popular 3D benchmarks [4, 11].
However, most of these methods are designed for a specific task, such as object
classification [51], detection [8], semantic/instance segmentation [10, 15, 58], and
they cannot identify novel categories, restricting their applications to real-world
settings. To overcome this limitation, recent works have been focused on the
open-vocabulary scene understanding problem [36]. Rozenberszki et al . [45]
proposed a language-driven pre-training method to enforce 3D feature to be close
to text embeddings, and finetune the 3D encoder with ground-truth annotations.
PLA [13] and RegionPLC [55] explicitly associate 3D points with image- and
region-level image captions, respectively. However, existing image captioning
models can only identify sparse and salient objects while missing other important
categories. Besides, textual signals lack variations and contexts, making them
insufficient for dense prediction tasks. Some methods [36,42] distill knowledge
from large-scale pre-trained 2D models, such as image-text contrastive learning
models [43] and open-vocabulary segmentation models [14,33,52,56]. However,
the performance of pre-trained models drops a lot on the downstream datasets due
to the large domain shift. These methods also overlook the fact that 3D models
can in turn enhance 2D models by leveraging the strong structural information
inherent in 3D data.

Vision-Language Foundation Models. Recent vision-language foundation
models have exhibited remarkable generalization ability on zero-shot prediction
tasks. Segment Anything Model (SAM) [26] leads a new trend of universal
image segmentation and exhibits promising results on diverse downstream tasks.
Recognize Anything Model (RAM) [57] presents a novel paradigm for image
tagging (multi-label classification) by leveraging large-scale image-text pairs
for training without manual annotations. The recent success of ChatGPT and
GPT4 have stimulated tremendous interests in developing multimodal large
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Fig. 1: Framework of our proposed Dense Multimodal Alignment (DMA) method. We
generate comprehensive language modality data by leveraging a tagging model and an
MLLM. As for 2D modality, we fix the CLIP visual backbone f2Dclip but finetune the
mask head f2Dmask for better adaptation to downstream 3D tasks without compromising
the open-vocabulary ability. Then the dense correspondences between pixels f2D and
texts fTtag/fTllm can be built by computing their feature similarities, resulting in semantic
score maps S2D

tag/S2D
llm. By taking image modality as the bridge, we back-project text

labels to each point and obtain the 3D label maps M3D
tag/M3D

llm. Finally, we co-embed
point f3D, pixel f2D, and text embeddings fT into a common space to learn a robust
3D representation by optimizing the mutually inclusive loss function.

language models (LLMs). LLaVA [35] is an early exploration to apply LLMs to
the multimodal fields by connecting a vision encoder to LLM for general-purpose
visual and language understanding. The recent open-vocabulary methods [33, 52,
56] shed lights on the direct use of pre-trained foundation models for handling
different visual tasks. ODISE [52] explores the potential ability of pretrained
text-to-image diffusion models [44] for open-vocabulary panoptic segmentation.
FC-CLIP [56] utilizes a shared frozen convolutional CLIP backbone to maintain
the ability of open-vocabulary classification without compromising accuracy.

3 Method

As illustrated in Fig. 1, we propose a dense multimodal alignment (DMA)
framework for open-vocabulary 3D scene understanding, where we construct
dense correspondences across 2D image pixels, 3D points and 1D texts, and
embed them into a common latent space. In this section, we will elaborate the
construction of text and image modalities, and explain how we associate and
align them in a dense manner.

3.1 Comprehensive Text Modality Generation

Learning a robust 3D model that is generalizable to open vocabularies is chal-
lenging since it is unclear how to acquire the dense text labels for point clouds.
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Fig. 2: Scene tagging generation. (1) We first employ RAM [57] to generate view-level
tags, and then (2) reduce the tag noise with GPT. Finally, scene-level tags are generated
by (3) multi-view voting.

Although well-trained human annotators could potentially provide detailed lan-
guage descriptions of 3D scenes, such a method is costly and lacks scalability. To
overcome this limitation, we leverage a tagging model and an MLLM to extract
complete category information and scalable scene descriptions, respectively.

Complete Category Information. The scene tagging process is illustrated
in Fig. 2. Firstly, we use the image tagging foundation model such as RAM [23]
to extract all possible categories from an image, and utilize category names and
short descriptions derived from the metadata as the text query, referred to as
Ttag, such as “There is a {category name} in the scene”, “A photo of a
{category name}”, etc. Unlike image captioning models [1, 28] that can only
identify sparse and salient objects in a scene, RAM can recognize as many tags
as possible without missing important parts, ensuring a high recall rate and
alignment with complete semantic patterns. The more complete and accurate the
detected categories are, the easier we can establish precise dense correspondences
between text and 3D modalities, and hence the open-vocabulary capability of
the 3D model can be enhanced.

Reliable GPT-based Denoising. While there are many tags recognized
by RAM, some redundant or irrelevant tags are also included, such as non-
noun words (“purple”, “blue”, “lay”, etc.) and objects that do not exist in the
image (“bed”, “ukulele”, etc.), as shown in Fig. 2. We address this issue in
two steps. Firstly, we utilize GPT to filter potential noisy vocabulary. Given
the input list, we instruct GPT to examine the words one by one and perform
reasoning according to the chain of thought, outputting a boolean list indicating
whether a word is an outlier. Please refer to Fig. 1 of supplemental material for
the detailed instructions and examples to reduce the noisy tags. Secondly, to
decrease the non-existent categories in a scene, we conduct multi-view voting
and neglect categories that appear in fewer than five views. Please refer to Fig. 2
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Fig. 3: Segmentation results using 2D and 3D models. 2D model has advantages in
segmenting background objects (in blue boxes), while 3D model is more favorable for
foreground objects with distinct structures (in red boxes).

of the supplemental material for the denoised scene tagging results and the
corresponding visualizations of 3D label maps.

Scalable Scene Description. Although scene-level tags have already covered
most of the categories, the limited scalability and variation of category names
hinders their provision of rich contexts and details. To address this limitation
and enable arbitrary queries for 3D networks, we additionally leverage MLLMs
such as LLaVA [35] to generate diverse and linguistically expressible descriptions,
denoted by Tllm. Owing to the exposure to a diverse range of linguistic patterns
and contextual nuances, the MLLMs can generate comprehensive and in-depth
descriptions based on input images. Consequently, these LLMs can enhance
the richness and granularity of the generated textual representations, thereby
facilitating a more comprehensive understanding of the 3D scenes. Please refer
to Fig. 3 of supplemental material for the examples of scene-level captions and
corresponding visualizations.

Finally, we generate the text embeddings fTtag and fTllm using CLIP text encoder
based on the generated tags Ttag and scene descriptions Tllm, respectively, which
are utilized to supervise the training of 3D networks subsequently.

3.2 Structure-aware Image Feature Extraction

Compared to language modality, the image modality offers a wealth of contextual
information and exhibits significant variations among different pixels, which could
provide more effective supervision. Inspired by this observation, OpenScene [42]
distills the knowledge from frozen open-vocabulary 2D segmentation models, such
as LSeg [27] and OpenSeg [14]. However, these methods suffer from two major
limitations. Firstly, they are fine-tuned on in-vocabulary datasets, which leads
to a misalignment between image and text features and consequently results in
poor performance on open-vocabulary categories. Secondly, all of these methods
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freeze 2D networks, failing to perceive the 3D structure of objects and leading to
inaccurate supervision. As shown in Fig. 3, we visualize the segmentation results
using 2D and 3D features. One can observe that although 2D features are more
advantageous in segmenting background objects with ambiguous geometry, such
as “bookshelf”, “door” and “blackboard”, they are less effective in segmenting
objects with distinct shapes, such as “table” and “chair”. Therefore, it is necessary
to distill the structural priors of 3D networks into 2D ones as well in order to
facilitate fine-grained scene understanding.

In this paper, we adopt FC-CLIP [56] as the backbone to extract image
features. On one hand, we use the frozen CLIP visual encoder to ensure the
intactness of image-text alignment, obtaining CLIP features f2Dclip. On the other
hand, to facilitate the synergistic benefits of both 2D and 3D modalities, we fine-
tune the mask head and attain the mask features f2Dmask. In contrast to previous
methods that rely on potentially noisy fixed image features for supervision, the
fine-tuned mask features enhance the adaptability to downstream 3D tasks. We
explore different fine-tuning strategies, such as LoRA [18], Adapter [17], and full
parameter fine-tuning and compare them in experiments.

3.3 Dense Associations across Modalities

Once the text and image modalities are constructed, the subsequent step is to
associate each point to its corresponding pixel and text. We utilize the image
modality as a bridge to establish separate associations between pixels and other
modalities. Firstly, we construct the associations between image and language
modalities by taking C different text embeddings fT = {fT1 , · · · , f

T
C} as classifier

to assign text labels to each pixel, obtaining a 2D semantic score map, denoted
by S2D ∈ RH×W×C . This process can be formulated as follows:

S2D
c (u, v) = σ(< f2D(u, v), fTc > /τ1), (1)

where S2D
c (u, v) denotes the probability that the pixel at location (u, v) belongs

to the c-th text label, and < · > represents the cosine similarity between two
ℓ2-normalized feature vectors. τ1 is a temperature parameter. Then we establish
the associations between images and point clouds by back-propagating 3D points
p = (x, y, z) onto 2D positions (u, v) using a projection matrix T ∈ R3×4, i.e.,
[u, v, w] = T [x, y, z, 1], where w is a scaling factor.

Finally, we associate the text and 3D modalities by taking image as the bridge.
Given K different projection views for one point p, we compute its average
semantic score, denoted as S̄3D, across K views [S2D

1 (u1, v1), · · · , S2D
K (uK , vK)].

Based on the aggregated 3D semantic scores, the final text-to-3D label map,
denoted as M3D ∈ RN×C , can be derived by:

M3D
c =

{
1, if S̄3D

c > threshold
0, else

, (2)

where N denotes the number of points and M3D
c indicates whether the point

belongs to the c-th text label or not. M3D can be regarded as the pseudo label
map for point cloud, serving as the supervision signal for training 3D models.
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It is noteworthy that instead of generating one-hot label through the argmax
operation, we select all confident text labels whose scores exceed the threshold.
This is because the generated text categories may exhibit similarities in semantics
(like ‘suitcase’ and ‘luggage’) or inclusion relationships (such as ‘kitchen’ and
‘stove’). As a result, it is highly possible that one single point corresponds to
multiple text labels simultaneously.

3.4 Dense Multimodal Alignment

After obtaining the triplets of different modalities and their dense correspondences,
the subsequent objective is to align the 3D points with their corresponding text
and pixel embeddings. This alignment process involves several steps. Firstly, we
extract 3D features for the point cloud by utilizing a 3D network, denoted as ε3D.
These features are then projected to match the dimension of the CLIP features.

Next, we assign text labels to different 3D points by computing the cosine
similarities between point and text embeddings fT , yielding a 3D segmentation
probability map P 3D:

P 3D
i,c = σ(< f3Di , fTc > /τ2), (3)

where f3Di denotes the feature of the i-th point, and P 3D
i,c denotes the probability

that the i-th point belongs to the c-th text label. Here we employ the Sigmoid
activation function σ(·) since it will not lead to mutually exclusive relationships
among different categories.

Text-to-3D Supervision. We use the text-to-3D label map M3D as the
pseudo label to facilitate the alignment of point and text features. Different
loss functions are employed for aligning the point embeddings with the tag
fTtag and scene description fTllm embeddings. As can be seen in Fig. 1, we build
dense associations between fTtag and the entire point cloud, resulting in M3D

tag .
Consequently, The Binary Cross Entropy (BCE) loss is used to effectively penalize
both positive and negative samples:

L3d−text(tag) = LBCE(P
3D,M3D

tag). (4)

As for fTllm, since it corresponds only to salient objects, we can only obtain the
mask for partial points, denoted as M3D

llm. (Visualizations of M3D
tag and M3D

llm

are given in Fig. 2 and Fig. 3 of the supplementary material, respectively.) We
utilize the cosine similarity loss to supervise only the positive samples:

L3d−text(llm) = 1− cos(fTllm, f3D). (5)

Mutually Inclusive Loss. In this work, we do not employ the Cross-Entropy
loss because it would result in a mutually exclusive relationship between different
classes, meaning that each point is assigned to only one class of interest. However,
in text-to-3D alignment, one point may simultaneously associate with multiple
text prompts, such as ‘bed’ and ‘bedroom’, ‘chair’ and ‘office chair’, ‘curtain’ and
‘drape’, etc. To handle this issue, we employ mutually inclusive losses (MIL),
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such as BCE loss and cosine similarity loss, to ensure that each point is aligned
with all its corresponding tags/descriptions simultaneously, avoiding the potential
conflicts between categories with overlapping or similar semantics.

2D-to-3D Supervision. For 3D-2D pairs, we follow the previous work [42]
to fuse pixel embeddings across K different views, represented as [f2D1 , · · · , f2DK ],
into a single feature vector f̄2D, and align 2D and 3D features by minimizing the
cosine similarity loss:

L3d−2d = 1− cos(̄f2D, f3D). (6)

Since 2D mask head is also trainable, we additionally add the text-to-2D
supervision and compute the BCE loss between 2D predictions and 2D masks,
obtaining Ltext−2d. Finally, the overall objective function to perform dense
multimodal alignment is defined as:

L3D = L3d−text(tag) + L3d−text(llm) + L3d−2d + Ltext−2d, (7)

where the language modality provides comprehensive textual descriptions, and
the image modality gives precise supervision on object edges and contextual
information. Additionally, the 3D modality reveals crucial structural information
of objects. By densely aligning these modalities in a shared space, our method
can maximize the synergistic benefits among them and achieve outstanding seg-
mentation performance without compromising the open-vocabulary classification
ability of the model.

4 Experiments

4.1 Setups

Datasets. To demonstrate the effectiveness of our proposed method, we employ
three popular datasets, i.e., ScanNet [11], Matterport3D [6], and nuScenes [4]. The
first two datasets are indoor ones, comprising RGBD images and 3D meshes. The
third one is an outdoor dataset, consisting of data collected from two sensors, i.e.,
LiDAR and camera. We conduct comparisons with state-of-the-art methods on
each of these datasets. The mean Intersection-of-Union (mIoU), mean Accuracy
(mACC), Precision, and Recall are employed as the evaluation metrics.

Implementation Details. In this work, MinkowskiNet [10] is employed as
the 3D backbone, whose voxel size is set to 2cm for ScanNet and Matterport3D
and 5cm for nuScenes. As for the 2D backbone, we use OpenSeg [14] and FC-
CLIP [56] that perform mask-wise classification. The parameters τ1 in Eq. 1 and
τ2 in Eq. 3 are both set to 0.1. We use Adam [25] as the optimizer and the initial
learning rate is set to 1e− 4. The model is trained for 100 epochs. We set the
batch size as 8 for indoor datasets and use one single NVIDIA RTX A6000 for
training. As for nuScenes dataset, we use 8 GPUs for training and set the batch
size as 16.
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Methods mIoU mACC mIoU(F) mIoU(B) Latency

fu
ll
y-

su
pe

rv
is

ed TangentConv [49] 40.9 − − − −
TextureNet [21] 54.8 − − − −

ScanComplete [12] 56.6 − − − −
Mix3D [41] 73.6 − − − −
VMNet [20] 73.2 − − − −

MinkowskiNet [20] 69.0 − − − −

Z
er

o-
sh

ot

PLA [13] 17.7 33.5 − − 0.07s
RegionPLC [55] 43.8 65.6 − − 0.07s

OpenScene [42](LSeg)-3D 52.9 63.2 − − 0.07s
OpenScene(LSeg)-2D3D 54.2 66.6 − − 102.6s

OpenScene†(OpenSeg)-3D 46.6 66.5 50.0 47.1 0.07s
OpenScene†(OpenSeg)-2D3D 47.9 71.7 49.5 51.0 89.4s

DMA(OpenSeg)-text only 50.5 63.7 56.7 48.0 0.07s
DMA(OpenSeg)-3D 53.3 70.3 58.3 51.5 0.07s

DMA(LSeg)-3D 54.8 66.9 59.9 51.9 0.07s
DMA(FC-CLIP)-3D 51.8 68.7 56.0 51.4 0.07s

Table 1: Comparison on the ScanNet [11]
validation set. “F” and “B” denote fore-
ground and background classes, respectively.
† denotes our reproduced results.

Methods Anno. mIoU
mIoU
(Base)

mIoU
(Long-Tail)

fu
ll
y-

su
p. RangeNet++ [39]

100%

65.5 76.4 56.4
Cylinder3D [58] 75.4 84.1 69.4
SPVNAS [48] 74.8 82.3 67.2
AMVNet [34] 77.0 83.9 70.8

w
ea

kl
y-

su
p. ContrastiveSC [16] 0.9% 64.5 79.7 53.8

LESS [37] 74.8 81.6 68.7
ContrastiveSC 0.2% 63.5 78.4 51.6

LESS 73.5 81.1 66.6

Z
er

o-
sh

ot OpenScene [42](LSeg)-2D3D No 36.7 55.0 22.3
OpenScene(OpenSeg)-2D3D 42.1 52.6 33.8

DMA(OpenSeg)-3D No 45.1 59.3 33.9
DMA(FC-CLIP)-3D 47.4 61.4 35.3

Table 2: Comparison on the nuScenes [4]
validation set. We partition all categories
into base and long-tail classes according to
their frequencies.

4.2 Comparison with State-of-the-Arts

We compare the proposed DMA with fully-/weakly-supervised and zero-shot
methods [13,42,55]. Tab. 1 presents the segmentation results on the ScanNet [11]
dataset. To facilitate comparison, we measure the results of OpenScene by using
3D and 2D-3D integrated features as supervision. As can be seen in Tab. 1,
although OpenScene(LSeg) attains better results (54.2% mIoU) by using both
2D and 3D encoders, it results in significantly increased inference latency.
This is because the parameter size of 2D encoder is much larger than 3D en-
coder, and the 2D encoder needs to perform inference on multi-view images
of the scene. Our DMA(OpenSeg) using only 3D model for prediction outper-
forms OpenScene(OpenSeg)-2D3D by 5.4% mIoU at a significantly lower latency,
wherein the mIoU (F) and mIoU (B) are improved by 8.8% and 0.5%, respectively.
This is because we perform additional alignment with text modality, thereby
compensating for the decreased open-vocabulary ability of 2D model. When using
text supervision only, our method outperforms the text-supervised approach
RegionPLC [55] by 9.5%, and even surpasses OpenScene(OpenSeg)-2D3D by
2.6% in terms of mIoU. This indicates that, compared to previous methods that
generate image- and region-level captions, our method establishes dense and
precise correspondences between text and 3D points by taking 2D modality as
the bridge, achieving more precise supervision. The suboptimal performance of
our method using FC-CLIP as the 2D encoder may be attributed to the low
resolution of the images (320×240), which limits the capabilities of FC-CLIP.

Outdoor Scenes. To validate the effectiveness of our method on outdoor
point clouds, we evaluate the performance of DMA on the nuScenes dataset [4].
Due to the highly imbalanced class distribution of outdoor scenes, we additionally
measure the performance on base and long-tail categories. As shown in Tab. 2,
by densely aligning with the tagging information and the detailed description
extracted from each scene, our DMA(OpenSeg) using only 3D encoder signifi-
cantly improves the performance over OpenScene(OpenSeg)-2D3D by 3.0% mIoU.
Additionally, the final performance is further improved by 2.3% and attains
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Fig. 4: Qualitative results of different methods on both indoor and outdoor datasets.

mIoU mACC Precision Recall
Head Common Tail All Head Common Tail All Head Common Tail All Head Common Tail All

OpenScene† [42]-2D3D 21.2 8.4 4.0 6.2 35.5 15.7 9.4 12.0 43.9 18.6 7.8 14.5 34.5 15.7 9.4 12.0
PLA [13] − − − 1.8 − − − 3.1 − − − − − − − −

RegionPLC [55] − − − 6.5 − − − 15.9 − − − − − − − −
DMA-text only 23.2 7.6 2.0 6.9 32.6 13.4 5.9 11.3 40.0 15.1 5.8 13.7 32.6 13.4 5.9 11.3

DMA(OpenSeg)-3D 25.3 10.8 5.5 7.6 36.7 18.2 10.7 14.6 44.5 23.6 10.5 14.9 36.7 18.2 10.7 13.2
DMA(FC-CLIP)-3D 27.2 11.5 5.8 7.9 37.4 19.2 11.2 15.2 46.2 24.9 11.3 15.7 38.2 20.4 11.1 14.0

Fully-Sup 45.5 13.6 3.4 20.8 − − − − 66.8 55.7 23.3 34.4 57.6 19.1 5.8 27.8

Table 3: Comparison on ScanNet200 [45] validation set. † means our reproduced results.

47.4% mIoU by employing FC-CLIP [56] to extract 2D features. This is because
FC-CLIP could achieve more precise segmentation while maintaining outstanding
open-vocabulary recognition ability of CLIP. Besides, by fine-tuning the mask
head, FC-CLIP could incorporate the 3D structural priors into mask features
and produce better results.

Long-Tail Datasets. As shown in Tab. 3, we validate the open-vocabulary
methods on the more challenging long-tail 3D scene understanding datasets, i.e.,
ScanNet200 [45]. Following [45], we partition the 200 categories into three splits,
i.e., head, common, and tail sets, facilitating a more comprehensive comparison
across categories with different frequencies. When training on head classes (ceiling,
curtain, window, etc.), the fully-supervised method performs much better than
zero-shot methods due to the sufficient 3D labels for supervision. However, on
the common and tail splits, our DMA method approaches to or even surpasses
the fully-supervised competitors. This is because there are only a few instances
available on these long-tail categories, which is not sufficient to train a robust
model from scratch. Our method does not rely on ground truth 3D labels but
instead distill knowledge from pretrained vision-language models, thus it is more
robust to rare objects.

To further validate the robustness of our method on rare objects/classes,
we evaluate on the most frequent K classes of Matterport3D [6], where K =
21, 40, 80, 160. We train a 3D model by taking our generated textual descriptions
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mIoU mACC
# of classes K 21 40 80 160 21 40 80 160

fu
lly

-s
up

.

TangentConv [49] − − − − 46.8 − − −
TextureNet [21] − − − − 63.0 − − −

ScanComplete [12] − − − − 44.9 − − −
DCM-Net − − − − 66.2 − − −

VM-Net [20] − − − − 67.2 − − −
MinkowskiNet [20] 54.2 − − − 64.6 − − −

Z
er

o-
sh

ot
.

OpenScene [42](LSeg)-3D 41.9 25.4 12.0 5.9 51.2 30.7 15.2 7.5
OpenScene(LSeg)-2D3D 43.4 26.8 13.1 6.4 53.5 33.0 17.4 8.6
OpenScene(OpenSeg)-3D 41.3 33.4 18.1 8.2 55.1 46.7 26.2 13.9

OpenScene(OpenSeg)-2D3D 42.6 34.2 18.8 8.4 59.2 47.5 27.1 14.5
DMA-text only 39.8 25.4 11.7 6.2 49.5 31.6 16.1 8.0

DMA(OpenSeg)-3D 45.1 37.9 19.7 9.4 57.6 47.7 26.7 14.1
DMA(FC-CLIP)-3D 46.2 38.4 20.1 9.8 58.4 48.3 26.5 15.2

Table 4: Comparison on the Matterport [6] test set.

and image features as supervision, and perform inference on different K categories.
As shown in Tab. 4, when employing the same 2D network, i.e., OpenSeg,
our method demonstrates superior zero-shot segmentation capability on both
common and rare categories. Specifically, our DMA(OpenSeg)-3D surpasses
OpenScene(OpenSeg)-3D by 3.8%, 4.5%, 1.6%, and 1.2% in terms of mIoU
at different K. This can be attributed to that OpenScene heavily relies on
2D model for supervision without aligning with text prompts, which limits its
open-vocabulary ability. Our method, however, directly aligns with the textual
modality, overcoming the limitations of 2D models.

Qualitative Comparison. Fig. 4 visualizes the segmentation results of
different methods. We can observe that OpenScene [42] with only 3D encoder
exhibits poor performance in segmenting objects that lack spatial structures, such
as “door”, “window”, “counter”, etc. In contrast, text supervision offers more refined
guidance by establishing dense correspondences between the texts and points,
thereby enabling more precise alignment. Our approach leverages the advantages
of both language and 2D modalities, and achieves excellent segmentation results
for both foreground and background classes using only the 3D model.

4.3 Ablation Study

2D Features vs. 3D Features. In Fig 5, we compare the segmentation per-
formance on ScanNet by using different features. ‘F’ and ‘B’ denote foreground
and background classes, respectively. For OpenScene [42], we observe that its
2D features are more advantageous for segmenting background categories with
ambiguous geometry than 3D ones, i.e., 49.1% vs. 47.1% mIoU(B), while 3D
features excel at segmenting the foreground objects with distinct shapes, i.e.,
50.0% vs. 42.5% mIoU(F). Although the 2D-3D hybrid feature can leverage
the strengths of both features simultaneously, utilizing 2D models for inference
introduces significant computational overhead (please refer to the latency in
Tab. 1). By additionally aligning with our generated text modality, our method
can achieve outstanding performance on both foreground (58.3%) and background
(51.5%) categories using only 3D features. Besides, DMA achieves comparable
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Fig. 5: Comparisons of text, 2D, and 3D features. “F”
and “B” denote foreground and background classes.

Fig. 6: Comparisons of tagging
models and MLLMs.

Method mIoU mACC mIoU (In) mIoU (Out)
CLIP feature 35.2 51.3 36.7 31.8

Mask feature (w/o FT) 40.1 55.4 48.3 21.3
Mask feature (w/ FT) 42.0 57.4 50.5 24.1

CLIP+Mask 44.8 59.7 51.7 28.5

Table 5: Comparisons of CLIP and Mask features of
FC-CLIP on ScanNet. “FT” denotes fine-tuning.

Method 2D Mask 3D Mask

w/o FT 36.6 40.1
Full Parameter 40.4 42.0

LoRA [18] 39.0 41.3
Adapter [17] 37.9 40.9

Table 6: Comparisons of dif-
ferent fine-tuning methods.

performance to using both 2D and 3D encoders by solely utilizing the 3D encoder,
i.e., 53.3% vs. 53.5% mIoU(F), and hence significantly reducing inference time.

Tagging Models vs. MLLMs. In Tab. 6, we compare the results of using
different tagging models and MLLMs on ScanNet. For the enhanced version,
we replace RAM with RAM++ [22], and LLaVA-7B with LLaVA-13B. We can
observe that our method outperforms RegionPLC [55] by a large margin (about
6.7%) by building dense point-to-text correspondences. The tagging model plays
a key role for performance improvement since it encompasses extensive semantic
patterns, while MLLM further enhances the final performance by incorporating
rich contextual information. By filtering out noisy tags with GPT, the performance
can be improved by 2.6% and 1.3% for the basic and the enhanced versions,
respectively. The final performance can be further improved when stronger tagging
models/MLLMs are employed.

CLIP Features vs. Mask Features. In addition to OpenSeg [14], we
employ FC-CLIP [56] to extract 2D features due to its effectiveness. As show
in Tab. 5, we compare the performance by using CLIP and Mask features as
supervision. ‘In’ and ‘Out’ denote in-vocabulary and out-vocabulary classes,
respectively. FC-CLIP contains an in-vocabulary classifier and an out-vocabulary
classifier, which correspond to the seen and unseen categories in the training
process, respectively. As can be seen, the fixed CLIP feature is more advantageous
in segmenting unseen categories, which outperforms mask feature by 10.5% in
terms of mIoU(Out). This demonstrates that the fixed CLIP visual encoder
could maintain the strong generalization ability on novel classes. While for in-
vocabulary classes, mask features outperform the CLIP feature by 11.6%. By
combining these features, we can simultaneously achieve competitive results on
in- and out-vocabulary categories, attaining 44.8% mIoU over all classes.

Comparisons of Different Fine-Tuning Methods. We fine-tune the
mask head of FC-CLIP with different strategies for incorporating 3D structural
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Fig. 7: Open-vocabulary segmentation results on rare categories and different forms of
queries. The same color corresponds to the same query/category.

priors into mask features. As can be seen in Tab. 6, by fully fine-tuning the mask
head, the performances of 2D and 3D masks are improved by 3.8% and 1.9%,
respectively. LoRA [18] and Adapter [17] can also achieve obvious improvements
by tuning a small amount of parameters.

Open-Vocabulary Segmentation for Different Text Queries. We finally
investigate the ability of our method to segment rare categories. As shown in
Fig. 7, our method can accurately segment the corresponding regions for the
given texts/queries in 3D scenes, even for unseen categories. For instance, our
well-trained model can quickly locate the position of new categories such as
“Snoopy”, or functional areas such as “kitchen”, etc. On one hand, we align with
2D CLIP features that have been trained with a vast corpus of text. On the
other hand, we construct a comprehensive and scalable textual modality by using
VLMs, further enhancing the understanding ability.

5 Conclusion

We presented a dense multimodal alignment (DMA) framework for open-vocabulary
3D scene understanding by establishing dense correspondences between 3D points,
2D images and 1D texts, and leveraging their synergistic benefits to learn robust
and generalizable 3D representations. To build a scalable language modality, we
utilized powerful vision-language models to extract comprehensive scene descrip-
tions and category information. Furthermore, we preserved the open-vocabulary
recognition ability of the image modality by combining frozen CLIP features
with trainable mask features. Extensive experiments demonstrate the promising
performance of our method in open-vocabulary segmentation tasks across various
indoor and outdoor scenarios.

Limitations. Our method relies on the quality of generated text descriptions
and image features. In addition, collecting a larger 3D scene dataset is crucial for
improving the generalization ability to unseen categories and variations.
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