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Appendix

A. Comparision with Related Works

Agent attention shares some similarities with two related works, namely GPViT [27]
and GRL [12]. In this section, we provide a detailed analysis on their fundamental
distinctions and the superiority of our work.

Firstly, agent attention’s design is novel and superior. Agent attention in-
troduces a set of agent tokens A to act as the “agent” for all queries Q, where
A is usually directly acquired from the query space, i.e. A= f(Q). In contrast,
GRL [12] uses anchors A projected from the input X, i.e. A=Proj(X), to com-
pute cross-scale similarity (see its Fig. 6). GPViT [27] uses learnable tokens and
additional MLPs to achieve global modeling (see its Fig. 3). As a result, agent
attention can be applied to existing models in a training-free manner, e.g., our
AgentSD, which is impractical for GRL [12] and GPViT [27] since they need
extra training of the projections or MLPs.

Secondly, our perspective of generalized linear attention is unique and essen-
tial. This perspective enables us to unleash the potential of agent attention with
lightweight linear attention enhancements like DWC. In contrast, without such a
view, GPViT [27] and GRL [12] have to compromise with other techniques, such
as heavy MLP, window attention, or channel attention, to achieve comparable
results.

Thirdly, agent attention is a superior alternative to Softmax attention, acting
as a versatile module for general purposes, while GPViT [27] and GRL [12] are
not plug-in modules and are limited to specific tasks.

B. Composition of Agent Bias

As mentioned in the main paper, to better utilize positional information, we
present a carefully designed Agent Bias for our agent attention, i.e.,

OA= σ(QAT+B2) σ(AKT+B1) V, (1)
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where B1 ∈ Rn×N , B2 ∈ RN×n are our agent biases. For parameter efficiency,
we construct each agent bias using three bias components rather than directly
setting B1, B2 as learnable parameters. For instance, values in B1 are derived
from column bias B1c ∈ Rn×1×w, row bias B1r ∈ Rn×h×1 and block bias
B1b ∈ Rn×h0×w0 , where h,w are the height and width of feature map or at-
tention window, while h0, w0 are predefined hyperparameters much smaller than
h,w. During the computation of attention weights, B1c, B1r, B1b are resized to
B′

1c, B
′
1r, B

′
1b ∈ Rn×h×w by repeating or interpolating, and B1 = (B′

1c + B′
1r +

B′
1b).reshape(n,N) is used as the full agent bias.

C. Agent Attention for Stable Diffusion

C.1. Adjustments

As discussed in the main paper, when producing agent tokens through token
merging, our agent attention can be directly applied to the Stable Diffusion
model without any extra training. However, we are unable to apply the agent
bias and DWC without training. As a remedy, we make two simple adjustments
to our agent attention. Moreover, we change our agent attention module from

O = σ(QAT+B2) σ(AKT+B1) V +DWC(V ), (2)

to

O = σ(QAT ) σ(AKT ) V + kV, (3)

where k is a predefined hyperparameter. On the other hand, compared to the
original softmax attention, the two softmax attention operations of agent atten-
tion may result in smoother feature distribution without training. In the light
of this, we slightly increase the scale used for the second Softmax attention, i.e.,
agent broadcast.

C.2. Experiment Details

To quantitatively compare AgentSD with Stable Diffusion and ToMeSD, we
follow [2] and employ Stable Diffusion v1.5 to generate 2,000 5122 images of
ImageNet-1k [5] classes, featuring two images per class, using 50 PLMS [15]
diffusion steps with a cfg scale [7] of 7.5. Subsequently, we calculate FID [10]
scores between these 2,000 samples and 50,000 ImageNet-1k validation examples,
employing [21]. To assess speed, we calculate the average generation time of all
2,000 samples on a single RTX4090 GPU.

Complete quantitative results are presented in Tab. 1. Compared to SD and
ToMeSD, our AgentSD not only accelerates generation and reduces memory
usage, but also significantly improves image generation quality.
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Table 1: Quantitative Results of Stable Diffusion, ToMeSD and our AgentSD. GB/img
is measured as the total memory usage change when increasing batch size by 1.

Method r FID s/img GB/img

SD [19] 0 28.84 2.62 3.13

ToMeSD [2]

0.1 28.64 2.40 2.55
0.2 28.68 2.15 2.03
0.3 28.82 1.90 2.09
0.4 28.74 1.71 1.69
0.5 29.01 1.53 1.47

0.1 27.79 1.97 1.77
0.2 27.77 1.80 1.60

AgentSD 0.3 28.03 1.65 2.05
0.4 28.15 1.54 1.55
0.5 28.42 1.42 1.21

Table 2: Ablation on factor k of Eq. (3).

k 0 0.025 0.075 0.15

FID 28.80 28.67 28.42 28.61

C.3. Ablation

We further ablate the adjustments we made when applying agent attention to
Stable Diffusion. As evident in Tab. 2 and Tab. 3, both adjustments to agent
attention enhance the quality of AgentSD generation. Tab. 4 demonstrates that
applying agent attention in the early stages yields substantial performance en-
hancements.

C.4. AgentSD for finetuning

Our agent attention module is also applicable in finetuning scenarios. To ver-
ify this, we select subject-driven task as an example and apply agent attention
to SD-based Dreambooth [20]. We experimentally find that finetuning enables
the integration of the agent attention module into all diffusion generation steps,
reaching 2.2x acceleration in generation speed compared to the original Dream-
booth without sacrificing image quality. Additionally, time and memory cost
during finetuning can be reduced as well.
Task and baseline. The diffusion subject-driven generation task entails main-
taining the appearance of a given subject while generating novel renditions of it
in different contexts, e.g., generating a photo of your pet dog dancing. Dream-
booth [20] effectively addresses this task by finetuning a pretrained text-to-image
diffusion model, binding a unique identifier with the given subject. Novel images
of the subject can then be synthesized with the unique identifier.
Applying agent attention to Dreambooth. As previously discussed, Dream-
booth [20] involves an additional finetuning process. We explore two approaches
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Table 3: Ablation on scale used for the second Softmax attention.

Scale d−0.5 d−0.25 d−0.15 d−0.05

FID 28.86 28.64 28.42 28.60

Table 4: Ablation on how many diffusion steps to apply agent attention.

Steps early 20% early 40% early 60% early 80%

FID 28.58 28.42 28.83 29.77

s/img 1.50 1.42 1.39 1.34

to applying agent attention to Dreambooth: (1) applying it only during genera-
tion and (2) applying it during both finetuning and generation. The first method
is the same as the AgentSD detailed in the main paper, where we commonly
apply agent attention to the early 40% of generation steps, achieving around
a 1.7x speedup (merging ratio r = 0.4). However, applying agent attention to
more diffusion steps for further acceleration leads to a decrease in image details
and quality, as shown in Tab. 4 and the penultimate line of Fig. 1. Conversely,
adopting the second approach, where the agent attention module is applied to all
steps in both finetuning and generation, results in a 2.2x speedup in generation
without sacrificing performance. Additionally, both time and memory costs in
finetuning are reduced by around 15%, enabling model finetuning with less than
12GB of GPU memory in approximately 7 minutes on a single RTX4090 GPU.
The last row in Fig. 1 shows the results of this setting.
Dataset and experiment details. We adopt the dataset provided by Dream-
booth [20], which comprises 30 subjects of 15 different classes. It features live
subjects and objects captured in various conditions, environments, and angles.
We employ pretrained Stable Diffusion v1.5 and apply agent attention to all
diffusion generation steps. The merging ratio r is set to 0.4, k is set to 0.075 and
the scale for the second softmax attention is set to d−0.15. We finetune all models
for 800 iterations with a learning rate of 1e-6, utilizing 8-bit AdamW [6] as the
optimizer. We follow [20] and select sks as the unique identifier for all settings.
Novel synthesized images are sampled using the DDIM [22] sampler with 100
generation steps on a single RTX4090 GPU.
Visualization and discussion. Synthesized subject-driven images are shown
in Fig. 1. We make two key observations: (1) Dreambooth with agent atten-
tion applied during finetuning and generation equals or surpasses the baseline
Dreambooth in terms of fidelity and editability, and (2) employing agent atten-
tion during finetuning further enhances the fidelity and detail quality of syn-
thesized images, enabling us to apply agent attention to all diffusion steps for
more speedup. For the first observation, the first column shows that our method
ensures the synthesized dog’s color aligns more consistently with input images
compared to the original Dreambooth and maintains comparable editability. For
the second observation, comparing the last two rows of the third column reveals
that applying agent attention to all diffusion steps without finetuning yields a
blurry image, whereas our method produces a clearer and sharper depiction of
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Fig. 1: Samples generated by Dreambooth and our Agent Dreambooth with the same
seed. In the second-to-last line, we apply agent attention to all diffusion steps only
during generation, leading to a slight decline in image quality as expected. In the last
row, agent attention is incorporated into all steps in both finetuning and generation,
resulting in a 2.2x speedup without compromising image quality. Zoom in for best
view.

the duck toy. Additionally, in the fifth column, our method accurately generates
the cat’s eyes, whereas agent attention without finetuning fails in this aspect.

D. Dataset and Training Setup

D.1. ImageNet

Training settings. To ensure a fair comparison, we train our agent attention
model with the same settings as the corresponding baseline model. Specifically,
we employ AdamW [17] optimizer to train all our models from scratch for 300
epochs, using a cosine learning rate decay and 20 epochs of linear warm-up. We
set the initial learning rate to 1 × 10−3 for a batch size of 1024 and linearly
scale it w.r.t. the batch size. Following DeiT [23], we use RandAugment [4],
Mixup [29], CutMix [28], and random erasing [30] to prevent overfitting. We
also apply a weight decay of 0.05. To align with [8], we incorporate EMA [18]
into the training of our Agent-CSwin models. For finetuning at larger resolutions,
we follow the settings in [8, 16] and finetune the models for 30 epochs.
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Fig. 2: Runtime comparison with other linear attention methods.

D.2. COCO

Training settings. COCO [14] object detection and instance segmentation
dataset has 118K training and 5K validation images. We use a subset of 80k
samples as training set and 35k for validation. Backbones are pretrained on Im-
ageNet dataset with AdamW, following the training configurations mentioned in
the original paper. Standard data augmentations including resize, random flip
and normalize are applied. We set learning rate to 1e-4 and follow the 1x learn-
ing schedule: the whole network is trained for 12 epochs and the learning rate
is divided by 10 at the 8th and 11th epoch respectively. For some models, we
utilize 3x schedule: the network is trained for 36 epochs and the learning rate is
divided by 10 at the 27th and 33rd epoch. All mAP results in the main paper
are tested with input image size (3, 1333, 800).
Numbers of agent tokens. We use the ImageNet pretrained model as the
backbone, which is trained with numbers of agent tokens n set to [9, 16, 49, 49] for
the four stages respectively. As dense prediction tasks involve higher-resolution
images than ImageNet, we appropriately increase the numbers of agent tokens to
better preserve the rich information. Specifically, for all the Agent-PVT models,
we assign the numbers of agent tokens for the four stages as [144, 256, 784, 784],
while for all Agent-Swin models, we allocate [81, 144, 196, 49]. We employ bilinear
interpolation to adapt the agent bias to the increased numbers of agent tokens
n. The same strategy is applied to ADE20k experiments as well.

D.3. ADE20K

Training settings. ADE20K [31] is a well-established benchmark for semantic
segmentation which encompasses 20K training images and 2K validation images.
Backbones are pretrained on ImageNet with AdamW, following the training
configurations mentioned in the original paper. For UperNet [26], we use AdamW
to optimize, and set the initial learning rate as 6e-5 with a linear warmup of
1,500 iterations. Models are trained for 160K iterations in total. For Semantic
FPN [11], we optimize the models using AdamW for 40k iterations with an initial
learning rate of 2e-4. We randomly resize and crop the image to 512 × 512 for
training, and re-scale to have a shorter side of 512 pixels during testing.
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Table 5: Comparisons of agent attention with other vision transformer backbones on
the ImageNet-1K classification task.

Method Reso #Params Flops Top-1

DeiT-T [23] 2242 5.7M 1.2G 72.2
Agent-DeiT-T 2242 6.0M 1.2G 74.9 (+2.7)
DeiT-S 2242 22.1M 4.6G 79.8
Agent-DeiT-S 2242 22.7M 4.4G 80.5 (+0.7)
DeiT-B 2242 86.6M 17.6G 81.8
Agent-DeiT-B 2242 87.2M 17.6G 82.0 (+0.2)
Agent-DeiT-S 4482 23.1M 17.7G 83.1 (+1.3)

PVT-T [24] 2242 13.2M 1.9G 75.1
Agent-PVT-T 2242 11.6M 2.0G 78.4 (+3.3)
PVT-S 2242 24.5M 3.8G 79.8
Agent-PVT-S 2242 20.6M 4.0G 82.2 (+2.4)
PVT-M 2242 44.2M 6.7G 81.2
Agent-PVT-M 2242 35.9M 7.0G 83.4 (+2.2)
PVT-L 2242 61.4M 9.8G 81.7
Agent-PVT-L 2242 48.7M 10.4G 83.7 (+2.0)
Agent-PVT-M 2562 36.1M 9.2G 83.8 (+2.1)

Swin-T [16] 2242 29M 4.5G 81.3
Agent-Swin-T 2242 29M 4.5G 82.6 (+1.3)
Swin-S 2242 50M 8.7G 83.0
Agent-Swin-S 2242 50M 8.7G 83.7 (+0.7)
Swin-B 2242 88M 15.4G 83.5
Agent-Swin-B 2242 88M 15.4G 84.0 (+0.5)
Agent-Swin-S 2882 50M 14.6G 84.1 (+0.6)
Swin-B 3842 88M 47.0G 84.5
Agent-Swin-B 3842 88M 46.3G 84.9 (+0.4)

CSwin-T [8] 2242 23M 4.3G 82.7
Agent-CSwin-T 2242 21M 4.3G 83.1 (+0.4)
CSwin-S 2242 35M 6.9G 83.6
Agent-CSwin-S 2242 33M 6.8G 83.9 (+0.3)
CSwin-B 2242 78M 15.0G 84.2
Agent-CSwin-B 2242 73M 14.9G 84.7 (+0.5)
CSwin-B 3842 78M 47.0G 85.4
Agent-CSwin-B 3842 73M 46.3G 85.8 (+0.4)
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Table 6: Results on COCO dataset. The FLOPs are computed over backbone, FPN
and detection head with input resolution of 1280×800.

(a) Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

PVT-T 240G 1x 36.7 59.2 39.3 35.1 56.7 37.3
Agent-PVT-T 230G 1x 41.4 64.1 45.2 38.7 61.3 41.6
PVT-S 305G 1x 40.4 62.9 43.8 37.8 60.1 40.3
Agent-PVT-S 293G 1x 44.5 67.0 49.1 41.2 64.4 44.5
PVT-M 392G 1x 42.0 64.4 45.6 39.0 61.6 42.1
Agent-PVT-M 400G 1x 45.9 67.8 50.4 42.0 65.0 45.4
PVT-L 494G 1x 42.9 65.0 46.6 39.5 61.9 42.5
Agent-PVT-L 510G 1x 46.9 69.2 51.4 42.8 66.2 46.2
Swin-T 267G 1x 43.7 66.6 47.7 39.8 63.3 42.7
Agent-Swin-T 276G 1x 44.6 67.5 48.7 40.7 64.4 43.4
Swin-T 267G 3x 46.0 68.1 50.3 41.6 65.1 44.9
Agent-Swin-T 276G 3x 47.3 69.5 51.9 42.7 66.4 46.2
Swin-S 358G 1x 45.7 67.9 50.4 41.1 64.9 44.2
Agent-Swin-S 364G 1x 47.2 69.6 52.3 42.7 66.6 45.8
Swin-S 358G 3x 48.5 70.2 53.5 43.3 67.3 46.6
Agent-Swin-S 364G 3x 48.9 70.9 53.6 43.8 67.9 47.3

(b) Cascade Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

Swin-T 745G 1x 48.1 67.1 52.2 41.7 64.4 45.0
Agent-Swin-T 755G 1x 49.2 68.6 53.2 42.7 65.6 45.9
Swin-T 745G 3x 50.4 69.2 54.7 43.7 66.6 47.3
Agent-Swin-T 755G 3x 51.4 70.2 55.9 44.5 67.6 48.4
Swin-S 837G 3x 51.9 70.7 56.3 45.0 68.2 48.8
Agent-Swin-S 843G 3x 52.6 71.3 57.1 45.5 68.9 49.2
Swin-B 981G 3x 51.9 70.5 56.4 45.0 68.1 48.9
Agent-Swin-B 990G 3x 52.6 71.1 57.1 45.3 68.6 49.2

Table 7: Results on COCO object detection with RetinaNet [13]. The FLOPs are com-
puted over backbone, FPN, and detection head with an input resolution of 1280×800.

RetinaNet Object Detection on COCO (Sch. 1x)
Method FLOPs AP AP50 AP75 APs APm APl

PVT-T 221G 36.7 56.9 38.9 22.6 38.8 50.0
Agent-PVT-T 211G 40.3 61.2 42.9 25.5 43.4 54.3
PVT-S 286G 38.7 59.3 40.8 21.2 41.6 54.4
Agent-PVT-S 274G 44.1 65.3 47.3 29.2 47.5 59.8
PVT-M 373G 41.9 63.1 44.3 25.0 44.9 57.6
Agent-PVT-M 382G 45.8 66.9 49.1 28.8 49.2 61.7
PVT-L 475G 42.6 63.7 45.4 25.8 46.0 58.4
Agent-PVT-L 492G 46.8 68.2 50.7 30.9 50.8 62.9
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Table 8: Results of semantic segmentation. The FLOPs are computed over encoders
and decoders with an input image at the resolution of 512×2048. S-FPN is short for
SemanticFPN [11] model.

Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
Agent-PVT-T S-FPN 147G 15M 40.18 51.76
PVT-S S-FPN 225G 28M 41.95 53.02
Agent-PVT-S S-FPN 211G 24M 44.18 56.17
PVT-M S-FPN 315G 48M 42.91 53.80
Agent-PVT-M S-FPN 321G 40M 44.30 56.42
PVT-L S-FPN 420G 65M 43.49 54.62
Agent-PVT-L S-FPN 434G 52M 46.52 58.50
Swin-T UperNet 945G 60M 44.51 55.61
Agent-Swin-T UperNet 954G 61M 46.68 58.53
Swin-S UperNet 1038G 81M 47.64 58.78
Agent-Swin-S UperNet 1043G 81M 48.08 59.78
Swin-B UperNet 1188G 121M 48.13 59.13
Agent-Swin-B UperNet 1196G 121M 48.73 60.01

Softmax AttnImage Agent Attn Linear Attn

Fig. 3: Visualization of Softmax attention, linear attention and our agent attention.
Feature corresponding to the red block is used as query.

E. Complete Experimental Results

Full classification results. We provide the full ImageNet-1K classification re-
sults (including high-resolution results) in Tab. 5. It is obvious that substituting
Softmax attention with our agent attention in various models results in consistent
performance improvements. We further provide additional runtime comparison
with other linear attention methods in Fig. 2. Agent attention achieves superior
results at a comparable speed compared to other linear attention methods.
Additional downstream experiments. We provide additional experiment
results on object detection and semantic segmentation in Tab.7, Tab.6 and Tab.8.
For object detection, results on RetinaNet [13], Mask R-CNN [9] and Cascade
Mask R-CNN [3] frameworks are presented, while for semantic segmentation, we
show results on SemanticFPN [11] and UperNet [26]. It can be observed that our
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Input Agent Attention Distribution

Fig. 4: The distribution of agent attention weights from Agent-Deit-T.

models achieve consistent improvements over their baseline counterparts across
various settings.
Ablation on the type of agent tokens. Agent tokens can be acquired through
various methods, such as setting as a set of learnable parameters or extracting
from input features through pooling, depthwise convolution, etc. As shown in
Tab. 9, dynamic agents outperform static ones due to their input-dependent
nature, allowing for a more accurate representation of current queries. Pooling
is a simple yet effective way to acquire agent tokens dynamically.

Table 9: Ablation on different designs of agent tokens.

Designs Type FLOPs #Param Acc. Diff.
Learnable Params Static 4.5G 29M 82.2 -0.4
Pooling Dynamic 4.5G 29M 82.6 Ours
DWC Dynamic 4.5G 29M 82.6 +0.0
Deformed Points [25] Dynamic 4.5G 29M 82.7 +0.1
Token Merging [1] Dynamic 4.6G 29M 82.6 +0.0

Agent attention at different stages. We conduct ablation study on replac-
ing Softmax attention with our agent attention at different stages. As depicted
in Tab. 10, substituting the first three stages results in a performance gain of
1.3, while replacing the final stage marginally decreases overall accuracy. We
attribute this outcome to the larger resolutions in the first three stages, which
are more conducive to agent attention module with a global receptive field.
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Table 10: Applying agent attention module on different stages of the Swin-T structure.

Stages w/ Agent Attn FLOPS #Param Acc. Diff.
Stage1 Stage2 Stage3 Stage4

✓ 4.5G 29M 81.7 -0.9
✓ ✓ 4.5G 29M 81.8 -0.8
✓ ✓ ✓ 4.5G 29M 82.6 Ours
✓ ✓ ✓ ✓ 4.5G 29M 82.5 -0.1

Swin-T 4.5G 29M 81.3 -1.3

F. Agent Attention Visualization

To better understand the effectiveness of agent attention, we provide the visu-
alization of Softmax attention, linear attention and agent attention in Fig. 3. It
shows that our agent attention produces attention distributions similar to Soft-
max attention, while linear attention does not generate reasonable distributions.
This indicates that agent attention integrates Softmax attention’s expressiveness
with linear complexity, resulting in its superiority.

We visualize more agent attention distributions in Fig. 4. It can be seen that
various agent tokens focus on distinct regions. For instance, in the second row,
agent tokens focus on head, sky, body, and branch, while the third row contains
agent tokens focusing on sky, mountain, glasses, mask, and ground. This diversity
ensures that different queries can focus on their areas of interest during the agent
broadcast process.

G. Model Architectures

Table 11: Architectures of Agent-DeiT models.

stage output
Agent-DeiT-T Agent-DeiT-S Agent-DeiT-B

Agent DeiT Block Agent DeiT Block Agent DeiT Block

res1 14 × 14


win 14×14

dim 192

head 3

agent 49

×12 None


win 14×14

dim 384

head 6

agent 49

×12 None


win 14×14

dim 768

head 12

agent 81

×4


win 14×14

dim 768

head 12

×8

We present the architectures of four Transformer models used in the main pa-
per, including Agent-DeiT, Agent-PVT, Agent-Swin and Agent-CSwin in Tab.11-
15. Considering the advantage of enlarged receptive field, we mainly replace Soft-
max attention blocks with our agent attention module at early stages of vision
Transformer models.

References

1. Bolya, D., Fu, C.Y., Dai, X., Zhang, P., Feichtenhofer, C., Hoffman, J.: Token
merging: Your ViT but faster. In: ICLR (2023)



12 Han et al.
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Table 13: Architectures of Agent-PVT models (Part2).

stage output
Agent-PVT-M Agent-PVT-L

Agent PVT Block Agent PVT Block

res1 56 × 56

Conv4×4, stride=4, 64, LN
win 56×56

dim 64

head 1

agent 9

×3 None


win 56×56

dim 64

head 1

agent 9

×3 None

res2 28 × 28

Conv2×2, stride=2, 128, LN
win 28×28

dim 128

head 2

agent 16

×3 None


win 28×28

dim 128

head 2

agent 16

×8 None

res3 14 × 14

Conv2×2, stride=2, 320, LN
win 14×14

dim 320

head 5

agent 49

×18 None


win 14×14

dim 320

head 5

agent 49

×27 None

res4 7 × 7

Conv2×2, stride=2, 512, LN
win 7×7

dim 512

head 8

agent 49

×3 None


win 7×7

dim 512

head 8

agent 49

×3 None
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Table 14: Architectures of Agent-Swin models.

stage output
Agent-Swin-T Agent-Swin-S Agent-Swin-B

Agent Swin Block Agent Swin Block Agent Swin Block

res1 56 × 56

concat 4 × 4, 96, LN concat 4 × 4, 96, LN concat 4 × 4, 128, LN
win 56×56

dim 96

head 3

agent 9

×2 None


win 56×56

dim 96

head 3

agent 9

×2 None


win 56×56

dim 128

head 3

agent 9

×2 None

res2 28 × 28

concat 2 × 2, 192, LN concat 2 × 2, 192, LN concat 2 × 2, 256, LN
win 28×28

dim 192

head 6

agent 16

×2 None


win 28×28

dim 192

head 6

agent 16

×2 None


win 28×28

dim 256

head 6

agent 16

×2 None

res3 14 × 14

concat 2 × 2, 384, LN concat 2 × 2, 384, LN concat 2 × 2, 512, LN

None


win 7×7

dim 384

head 12

×6 None


win 7×7

dim 384

head 12

×18


win 14×14

dim 512

head 12

agent 49

×2


win 7×7

dim 512

head 12

×16

res4 7 × 7

concat 2 × 2, 768, LN concat 2 × 2, 768, LN concat 2 × 2, 1024, LN

None


win 7×7

dim 768

head 24

×2 None


win 7×7

dim 768

head 24

×2 None


win 7×7

dim 1024

head 24

×2

Table 15: Architectures of Agent-CSwin models.

stage output
Agent-CSwin-T Agent-CSwin-S Agent-CSwin-B

Agent CSwin Block Agent CSwin Block Agent CSwin Block

res1 56 × 56

Conv7×7, stride=4, 64, LN Conv7×7, stride=4, 96, LN
win 56×56

dim 64

head 2

agent 9

×2 None


win 56×56

dim 64

head 2

agent 9

×3 None


win 56×56

dim 96

head 4

agent 9

×3 None

res2 28 × 28

Conv7×7, stride=2, 128, LN Conv7×7, stride=2, 192, LN
win 28×28

dim 128

head 4

agent 16

×4 None


win 28×28

dim 128

head 4

agent 16

×6 None


win 28×28

dim 192

head 8

agent 16

×6 None

res3 14 × 14

Conv7×7, stride=2, 256, LN Conv7×7, stride=2, 384, LN

None


win 7×14

dim 256

head 8

×18 None


win 7×14

dim 256

head 8

×29 None


win 7×14

dim 384

head 16

×29

res4 7 × 7

Conv7×7, stride=2, 512, LN Conv7×7, stride=2, 768, LN

None


win 7×7

dim 512

head 16

×1 None


win 7×7

dim 512

head 16

×2 None


win 7×7

dim 768

head 32

×2
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