
Deep Feature Surgery: Towards Accurate and
Efficient Multi-Exit Networks

Cheng Gong1 , Yao Chen3∗, Qiuyang Luo1, Ye Lu2,6,7 , Tao Li2,5, Yuzhi
Zhang1,5, Yufei Sun1∗,5, and Le Zhang4

1 College of Software, Nankai University
yufei_sun@sina.com

2 College of Computer Science, Nankai University
3 National University of Singapore

yaochen@nus.edu.sg
4 School of Information and Communication Engineering, University of Electronic

Science and Technology of China
5 HAIHE Lab of ITAI

6 Tianjin Key Laboratory of Network and Data Security Technology
7 Key Laboratory of Data and Intelligent System Security, Ministry of Education

Abstract. Multi-exit network is a promising architecture for efficient
model inference by sharing backbone networks and weights among mul-
tiple exits. However, the gradient conflict of the shared weights results
in sub-optimal accuracy. This paper introduces Deep Feature Surgery
(DFS), which consists of feature partitioning and feature referencing ap-
proaches to resolve gradient conflict issues during the training of multi-
exit networks. The feature partitioning separates shared features along
the depth axis among all exits to alleviate gradient conflict while simulta-
neously promoting joint optimization for each exit. Subsequently, feature
referencing enhances multi-scale features for distinct exits across vary-
ing depths to improve the model accuracy. Furthermore, DFS reduces
the training operations with the reduced complexity of backpropaga-
tion. Experimental results on Cifar100 and ImageNet datasets exhibit
that DFS provides up to a 50.00% reduction in training time and at-
tains up to a 6.94% enhancement in accuracy when contrasted with
baseline methods across diverse models and tasks. Budgeted batch clas-
sification evaluation on MSDNet demonstrates that DFS uses about 2×
fewer average FLOPs per image to achieve the same classification accu-
racy as baseline methods on Cifar100. The code is available at https:
//github.com/GongCheng1919/dfs.

1 Introduction

A multi-exit network refers to a neural network architecture designed with multi-
ple points at which the network outputs a result or makes a decision, rather than
having a single endpoint. These intermediate exits can be utilized for various pur-
poses such as early exiting for efficiency, where the network can provide a quick

* Corresponding Author

https://orcid.org/0000-0002-6594-8375
https://orcid.org/0000-0003-0805-6394
https://github.com/GongCheng1919/dfs
https://github.com/GongCheng1919/dfs

2 Cheng Gong et al.

(c) Deep Feature Surgery (Ours)

Layer 1 Layer 2 Layer 3 Layer 4

(b) Gradient Selection

Layer 1 Layer 2 Layer 3 Layer 4

(a) Feature Enhancement

Layer 1 Layer 2 Layer 3 Layer 4

Input Feature ReferencingFeatureExit
Forward & Backward Feature Partitioning
Selected Gradient

Projected Gradient
Conflicted Gradient

Wider
LayerMore

Data

Select
Gradient

Feature

Fig. 1: Solutions to improve the accuracy of the exits for multi-exit networks. (a)
Feature enhancement introduces additional features to improve the accuracy of exits.
(b) Gradient selection adjusts gradients from conflicting sources to attain consistent
update directions. (c) Our method alleviates gradient conflict and ensures end-to-end
joint optimization of exits.

prediction without the need for full computation through the entire network
depth. Multi-exit networks are widely applied in domains including dynamic
computing graph [9], anytime prediction [18], and collaborative inference [19].

In multi-exit network training, it is imperative to formulate multiple losses
for distinct exits and concurrently optimize these losses. However, multiple exits
manifest inconsistent or diametrically opposing gradient directions, denoted as
the gradient conflict issue [1,2,4,12,21,33,34]. This issue hinders the convergence
of multi-exit networks, consequently exerting a impact on the model accuracy.

Recent research advancements have introduced enhancements for training
multi-exit networks, primarily categorized into feature enhancement [10, 18, 27,
35, 36] and gradient selection [12, 18, 32]. Feature enhancement introduces addi-
tional features (more data or wider layer) and training iterations to improve the
accuracy of the exits of the model as shown in Fig. 1a. This approach is irrelated
to the gradient conflict issue and may lead to elevated training expenses and
necessitate model redesign [10, 18, 27, 35, 36]. Gradient selection adjusts gradi-
ents from conflicting sources to attain consistent update directions conducive to
model optimization as shown in Fig. 1b. This approach is generally heuristic,
demonstrating effectiveness in specific models but facing accuracy challenges for
universal adoption [12, 18, 32]. In addition, it has to take additional forward-
backward phases to merge the gradients to adjust the update directions of the
parameters, leading to a long model training time [21,25,32,34].

This paper proposes Deep Feature Surgery (DFS) to tackle both the accu-
racy and training efficiency challenges in training multi-exit networks. Specif-
ically, DFS utilizes two techniques for feature tensors to address the gradient
conflict and enables joint optimization to the different groups of parameters,
namely feature partitioning and feature referencing. Feature partitioning divides
the features of different exits along the depth axis into exit-specific and shared
components as shown in Fig. 1c, and updates the corresponding parameters only
during the backpropagation. This partitioning reduces the shared features and
the corresponding shared parameters among distinct exits, effectively alleviat-
ing gradient conflict while ensuring end-to-end joint optimization of exits with
varying depths. Feature referencing allows exits with different depths to reuse
the exit-specific features to enhance their accuracy. In addition, DFS reduces

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 3

the back-propagation operations and improves the model training efficiency by
reducing a substantial portion of gradient computation during model training.

In summary, our contributions are as follows:

– We propose DFS, which consists of feature partitioning and feature refer-
encing to address the gradient conflict issue of training multi-exit networks.

– We reduce the required operations during model training with DFS to im-
prove the training efficiency of multi-exit networks.

– Extensive experiments demonstrate that DFS consistently outperforms base-
line methods across various models and tasks with up to 50.00% reduction
in training time and a maximum improvement of 6.94% in accuracy.

2 Related work

Training multi-exit networks is challenging since the gradients from multiple
exits hold conflicts, which usually lead to sub-optimal model accuracy [34].

2.1 Feature Enhancement

Feature enhancement tries to introduce more robust features to improve the
accuracy of multi-exit networks which includes knowledge transfer [18], knowl-
edge distillation [18,27,35,36], weighted sample learning [10], and dense connec-
tions [13]. Since feature enhancement is an irrelative technique for solving gra-
dient conflict issues, it was combined with other techniques to further improve
the performance of multi-exit architectures. Feature enhancement methods often
necessitate extensive modifications to the model [13], loss function [18, 35], and
even the dataset [10], thereby impacting the model training efficiency.

2.2 Gradient Selection

Gradient selection is effective in many applications such as computer vision [21,
32] and natural language processing [1,12] by selecting a proper updating direc-
tion. One way is to adjust the gradients to multiple exits. For example, in [18], re-
searchers develop a gradient equilibrium strategy to reduce the gradient variance
and stabilize the training process; Meta-GF [32] take account of the importance
of the shared weights to each exit, and introduce a meta-learning-based method
for weighted fusion of the gradients of each exit; [12] propose Gradient Remedy
(GR) to change the angle and magnitude of gradient vectors to solve interfer-
ence between two gradients in noise-robust speech recognition. Another way is
to balance the multiple losses to the multiple exits and obtain better-weighted
gradients without complex intervention. [7] design an adaptive loss-weighting
policy to prioritize more difficult tasks. GradNorm [2] and [22] introduce the
magnitude re-scaling algorithms to balance the gradient magnitudes of different
tasks. Other widely used gradient selection methods are multi-objective algo-
rithms, such as the MGDA [29], PCGrad [34], CAGrad [21], GetMTL [1], Nash-
MTL [25], and so on. These methods formulate multi-exit network training as

4 Cheng Gong et al.

multi-objective optimization and try to pursue the Pareto optimalities for better
trade-offs among multiple losses to multiple exits. Gradient selection inevitably
degrades the overall accuracy of networks in the gradient adjusting and com-
promises among multiple exits, i.e., for one loss to give up updating others.
Furthermore, this technique requires computing independent weight gradients
for each exit to calculate the merge coefficients, which often entails multiple
forward and backward passes for one training iteration, resulting in a manifold
increase in training time.

2.3 Feature partitioning

Feature partitioning is a technique proposed for mitigating task interference in
multi-task learning [4, 5, 23, 24, 26, 31]. For instance, ETR-NLP [5] partitions
the features into task-specific and task-shared ones, to update the correspond-
ing parameters regarding different tasks during model training. It trains the
task-specific and shared parameters separately, thus largely increasing training
iterations and delaying model training. Mask-based works [26,31] learn the mask
module for each task during training to select the proper parameters. The mask
modules for different tasks are optimized separately which requires a long train-
ing time. [23, 24] employ the attention mechanisms at the filter level as feature
selectors allowing each task to select a subset of parameters. They train the
attention modules and model parameters simultaneously in one training itera-
tion where attention modules delay the training. GradSplit [4] splits features into
multiple groups for multiple tasks and trains each group only using the gradients
back-propagated from the task losses. These studies have demonstrated success
in multi-task learning, but they do not translate effectively to training multi-
exit networks due to the training efficiency issue and gap between multi-task
learning and multi-exit networks. To the best of our knowledge, DFS is the first
study that employs feature partitioning to mitigate the gradient conflict issue
in training multi-exit networks, and significantly enhances both model accuracy
and training efficiency of multi-exit networks.

3 Preliminary: Gradient Conflict

Gradient conflict is the major cause of the accuracy degradation in multi-exit
network training. Let a feature extraction architecture, such as a convolutional
neural network, with L layers be the backbone network. Take the classification
task as an example, this multi-exit network has L tasks for the exits, denoted
as C = {c1, c2, · · · , cL} and weights for these layers from the backbone network,
denoted as WL = {w1, w2, · · · , wL}. Since each exit also has its own exit-specific
weights, denoted as WC = {wc1 , wc2 , · · · , wcL}. Let (X,Y) be a dataset, in which
X is the sample set and Y is the labels of X, and the i−th task ci of the given
multi-exit network is defined as follows.

ci = πi(fi, wci), s.t.

{
fi = φi(X,Wi),

i = 1, 2, · · · , L
(1)

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 5

Here, πi(·) processes the exit-specific output with the exit-specific weight wci

and the intermediate feature fi from the i-th layer of backbone network. fi is
extracted by φi(·) with input X and weights Wi. For weight sets Wi and Wj ,
they share weights as follows.

Wi ∩Wj = {w1, w2, · · · , wmin(i,j)}, s.t.

{
i = 1, 2, · · · , L
j = 1, 2, · · · , L

(2)

As a result, the optimization formulation of this multi-exit network can be de-
rived as follows.

W ∗
L,W

∗
C = argmin

WL,WC

{CE(c1, Y), CE(c2, Y), · · · , CE(cL, Y)}. (3)

Here, CE(·) computes the cross entropy of prediction {ci|i = 1, 2, · · · , L} and
category Y . Obviously, Eq. (3) is a multi-objective optimization [29] problem,
which implies that it is hard to achieve the optimal solutions for all classification
tasks simultaneously.

The most common methods employ a gradient descent algorithm to optimize
Eq. (3), the gradients gwi of tasks with respect to weight wi is computed as the
summation of {gkwi

|k = i, i + 1, · · · , L} as follows since wi is the shared weight
among these exits [13].

gwi =

L∑
k=i

gkwi
, s.t. gkwi

=
∂CE(ck, Y)

∂wi
(4)

Although gkwi
implies the optimal updating direction of wi to reduce CE(ck, Y).

The inconsistency in the gradients of {gkwi
|k = 1, 2, · · · , L} is known as gradient

conflict and affects the training performance.

4 Deep Feature Surgery

DFS addresses the gradient conflict by creating both individual and shared pa-
rameter updates. DFS conducts feature partitioning and feature referencing on
the feature tensors to ensure the desirable model accuracy of different exits.

4.1 Feature Partitioning

Gradient conflict is caused by the shared weights of exits in multi-exit networks,
as shown in Eq. (2). In order to alleviate the gradient conflict, we first decouple
the weight wi of i-th layer into two distinct parts with a coefficient β. Let wi ∈
RCin×Cout×K×K , we define:

wi = [w+
i , w

−
i]β , s.t.

{
w+

i = wi[:, : ⌊βCout⌉, :, :]
w−

i = wi[:, ⌊βCout⌉ :, :, :]
(5)

Here, ⌊·⌉ computes the rounding result of input, and wi[:] represents a slicing
operation on the tensor wi. [·]β is the concatenate operation of tensors. β ∈ (0, 1)

6 Cheng Gong et al.

Input

CE CE CECat Cat CatLoss 1 Loss 2 CECat
Loss L

Forward & Backward

Neural Operation

NO NO NO

NO

NO

Feature Referencing
Loss i

𝑓1
+

𝑓1
−

𝑐1 𝑐2 𝑐𝑖

𝑐𝐿

𝑓2
+

𝑓2
−

𝑓𝑖
+

𝑓𝑖
−

𝑓𝐿

[𝑤1
+,𝑤1

−]𝛽

𝑔𝑤𝑐𝐿

𝐿

𝑔𝑤𝑐𝑖

𝑖 𝑔𝑤𝑐2

2 𝑔𝑤𝑐1

1

[𝑤2
+, 𝑤2

−]𝛽 [𝑤𝑖
+, 𝑤𝑖

−]𝛽 𝑤𝐿

𝑔𝑤𝑖
−

𝑖 𝑔𝑤2
−

2

𝑔𝑤1
−

1

 𝑔
𝑤𝑖
+

𝑘

𝐿

𝑘=𝑖+1

𝑔𝑤2
+

𝑘

𝐿

𝑘=3𝑔𝑤1
+

𝑘

𝐿

𝑘=2

Feature Partitioning

𝜷

0

1

𝜷

0

1

𝜷

0

1

Fig. 2: Deep feature surgery for multi-exit networks. The black arrow represents for-
ward and backward propagation. The blue arrow indicates feature reference. The red-
doted line represents the partitioning position. DFS splits the features of each layer
into two distinct parts f+

i and f−
i with coefficient β, which reduces the number of

shared weights w+
i among different exits thus mitigating gradient conflict and reducing

backward computation operations. DFS cross-references the shared features and exit-
specific features among exits with varying depths in the forward phase while ignoring
this in the backward phase, thus using more features for predicting tasks while not
introducing more inconsistent gradients.

indicates the partitioning ratio of w+
i and 1−β is that of w−

i . w+
i is shared among

exits and w−
i is exit-specific weights. Based on the partitioned weights, task ci

is computed as follows.

ci = πi(f
−
i , wci), s.t.

{
f−
i = φi(X, {w+

1 , w
+
2 , · · · , w

+
i−1, w

−
i })

i = 1, 2, · · · , L− 1.
(6)

According to the optimization in Eq. (3), the gradients gwi of wi can be computed
as follows.

gwi = [

L∑
k=i+1

gk
w+

i
, gi

w−
i
]β , s.t. gk

w+
i
=

∂CE(ck, Y)

∂w+
i

, gi
w−

i
=

∂CE(ci, Y)

∂w−
i

. (7)

Through decoupling weights into two distinct parts, we alleviate the gradient
conflict of

∑L
k=i g

k
wi

in Eq. (4) to
∑L

k=i+1 g
k
w+

i

in Eq. (7) as shown in Fig. 2.

Notably, β → 1 partitions all elements in wi into w+
i , the task ci is invalid. On

the contrary, β → 0 partitions all elements in wi into w−
i leads to |w+

i | → 0, the
multi-exit network degrades into a cascade of network layers, and the end-to-end
joint optimization from input X to tasks is eliminated. We constrain the value of
coefficient β to the range of (0, 1) to alleviate the gradient conflict in multi-exit
network optimization while ensuring the joint optimization of tasks.

Instead of partitioning the weight tensor, we partition the features for easy
deployment in practice. As shown in Fig. 2, taking the first layer as an example,
the output feature f1 = φ1(X,w1) of the first layer is split into f+

1 = φ1(X,w+
1)

and f−
1 = φ1(X,w−

1), which is corresponding to weight partitioning in Eq. (5).
The corresponding feature partitions to Eq. (6) is as follows:{

f−
i = φi(X, {w+

1 , w
+
2 , · · · , w

+
i−1, w

−
i })

f+
i = φi(X, {w+

1 , w
+
2 , · · · , w

+
i−1, w

+
i })

, s.t. i = 1, 2, · · · , L− 1. (8)

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 7

Here, f+
i is shared on all the following tasks including {ci+1, ci+2, · · · , cL}, and

f−
i is utilized for predicting ci. ci is the only task that contributes to learning
w−

i by supervising the exit-specific feature f−
i .

4.2 Feature Referencing

Feature partitioning alleviates the gradient conflict in multi-exit network training
but reduces the number of features for weight training. For example, f+

i is not
available for task ci in Eq. (6). The reduced number of features, e.g ., f+

i , can
easily result in the under-fitting of tasks. We introduce feature referencing to
address this issue. Feature referencing reuses these features across tasks to benefit
the task performance. Based on feature referencing, task ci and gradients gwi of
all tasks with respect to weight wi are defined as follows.

ci = πi([f
+
i , f−

i]β , wci)

f+
i = φi([f

+
i−1, f

−
i−1]β , w

+
i)

f−
i = φi([f

+
i−1, f

−
i−1]β , w

−
i)

, s.t.

{
f0 = X,

i = 1, 2, · · · , L− 1
(9)

Here we use both the shared feature f+
i−1 and exit-specific feature f−

i−1 for ex-
tracting next-layer features f+

i and f−
i in the forward phase with partitioned

weights, while both f+
i and f−

i are used for predicting task ci. This approach
increases the involved number of features from the previous output, thus increas-
ing the number of exit-specific weight wci for task ci to improve the accuracy of
the task. In the backward phase, to eliminate the gradient conflict, the compu-
tation of gradients {gk

w−
i

|k = i+1, · · · , L} is avoided. As shown in Fig. 2, for the

exit-specific weight w−
i in i-th layer, we only compute the gradients gi

w−
i

from
the i-th loss to ensure the gradient gw−

1
has no conflicts.

Feature referencing uses more features for predicting task ci while not intro-
ducing more inconsistent gradients for updating weight wi. Moreover, the feature
segments f+

i , and f−
i are referenced by different exits with varying depth, and

the tasks for these exits supervise the w+
i and w−

i to learn varying features with
different scales which improve the accuracy of multi-exit networks [13].

5 Training Efficiency Improvement

The training efficiency of multi-exit network models hinders their wide adoption.
DFS not only improves the accuracy of the different exits but also improves the
training efficiency of multi-exit network models by reducing the total number
of training operations. To simplify the representation, we assume the neural
operations (NO) in Fig. 2 only contain matrix-multiply operations to describe
the reduction of Multiply-Accumulation operation in the training of multi-exit
networks with DFS.

Let the i-th neural operation of a vanilla multi-exit network be:{
fi = φi(fi−1 · wi)

li = CE(πi(fi · wci), Y)
, s.t.

{
f0 = X,

i = 1, 2 · · · , L.
(10)

8 Cheng Gong et al.

Here fi and fi−1 are the features for layer i and wi is the corresponding layer
weights. There are L tasks with loss set {li|i = 1, 2, · · · , L}, and task losses
{lj |j >= i} reference the same intermediate feature fi, recursively. For simplicity,
we assume the matrixes fi, wi, and wci have the same shape [N,N]. Ignoring
the computing operations of activation and loss functions (φi(·) and CE(·)),
the operations for computing fi−1 · wi and fi · wci are both 2N3, and the total
forward operations are 4LN3.

We can further derivate the gradients of all task losses with respect to the
wi matrix as follows.

gwi =
∂li
∂wi

+
∂li+1

∂wi
+ · · ·+ ∂lL

∂wi

=

L∑
k=i

(
∂lk
∂fk

Πj<k
j=i (

∂fj+1

∂fj
)) · wT

i s.t. i = 1, 2, · · · , L.
(11)

Because of the chain rules and back-propagation algorithms [28], it only requires
to compute L− 1 times ∂fj+1/∂fj , L times ∂lk/∂fk, and one ∂fi/∂wi to obtain
gwi

. The operations for computing gradients gwi
are 4LN3. Since there are total

2L trainable weights (wi and wci), and the operations for computing ∂fi/∂wi

and ∂li/∂wci are both 2N3 (one matrix multiplication), the total backward
operations are (8L−2)N3, and the total forward-backward operations are (12L−
2)N3 for one training step for a vanilla multi-exit network.

Assuming that N can be evenly divided by 1/β, then the i-th feature fi is
partitioned into f+

i ∈ RN∗(βN) and f−
i ∈ RN∗(1−β)N , and the neural operations

are rewritten as follows:

fi = [f+
i , f−

i]β = [φi(fi−1 · w+
1), φi(fi−1 · w−

1)]β s.t. f0 = X, i = 1, 2, · · · , L. (12)

During the backward process, as described in Eq. (9) in Section 4.2, only the
gradients from an exit-specific loss li are adopted for weight w−

i , which have no
conflicts, and all gradients from all losses are adopted to update w+

i for end-to-
end optimization. So the computation of gwi

in Eq. (7) is expanded as follows.
g
w+

i
=

∑L
k=i+1 g

k

w+
i

= gL
w+

i

+
∑L−1

k=i+1(
∂lk
∂f−

k

∂f−
k

∂f+
k−1

Πj<k−1
j=i (

∂f+
j+1

∂f+
j

))
∂f+

i

∂w+
i

g
w−

i
= gi

w−
i

= ∂li
∂f−

i

· ∂f−
i

∂w−
i

= ∂li
∂f−

i

· (w−
i)T .

(13)

The feature number of f+
i and f−

i is β and (1− β) times that of fi. There-
fore, the operations for computing ∂li/∂f

+
i and ∂li/∂f

−
i are also β and (1− β)

times that for ∂li/∂fi, and they are β · 2N3 and (1 − β) · 2N3, respectively.
The operations to compute ∂f−

k /∂f+
k−1 and ∂f+

j+1/∂f
+
j are 2β(1 − β)N3 and

2β2N3, respectively. Employing the back-propagation algorithm [28], we only
need to compute L times of ∂lk/∂f−

k , L − 2 times of ∂f−
k /∂f+

k−1, L − 2 times
of ∂f+

j+1/∂f
+
j and one time of ∂lL/∂fL and ∂fL/∂f

+
L−1 to compute gL

w+
i

), and

one time of ∂f+
i /∂w+

i and ∂f−
i /∂w−

i in Eq. (13). The operations for computing
gwi

= [gw+
i
, gw−

i
]β is 2(L+ 1)N3, which is irrelated to coefficient β. There are a

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 9

total number of 2L trainable weights (wi and wci), and the operations for com-
puting [

∂f+
i

∂w+
i

,
∂f−

i

∂w−
i

]β and ∂li
∂wci

are both 2N3, the total backward operations are

6LN3. The total forward-backward operations are 10LN3 for one training step
with DFS. Compared with one vanilla training step, applying DFS reduces the
operations by up to 16.67%, which is formulated as follows and can be observed
that it is irrelated to the value of β.

1− 10LN3

(12L− 2)N3
∈ [0%, 16.67%), s.t. L ∈ [1,+∞). (14)

When β → 0, the multi-exit networks degrade to a cascade of shallow net-
works with total training operations of 10LN3. When β → 1, the multi-exit
networks degrade to backbone networks with multiple independent tasks, and
the total training operations are 10LN3. In conclusion, for a typical multi-exit
network, employing DFS can save up to 16.67% of operations in model training.

6 Experiments

In this section, we conduct experiments to evaluate the accuracy and training
efficiency improvement of multi-exit networks with DFS.

6.1 Model Accuracy Evaluation

We use Deeply-Supervised Nets (DSN) [17], BYOT [35], Gradient Equilibrium
(GE) [18], MSDNet [13], PCGrad [34], CAGrad [21], Meta-GF [32], Block-
Dependent Loss (BDL) [8], WPN [10], Nash-MTL [25], and DR-MGF [33] as
the baseline methods. All accuracy results of baselines are cited from the origi-
nal papers. We use the same datasets and models used in the baselines and adopt
DFS to the model training framework. Specifically, the datasets are Cifar100 [15]
and ImageNet [3]. The data augmentation policies for Cifar100 and ImageNet
refer to [35] and [6], respectively. The models on these datasets are MSDNet [13]
models and ResNet18 [11] and their implementations in [18] and [35] are utilized
for reproducibility and fair comparison. β = 0.5 is used as the default setting for
DFS. For Cifar100 dataset, we use the stochastic gradient descent (SGD) opti-
mizer with a momentum of 0.9 for all models. We train all models from scratch
for a total of 300 epochs with an initial learning rate of 0.1 and drops to 0.01,
1e-3, and 1e-4, after 250, 280, and 295 epochs, a weight decay of 5e−4, and a
batch size of 500. For ImageNet dataset, we use the SGD optimizer with a batch
size of 256, and train MSDNet models from scratch for a total of 90 epochs,
with an initial learning rate of 0.1 and drops to 0.01, 1e-3, and 1e-4, after 70, 80,
and 85 epochs. Besides, we do not employ extra training tricks, such as knowl-
edge distillation strategies [13, 35], gradient selection strategies [25, 32, 34], and
weighted losses or samples [10,33] in this evaluation. The top-1 accuracy is used
as the metric for accuracy evaluation for each of the exits.

The results of MSDNet are cited from [18], and the results of PCGrad and CAGrad
for multi-exit network training are cited from [32].

10 Cheng Gong et al.

Table 1: Comparison results of ResNet18 on Cifar100.
Methods Exit1 Exit2 Exit3 Exit4 Ensemble
Params (M) 0.43 0.96 3.11 11.17 -
FLOPs (M) 169.62 300.22 431.05 559.75 -
DSN [17] 67.23 73.80 77.75 78.38 79.27
BYOT [35] 67.85 74.57 78.23 78.64 79.67
DFS 74.17 77.43 78.82 79.93 80.89

*Ensemble is the accuracy of ensembled logits from all tasks [35].

Table 2: Comparison results of MSDNet on Cifar100.
Methods Exit1 Exit2 Exit3 Exit4 Exit5 Exit6 Exit7
Params (M) 0.90 1.84 2.80 3.76 4.92 6.10 7.36
FLOPs (M) 56.43 101.00 155.31 198.10 249.53 298.05 340.64
MSDNet [13] 64.10 67.46 70.34 72.38 73.06 73.81 73.89
GE [18] 64.00 68.41 71.86 73.50 74.46 75.39 75.96
CAGrad [21] 68.78 72.55 74.23 74.97 75.35 75.82 76.08
PCGrad [34] 67.06 71.37 74.86 75.78 76.25 76.95 76.71
Meta-GF [32] 67.97 72.27 75.06 75.77 76.38 77.11 77.47
BDL-1 [8] 66.29 69.31 71.15 72.05 72.61 73.23 73.59
BDL-2 [8] 65.81 68.93 71.01 72.45 72.98 73.42 74.27
WPN [10] 62.26 67.18 70.53 73.10 74.80 76.05 76.31
Nash-MTL [25] 64.14 69.23 72.64 74.89 75.32 75.88 76.75
DR-MGF [33] 67.82 72.45 74.77 75.77 76.56 76.90 77.01
DFS 72.46 75.64 77.50 78.54 79.2 79.45 79.56

Results of ResNet18 on Cifar100. The experimental results for ResNet18 on
Cifar100 dataset are shown in Tab. 1. Compared with DSN [17] and BYOT [35],
DFS achieves higher accuracy across all exits by mitigating gradient conflict and
reusing the multi-scale features of different exits. For early exits, such as exit 1
and exit 2, the accuracy improvements are up to 6.94% and 3.63%, respectively.
The ensemble accuracy results of DFS also outperform the same counterparts
from DSN and BYOT by 1.62% and 1.22%, respectively. The results show
that applying DFS largely improves the accuracy of the exits, especially the
accuracy of early exits. This is because the early exits share all parameters with
all exits, which are more susceptible to the impact of gradient conflict, thus
their accuracy results often decrease more when compared to single-task models
and deep tasks. DFS mitigates the gradient conflict in training, leading to a
significant improvement in the performance of early exits.

Results of MSDNet on Cifar100. As shown in Tab. 2, the results demon-
strate that DFS consistently outperforms all baselines across all exits of MS-
DNet, and significantly improves the overall performance. Compared with the
baselines, the average accuracy improvements of DFS on the 7 exits are 6.64%,
5.72%,4.86%, 4.47%, 4.42%, 3.99%, and 3.76%, respectively. It can be ob-
served that the accuracy improvements of early exits are more significant than
those of deep ones, which is because of the mitigation of the gradient conflict that

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 11

Table 3: Comparison results of MSDNet on ImageNet.
Methods Exit1 Exit2 Exit3 Exit4 Exit5 Average
Params (M) 4.24 8.77 13.07 16.75 23.96 -
FLOPs (G) 0.34 0.69 1.01 1.25 1.36 -
MSDNet [13] 56.64 65.14 68.42 69.77 71.34 66.26
GE [18] 57.28 66.22 70.24 71.71 72.43 67.58
CAGrad [21] 58.37 64.21 66.88 68.22 69.42 65.42
PCGrad [34] 57.62 64.87 68.93 71.05 72.45 66.98
Mate-GF [32] 57.43 64.82 69.08 71.67 73.27 67.25
DFS 61.80 68.03 70.75 71.79 72.88 69.05

Average is the average accuracy of 5 tasks [32].

improves the performance of early tasks, as described in Sec. 6.1. The average
accuracy improvement of DFS across all tasks and all baselines is 4.84%.

Results of MSDNet on ImageNet. The results are shown in Tab. 3. Results
show that DFS outperforms all the baselines at the early exits even without
extra training tricks, and the average accuracy improvements of DFS on the 5
tasks are 4.33%, 2.98%, 2.04%, 1.31%, 1.10%, respectively. Similar to the
experiments on Cifar100, the accuracy improvements on early exits are more
significant than those of deep ones, which further demonstrates the effectiveness
of DFS on conflict mitigation. The average accuracy achieved by DFS is 69.05%,
which significantly exceeds baselines, and the average accuracy improvement
achieves 2.35%. One exception happens at the fifth exit, the accuracy of DFS is
slightly lower than that of Mate-GF [32]. The main reason is that DFS relies
on the over-parameterization characteristics of models for higher accuracy while
the model size of MSDNet is relatively small, especially when training on the
ImageNet dataset. It hinders the accuracy improvement of DFS for the later tasks
that have greater differences in model capacity compared to early tasks. Besides,
Mate-GF employed a cautious while time-consuming gradient merge method to
achieve high accuracy, while DFS do not employ any additional methods for high
training efficiency, which is another cause for the results.

50 100 150 200 250 300
FLOPs (M)

68
70
72
74
76
78
80

Ac
cu

ra
cy

 (%
)

~2x Speedup +2.5 Acc

MSDNet
GE
Meta-GF
DFS

Fig. 3: Accuracy of budgeted batch classifi-
cation. The X-axis is the average computa-
tional budget per image for MSDNet model
on the Cifar100, and Y-axis top-1 accuracy.

Budgeted Batch Classification.
We evaluate the achieved classifica-
tion accuracy of the model within a
given computational budget [18, 32].
We conduct experiments on Cifar100
dataset using MSDNet [13] model.
The baseline methods include MSD-
Net [13], GE [18], and Meta-GF [32].
The results are shown in Fig. 3. The
results show that DFS consistently
outperforms all baselines across all
budgets. With an average budget of
170MFLOPs, DFS achieves an accu-

12 Cheng Gong et al.

BatchSize=300 BatchSize=400 BatchSize=500
400
450
500
550
600
650

FP
S

427.05
405.39

438.87
523.19

547.87 531.24
573.61

608.09 607.90BYOT
DSN
DFS

BY
OT DS

N

DF
S

BY
OT DS

N

DF
S

BY
OT DS

N

DF
S0.00

0.25

0.50

0.75

1.00

La
te

nc
y

(s
)

Forward
Backward
Other

(a) Results of VGG7-64 over Cifar100 on CPU

BatchSize=128 BatchSize=192 BatchSize=256
150
160
170
180
190
200

FP
S

147.13
156.14 159.94158.73

166.15 170.01176.58

189.67
195.49BYOT

DSN
DFS

BY
OT DS

N

DF
S

BY
OT DS

N

DF
S

BY
OT DS

N

DF
S0.00

0.25
0.50
0.75
1.00
1.25
1.50

La
te

nc
y

(s
)

Forward
Backward
Other

(b) Results of VGG16 over ImageNet on GPU

Fig. 4: Training efficiency comparison. Y1-axis is the average latency (divided into
forward, backward, and other parts) for one training step, Y2-axis is the average FPS,
and X-axis is the results of DSN, BYOT, and DFS under different batch sizes.

racy of ∼79.5%, which is ∼2.5% higher than that of Meta-GF with the same
budget. DFS uses ∼2× fewer FLOPs to achieve the same classification accuracy
compared to Meta-GF, which is the best among all baselines.

6.2 Training Efficiency Validation

In this experiment, we evaluate the training efficiency of DFS. Specifically, the
computation reduction during the backpropagation when adopting DFS con-
tributes to efficient training of multi-exit networks. We select β = 0.5 as the
default setting for DFS.

We adopt the VGG7-64 in [6] with 6 convolution layers and train it on Ci-
far100 [15] dataset, and VGG16 [30] with 13 convolution layers and train it on
ImageNet [16] dataset to evaluate the training efficiency improvement from DFS.
Both models employ a Batch Normalization (BN) [14] layer after each convolu-
tion layer and the early classifiers are added after the BNs. Each classifier only
contains a Global Average Pooling (GAP) [20] layer and a Fully-Connected (FC)
layer for classification. The baseline methods include DSN [17] and BYOT [35].
DSN applies the vanilla training in Sec. 5 which optimizes all losses with the same
weight and updates the trainable parameters. BYOT introduces self-distillation
supervision based on DSN, which employs the outputs and logits of the final exit
to teach the early tasks. We use the latency for training one batch of samples
and Frames Per Second (FPS) on the same devices to evaluate the training ef-
ficiency. The overall training latency is divided into forward latency, backward
latency, and other latency for detailed comparison. The other latency includes
data loading, loss computation, parameter update, etc. The lower latency and
higher FPS stand for a higher training efficiency. For a fair comparison, the re-
sults are collected with different batch sizes. We train VGG7-64 on CPU (2×
20-core Intel Xeon Gold 6248) and VGG16 on GPU (1× NVIDIA RTX A6000),
both are trained with 100 batches of data inputs.

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 13

Table 4: The accuracy comparison of multiple tasks in the VGG7-64 model with
different coefficient values.

Methods Exit1 Exit2 Exit3 Exit4 Exit5 Exit6
Params (K) 8.32 45.31 125.70 273.41 581.63 1171.97
FLOPs (M) 2.04 40.05 59.06 96.94 115.89 153.71
DFS β = 0.1 22.81 41.56 53.93 58.58 63.87 65.46
DFS β = 0.3 21.23 40.34 55.53 61.31 67.11 69.44
DFS β = 0.5 20.77 39.21 55.31 61.83 68.61 70.56
DFS β = 0.7 19.62 36.42 52.96 60.95 69.04 72.17
DFS β = 0.9 17.88 32.24 49.69 57.12 68.13 73.06

The experimental results are shown in Fig. 4. For different batch sizes and
devices, all the DSN, BYOT, and DFS have similar forward latency, since their
forward operations are the same. For the backward latency, DFS has shorter la-
tency compared with DSN and BYOT across all batch sizes and devices mainly
because DFS reduces the required number of operations for backward computa-
tion. BYOT uses knowledge distillation and intermediate feature distillation to
improve model accuracy, resulting in much higher backward latency and other
latency than DSN and DFS.

The FPS results of VGG7-64 with DFS outperforms DSN and BYOT by
up to 14.43% (76.67fps) and 50.00% (202.70fps), and the average FPS im-
provements across batch sizes are 11.69% (62.43fps) and 40.77% (172.77fps),
respectively. On the GPU device with VGG16 as backbone, the training FPS re-
sults of DFS excced DSN and BYOT by up to 14.99% (25.48fps) and 22.23%
(35.55fps), and the average FPS improvements across batch sizes are 13.51%
(22.28fps) and 21.27% (32.84fps), respectively. The results demonstrate that
DFS reduces the backward latency significantly during model training and im-
proves FPS across different models, batch sizes, and devices. The actual average
FPS improvements obtained through experiments are 11.69% and 13.51%,
both of them are consistent with the theoretical FPS improvements of VGG7-64
and VGG16 according to Eq. (14), which are 14.29% with L = 6 (convolutional
layers of VGG7-64) and 15.58% with L = 13 (convolutional layers of VGG16).

6.3 Impact of Coefficient

We evaluate the impact of the coefficient on the accuracy and training efficiency
of DFS in this experiment. We select VGG7-64 on Cifar100 with batch size 500
to evaluate the impact of β on the model accuracy and training latency (FPS).

The accuracy of different exits with different coefficients is shown in Tab.
4 and the normalized accuracy with training latency (FPS) is shown in Fig. 5.
The normalized accuracy is normalized to the maximum accuracy of different
methods on each task to show the impact of β. The results show that a lower
coefficient value results in a higher accuracy for early exits while a lower accuracy
for later exits. On the contrary, the higher β improves the accuracy of later
exits while decreasing that of early exits. In summary, lower β contributes
to early exits while higher β benefits later exits. This is because the

14 Cheng Gong et al.

1 2 3 4 5 6
Exits

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

0.1 0.3 0.5 0.7 0.9
Coefficient Values ()

0.00

0.20

0.40

0.60

0.80

1.00

1.20

La
te

nc
y

(s
)

Forward
Backward
Other

400

450

500

550

600

650

FP
S

583.23 586.37

607.90
587.82

574.12

FPS

Fig. 5: The impact of the coefficient on task accuracy and training efficiency. The
left side shows the normalized accuracy of DFS with different β. It focuses on the
sort instead of the absolute value of accuracy results on each task. The right side is
the training efficiency of VGG7-64 using DFS with different β. Y1-axis is the average
latency and y2-axis is the average FPS metric.

lower β assigns more exit-specific features and decreases the shared features.
When decreasing β, the number of trainable weights for later exits decreases
while the number of trainable weights for early tasks increases. For exits with
different depths, the best coefficient values are different. As shown in Fig. 5, an
optimal coefficient value improves the training efficiency of multi-exit networks.
According to Eq. (13), increasing β will increase the portion of shared weights,
thus increasing the computational load of gw+

i
, while decreasing β increases

the computational load for gw−
i
. In our experiments, β = 0.5 offers a balanced

computational load among multiple tasks and leads to higher training efficiency.

7 Conclusion

In this paper, we proposed a novel method DFS to mitigate the gradient conflict
in the training of multi-exit networks. Specifically, DFS consists of feature par-
titioning and feature referencing techniques. The former decouples the shared
weights among multiple exits and mitigates the gradient conflict in model train-
ing and ensures an end-to-end joint optimization for each exit. The latter reuses
the multi-scale features among exits and enhances the overall performance of
multi-exit networks. DFS improves the accuracy by up to 6.94% of the individ-
ual exits and up to 3.63% for the overall ensembled model accuracy. In addition,
we provide a detailed analysis of the operation reduction for backpropagation by
applying DFS and the experimental results show that DFS saves up to 50.00%
training time in the training of multi-exit networks and still provides improved
model accuracy.

Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks 15

8 Acknowledgments

This work is partially supported by the China Postdoctoral Science Foundation
(2022M721707), the National Natural Science Foundation (62272248), the Nat-
ural Science Foundation of Tianjin (23JCZDJC01010, 23JCQNJC00010), the
National Natural Science Foundation (62372253), the Natural Science Founda-
tion of Tianjin Fund (23JCYBJC00010), the CCF-Baidu Open Fund (CCF-
Baidu202310), the Open Project Fund of State Key Laboratory of Computer
Architecture, ICT, CAS (CARCHB202016), the Innovation Fund of Qiyuan Lab
(2022-JCJ0-LA-001-068), Open Fund of Civil Aviation Smart Airport Theory
and System Key laboratory, Civil Aviation University of China (SATS202303),
the Key Program for International Cooperation of Ministry of Science and Tech-
nology, China (2024YFE0100700).

References

1. Chai, H., Cui, J., Wang, Y., Zhang, M., Fang, B., Liao, Q.: Improving gradient
trade-offs between tasks in multi-task text classification. In: ACL. pp. 2565–2579
(2023) 2, 3

2. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In: ICML.
pp. 794–803. PMLR (2018) 2, 3

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: IEEE CVPR. pp. 248–255 (2009) 9

4. Deng, W., Suh, Y., Yu, X., Faraki, M., Zheng, L., Chandraker, M.: Split to learn:
Gradient split for multi-task human image analysis. In: WCACV. pp. 4351–4360
(2023) 2, 4

5. Ding, C., Lu, Z., Wang, S., Cheng, R., Boddeti, V.N.: Mitigating task interference
in multi-task learning via explicit task routing with non-learnable primitives. In:
IEEE CVPR. pp. 7756–7765 (2023) 4

6. Gong, C., Lu, Y., Xie, K., Jin, Z., Li, T., Wang, Y.: Elastic significant bit quan-
tization and acceleration for deep neural networks. IEEE Transactions on Parallel
and Distributed Systems (2021). https://doi.org/10.1109/TPDS.2021.3129615
9, 12

7. Guo, M., Haque, A., Huang, D.A., Yeung, S., Fei-Fei, L.: Dynamic task prioritiza-
tion for multitask learning. In: ECCV. pp. 270–287 (2018) 3

8. Han, D.J., Park, J., Ham, S., Lee, N., Moon, J.: Improving low-latency predictions
in multi-exit neural networks via block-dependent losses. TNNLS (2023) 9, 10

9. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural
networks: A survey. IEEE TPAMI 44(11), 7436–7456 (2022) 2

10. Han, Y., Pu, Y., Lai, Z., Wang, C., Song, S., Cao, J., Huang, W., Deng, C., Huang,
G.: Learning to weight samples for dynamic early-exiting networks. In: ECCV. pp.
362–378. Springer (2022) 2, 3, 9, 10

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE CVPR (2016) 9

12. Hu, Y., Chen, C., Li, R., Zhu, Q., Chng, E.S.: Gradient remedy for multi-task
learning in end-to-end noise-robust speech recognition. In: ICASSP. pp. 1–5. IEEE
(2023) 2, 3

https://doi.org/10.1109/TPDS.2021.3129615
https://doi.org/10.1109/TPDS.2021.3129615

16 Cheng Gong et al.

13. Huang, G., Chen, D.: Multi-scale dense networks for resource efficient image clas-
sification. ICLR (2018) 3, 5, 7, 9, 10, 11

14. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448–456 (2015) 12

15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009) 9, 12

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS. pp. 1097–1105 (2012) 12

17. Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:
AISTATS. vol. 38. JMLR.org (2015) 9, 10, 12

18. Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training
adaptive deep networks. In: IEEE ICCV. pp. 1891–1900 (2019) 2, 3, 9, 10, 11

19. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge computing.
Proceedings of the IEEE 107(8), 1584–1607 (2019) 2

20. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013) 12

21. Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for
multi-task learning. NIPS 34, 18878–18890 (2021) 2, 3, 9, 10, 11

22. Liu, L., Li, Y., Kuang, Z., Xue, J., Chen, Y., Yang, W., Liao, Q., Zhang, W.:
Towards impartial multi-task learning. In: ICLR (2021) 3

23. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention.
In: IEEE CVPR. pp. 1871–1880 (2019) 4

24. Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple
tasks. In: IEEE CVPR. pp. 1851–1860 (2019) 4

25. Navon, A., Shamsian, A., Achituve, I., Maron, H., Kawaguchi, K., Chechik, G.,
Fetaya, E.: Multi-task learning as a bargaining game. In: ICML. pp. 16428–16446.
PMLR (2022) 2, 3, 9, 10

26. Pascal, L., Michiardi, P., Bost, X., Huet, B., Zuluaga, M.A.: Maximum roaming
multi-task learning. In: AAAI. vol. 35, pp. 9331–9341 (2021) 4

27. Phuong, M., Lampert, C.H.: Distillation-based training for multi-exit architectures.
In: IEEE ICCV. pp. 1355–1364 (2019) 2, 3

28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature 323(6088), 533–536 (1986) 8

29. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. NIPS
31 (2018) 3, 5

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv (2014) 12

31. Strezoski, G., Noord, N.v., Worring, M.: Many task learning with task routing. In:
IEEE ICCV. pp. 1375–1384 (2019) 4

32. Sun, Y., Li, J., Xu, X.: Meta-gf: Training dynamic-depth neural networks harmo-
niously. In: ECCV. pp. 691–708. Springer (2022) 2, 3, 9, 10, 11

33. Sun, Y., Xu, X., Li, J., Hu, X., Shi, Y., Zeng, L.L.: Learning task-preferred
inference routes for gradient de-conflict in multi-output dnns. arXiv preprint
arXiv:2305.19844 (2023) 2, 9, 10

34. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery
for multi-task learning. NIPS 33, 5824–5836 (2020) 2, 3, 9, 10, 11

35. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher:
Improve the performance of convolutional neural networks via self distillation. In:
IEEE ICCV. pp. 3713–3722 (2019) 2, 3, 9, 10, 12

36. Zhang, L., Tan, Z., Song, J., Chen, J., Bao, C., Ma, K.: Scan: A scalable neural
networks framework towards compact and efficient models. NIPS 32 (2019) 2, 3

	Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks

