
Supplementary Materials for On-the-fly Category
Discovery for LiDAR Semantic Segmentation

Hyeonseong Kim ⋆, Sung-Hoon Yoon ⋆, Minseok Kim , and Kuk-Jin Yoon

Visual Intelligence Lab., KAIST, Korea
{brian617,yoon307,alstjrx1x1,kjyoon}@kaist.ac.kr

We provide the following contents in the supplementary material:

– Hyperparameter analysis.
– Class-wise results.
– Details of the proposed method, baselines, and evaluation protocol.
– Additional qualitative results.

1 Hyperparameter Analysis

We analyze the effects of hash code dimension L, mixing ratio r, weight λ, and
sub-sampling in the grouping module (GM). Due to the extensive nature of the
experiments on hyperparameters, we conduct experiments on POSS1 split in
scenario-A.

Table 1: Results according to hash code dimension L.

Strict-Hungarian (%) Greedy-Hungarian (%)

L Unknown Known All Unknown Known All

8 22.90 44.01 39.14 30.23 49.20 44.82
10 27.09 43.67 39.84 31.78 47.87 44.15
12 26.68 44.11 40.09 39.28 50.47 47.89
14 25.91 45.05 40.63 25.27 49.84 44.17
16 17.63 45.25 38.88 20.07 48.60 42.02

Hash code dimension L. In Tab. 1, we conduct an experiment to demonstrate
the performance variations according to the hash code dimension L. When the
dimension is L, the number of hash codes that can be expressed is 2L, where
smaller L effectively handles intra-class variation, while a model with larger L has
high representation capability [2]. To demonstrate the resilience of our method
to the hash code dimension, we vary the value of L from 8 to 16. Our method ex-
hibits robust performance for the known classes regardless of the code dimension.
Considering the number of classes in the LiDAR dataset, where SemanticPOSS
has 13 classes and SemanticKITTI has 19 classes, it can be seen that a sufficient
number of hash codes are being created to properly represent each class within
the given search space (L ∈ {8, 10, 12, 14, 16}). However, when the hash code
⋆ Equal contribution.
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dimension is small (i.e. L=8), there is a decrease in the expressive power for
unknown classes, resulting in slightly lower performance. Conversely, when the
dimension is too large (i.e. L=16), the space allocated for unknown classes be-
comes extensive, creating meaningless representations and a subsequent decrease
in performance for unknown classes. Nonetheless, our method demonstrates ro-
bust performance in both protocols within the search space, except when the
dimension is too large.

Table 2: Results with different mixing ratios. Fixed (r) refers to using the fixed mixing
ratio of r. Beta (α, β) refers to sampling the mixing ratio r from the Beta distribution
with parameters α and β at each training iteration.

Strict-Hungarian (%) Greedy-Hungarian (%)

Params Unknown Known All Unknown Known All

Fixed
(r)

0.05 22.89 44.77 39.72 28.07 49.74 44.74
0.1 26.68 44.11 40.09 39.28 50.47 47.89
0.25 17.58 42.76 36.95 26.71 49.35 44.13
0.5 21.31 39.38 35.21 23.70 48.55 42.81

Beta
(α, β)

(0.5, 0.5) 25.22 44.02 39.68 29.53 49.65 45.00
(1, 1) 28.43 39.58 37.00 31.69 44.24 41.35
(2, 2) 18.87 40.37 35.41 22.98 44.65 39.65

Mixing ratio r. To show the effects of mixing strategy in modeling the out-
of-distribution (OOD) representation, we experiment with two different mixing
strategies: 1) fixed mixing ratio and 2) sampling the mixing ratio from Beta dis-
tribution. The results are shown in Tab. 2. For the fixed mixing ratio, we fix the
ratio r when mixing representations. When the ratio is small (i.e. r=0.05), the
mixed representation is close to the in-distribution (ID) representations, resulting
in high performance for the known classes. However, since the OOD represen-
tations are modeled close to ID representations, the performance improvement
for unknown classes is slightly reduced compared to r=0.1. Conversely, when
mixing the representations with an average ratio (i.e. r=0.5), OOD represen-
tations are well modeled, but the performance improvement is slightly reduced
compared to r=0.1 due to low feasibility. In the case of r=0.1, performances
for both known and unknown classes are high, indicating feasible OOD repre-
sentations are modeled. Beyond the fixed mixing ratio, we also use a strategy
that samples mixing ratio r from Beta distribution as proposed in [8,9]. Specif-
ically, we sample the mixing ratio at each training iteration and use it within
mini-batches. Consistent with the results above, mixing representations from the
adjacent regions of ID representations (α,β=0.5) yields the best overall perfor-
mance. On the other hand, when more representations are mixed at distant space
(α,β=2.0), performances of both known and unknown classes are lower than in
other cases. Nevertheless, all mixing strategies exhibit satisfactory performances,
demonstrating the proposed method applies to both mixing strategies. While we
use a simple yet effective fixed mixing ratio strategy in this work, we believe
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that developing an effective OOD modeling in the context of OCDSS would be
valuable for future research.

Table 3: Results according to weight λ in grouping module.

Strict-Hungarian (%) Greedy-Hungarian (%)

λ Unknown Known All Unknown Known All

0.001 17.12 44.80 38.41 26.02 50.74 45.03
0.01 24.41 44.44 39.81 34.04 48.91 45.48
0.05 26.68 44.11 40.09 39.28 50.47 47.89
0.1 25.72 38.82 35.80 27.54 42.63 39.15
0.2 20.18 37.57 33.56 24.90 41.13 37.39

Weight λ. To observe the effect of loss weight λ for GM, we experiment by vary-
ing λ as shown in Tab. 3. As λ increases, it can be seen that the performance for
unknown classes gradually improves through learning the grouping ability for
unknown classes from GM. However, when λ exceeds a certain level (λ > 0.1),
we can observe a degradation in the performance of the known classes. Addi-
tionally, the performance for unknown classes saturates with a slight decrease,
as the model focuses on learning to cognize rather than to recognize. For a large
value of λ (i.e. λ = 0.2), we speculate that the loss of recognition ability may
also impair cognition ability. Our experimental results affirm that the proposed
method exhibits robust and satisfactory performance within the suitable range
of λ (0.01∼0.1).

Table 4: Results with different number of sampling in grouping module.

Strict-Hungarian (%) Greedy-Hungarian (%)

# of Sampling Unknown Known All Unknown Known All

512 28.11 43.14 39.67 35.01 48.19 45.15
1024 26.68 44.11 40.09 39.28 50.47 47.89
2048 26.76 44.79 40.63 34.56 49.69 46.20

Sub-sampling in GM. We perform grouping between mixed representations in
GM, which requires pair-wise computation. Since each scan in the LiDAR data
contains a large number of points, utilizing all the points for pair-wise computa-
tion in training increases the memory consumption and computational burden.
To alleviate the burden, we sample a fixed number of points for the computation.
In Tab. 4, we show the performance of using different numbers of sampled points.
The proposed method consistently shows satisfactory performances in all three
cases. Increasing the number of points slightly enhances overall performance,
but as meaningful performance is demonstrated even with using 1024 points, we
opted to sample 1024 points in the GM.
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Table 5: On-the-fly category discovery results on SemanticPOSS within scenario-A.
Oracle method is trained with all classes. The values highlighted in gray are observed-
unknown classes in each split. The best value is in bold.

Split Method person rider car trunk plants traffic. pole trashc. build. cone/stone fence bike ground mIoU
Unknown Known All

Oracle 56.39 56.88 40.70 44.98 75.58 33.35 16.05 11.26 73.22 27.09 34.45 50.15 79.90 - 46.16 46.16
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(%
) POSS0

Baseline
MLDG
SMILE
Ours

25.37
21.45
44.77
63.72

24.30
54.31
47.89
55.72

25.02
30.25
42.78
43.02

38.04
21.84
24.06
23.84

27.94
17.85
10.78
57.69

1.91
1.43
5.05
6.16

6.99
15.85
20.89
17.81

1.14
0.50
0.94
2.53

52.66
47.26
67.60
74.38

26.36
27.17
19.07
38.14

25.93
39.87
25.47
52.00

5.82
5.54
6.40
5.16

32.67
54.20
70.51
77.77

9.20
6.33
5.79

17.88

28.59
34.69
40.34
49.60

22.63
25.96
29.71
39.84

POSS1

Baseline
MLDG
SMILE
Ours

14.34
7.72
16.97
18.92

38.93
44.58
39.99
44.49

14.08
25.80
25.85
42.07

26.13
30.16
34.08
42.30

14.39
57.43
65.65
61.83

20.50
19.27
27.58
29.60

6.58
16.51
13.53
3.77

0.44
2.18
3.30
7.44

18.71
22.93
15.10
57.34

35.03
23.10
34.34
38.98

43.16
31.47
26.69
49.62

3.22
30.07
0.87

52.81

35.74
25.60
66.36
71.98

13.21
15.72
15.20
26.68

23.16
28.97
32.47
44.11

20.87
25.91
28.48
40.09

POSS2

Baseline
MLDG
SMILE
Ours

38.00
30.28
27.51
52.83

14.01
6.33
13.50
8.82

24.32
22.79
44.64
56.34

26.08
43.63
42.56
24.98

25.55
47.57
60.47
72.47

17.33
21.40
18.19
30.41

12.65
13.84
9.06

24.58

0.24
15.57
1.62
4.08

21.32
62.04
78.52
64.15

3.43
4.42

33.59
32.70

26.51
7.49
4.65
10.01

29.26
40.17
0.24

51.48

22.57
16.31
8.83

54.73

21.03
10.04
9.00

24.52

19.82
30.17
31.64
41.40

20.10
25.52
26.42
37.51

POSS3

Baseline
MLDG
SMILE
Ours

26.48
19.05
57.19
59.69

20.82
54.12
52.03
60.93

2.80
2.79
1.91

48.53

9.00
2.68
1.49
1.13

37.80
47.49
51.70
75.63

16.72
25.51
7.89

30.13

20.73
16.94
22.21
26.36

8.15
7.96

12.19
4.04

37.02
39.36
79.48
80.59

1.61
1.23
2.28
1.60

45.59
31.45
37.75
45.27

30.22
25.56
44.09
54.86

45.70
63.78
1.44

76.43

4.47
2.24
1.89

17.09

28.92
33.12
36.60
51.39

23.28
26.00
28.59
43.48

Avg

Baseline
MLDG
SMILE
Ours

11.98
8.58
7.97

21.54

25.12
31.74
35.26
46.63

21.72
25.85
28.30
40.36

G
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ed
y-

H
un
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) POSS0

Baseline
MLDG
SMILE
Ours

27.17
25.13
60.50
70.70

24.31
59.04
48.04
59.19

36.40
40.82
58.45
68.72

42.49
56.60
74.76
26.08

29.94
18.79
16.56
59.30

3.89
1.60
6.14
8.89

15.44
22.11
19.62
21.51

1.76
0.78
3.62
5.15

55.58
51.11
86.33
79.83

30.54
2.29
19.32
39.30

27.58
53.19
58.62
62.93

10.03
9.04
9.86
7.89

34.87
54.47
83.07
80.62

11.41
7.55
9.05

20.30

32.71
40.54
56.62
56.54

26.16
30.39
41.91
45.39

POSS1

Baseline
MLDG
SMILE
Ours

24.01
15.34
18.99
23.02

55.66
49.56
50.07
52.42

28.47
40.49
54.65
60.85

27.27
38.35
48.58
46.73

14.57
62.83
72.75
64.87

27.13
48.29
41.86
46.15

10.43
24.16
14.94
35.33

3.90
0.72
5.87
5.57

25.60
31.47
20.73
59.50

35.30
23.57
39.20
39.90

47.95
34.31
45.77
57.00

25.06
32.46
30.62
56.99

35.80
25.95
74.60
74.19

20.01
23.66
18.22
39.28

30.11
35.65
46.40
50.47

27.78
32.89
39.89
47.89

POSS2

Baseline
MLDG
SMILE
Ours

49.25
38.15
37.19
73.15

30.96
29.28
18.39
52.83

31.35
29.27
62.17
59.72

26.28
43.95
44.00
25.92

26.07
51.92
78.05
82.83

17.40
21.58
18.61
31.78

13.16
13.87
9.12

24.85

2.19
16.94
4.03
5.68

22.28
63.68
80.17
64.50

31.01
9.72

45.51
37.95

29.43
10.38
10.71
10.73

52.50
44.40
3.53

60.75

25.14
19.79
46.70
55.22

28.51
19.82
25.27
39.59

27.15
33.40
38.24
46.71

27.46
30.27
35.24
45.07

POSS3

Baseline
MLDG
SMILE
Ours

27.58
21.05
58.43
64.50

20.85
54.23
52.11
61.12

23.38
8.82
8.38

57.31

22.94
28.10
54.68
72.39

38.83
48.95
54.32
79.46

16.49
32.75
8.26
31.05

22.17
16.97
22.25
26.95

0.31
2.46

13.62
3.59

37.05
39.48
80.08
81.02

8.06
9.36
9.05

17.87

46.41
33.64
38.87
45.48

30.86
26.12
44.37
55.22

45.75
63.93
1.45

77.02

18.12
15.43
24.04
49.19

28.63
33.96
37.38
52.54

26.21
29.68
34.30
51.77

Avg

Baseline
MLDG
SMILE
Ours

19.51
19.15
16.62
37.09

29.65
35.89
44.64
51.57

26.90
30.81
37.84
47.53
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Table 6: On-the-fly category discovery results on SemanticKITTI within scenario-A.
Oracle method is trained with all classes. The values highlighted in gray are observed-
unknown classes in each split. The best value is in bold.

Split Method car bi.cle mt.cle truck oth-v. pers. bi.clst mt.clst road park. sidew. oth-g build. fence veget. trunk terra. pole traff. mIoU
Unknown Known All

Oracle 92.31 6.31 26.25 65.73 42.28 32.32 52.15 0.02 90.99 41.01 75.65 2.02 88.01 46.54 82.51 54.70 72.58 39.82 24.09 - 49.23 49.23

St
ri
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an

(%
) KITTI0

Baseline
MLDG
SMILE
Ours

39.79
58.53
85.77
88.19

0.44
0.23
1.06
2.05

20.73
2.02
7.11

23.97

54.61
25.04
25.51
48.16

6.31
7.97
9.61
3.10

16.67
1.09
28.94
35.49

33.91
28.55
51.70
56.21

1.37
2.07
0.51
0.02

44.36
31.93
44.14
87.95

15.81
13.39
0.03

26.14

21.82
35.86
0.85

59.94

0.89
0.52
0.12
0.71

47.73
48.51
69.83
81.36

8.13
20.86
26.36
48.89

20.27
19.98
20.06
63.09

5.46
14.06
3.06

16.25

19.85
21.01
15.89
28.26

24.12
28.86
24.29
52.17

24.88
27.12
28.08
33.57

10.47
12.65
9.94

22.55

25.34
23.17
28.09
45.91

21.43
20.40
23.31
39.77

KITTI1

Baseline
MLDG
SMILE
Ours

45.86
65.38
89.39
59.60

0.39
0.47
0.04
0.35

21.08
23.91
25.33
13.25

25.48
32.32
47.74
15.90

19.47
7.85
23.54
33.07

27.65
29.49
55.78
49.68

27.55
15.42
9.02
24.51

3.15
1.96
0.27
0.08

12.41
11.87
17.38
73.42

4.90
12.09
9.93

21.94

27.59
19.62
0.93

67.32

0.79
1.57
0.47
0.95

52.11
37.73
62.33
81.42

16.74
11.34
5.07
3.17

14.12
54.79
75.59
48.25

43.79
36.47
47.23
62.20

22.29
35.09
38.72
67.69

24.25
47.02
35.75
21.02

10.09
4.72
0.98
9.11

13.51
8.99
6.59

22.23

23.72
28.87
36.61
38.70

21.04
23.64
28.71
34.36

KITTI2

Baseline
MLDG
SMILE
Ours

16.01
12.13
45.05
22.14

0.24
2.28
0.25
3.15

0.35
0.54
0.88
1.70

31.35
22.82
29.92
0.10

5.38
9.24
2.51

27.23

22.27
20.66
44.80
26.32

60.12
36.84
47.64
34.05

2.58
1.87
0.71
0.06

39.03
70.69
51.70
87.31

19.63
11.81
26.09
32.97

11.64
17.18
2.55

33.44

0.67
0.38
0.11
0.85

38.18
61.74
74.19
64.71

20.42
26.85
3.68

37.42

44.53
56.89
72.33
75.69

34.35
32.26
37.07
43.92

39.86
42.92
24.53
69.21

19.58
15.75
6.40
17.57

18.48
26.78
20.49
34.59

10.03
9.50
11.12
14.98

26.75
30.15
31.09
38.39

22.35
24.72
25.84
32.23

KITTI3

Baseline
MLDG
SMILE
Ours

69.96
70.24
90.71
92.20

4.11
2.46
1.73
0.23

22.19
0.67

34.66
29.31

26.45
3.35

32.69
6.36

6.52
17.96
15.77
22.49

1.34
1.44
0.74
7.47

52.62
46.94
42.11
63.58

0.05
0.66
0.07
3.63

28.03
48.04
84.70
76.40

8.17
9.45
5.11
7.66

53.06
28.01
43.43
67.42

0.75
0.47
0.11
0.27

15.75
16.98
38.31
49.50

22.45
10.15
0.63

49.54

24.31
41.32
55.48
76.85

25.34
27.58
40.96
57.47

18.70
41.12
9.59

65.68

45.93
22.57
21.53
42.67

17.78
23.36
23.08
29.63

12.93
7.80

19.21
17.74

26.12
25.44
30.97
45.15

23.34
21.72
28.49
39.38

Avg

Baseline
MLDG
SMILE
Ours

11.74
9.74
11.72
19.38

25.48
26.91
31.69
42.04

22.04
22.62
26.59
36.44

G
re

ed
y-

H
un

ga
ri

an
(%

) KITTI0

Baseline
MLDG
SMILE
Ours

40.19
59.96
88.56
96.00

5.84
1.06
1.39
8.26

36.41
1.47
48.68
53.27

65.14
60.50
63.40
70.46

12.70
28.71
25.33
36.52

24.81
2.76
11.53
58.02

34.56
28.62
53.50
65.51

2.54
4.18
4.15
0.03

44.36
31.93
57.84
88.93

16.05
4.54
0.05

27.13

22.13
44.06
3.53

64.68

1.31
2.23
1.53
0.76

54.47
50.07
91.69
84.49

24.24
34.35
65.08
51.60

20.49
21.13
20.32
66.40

5.60
15.08
3.17

17.54

21.49
36.98
58.07
35.94

24.75
30.76
24.99
69.99

33.00
30.35
30.97
40.81

13.22
20.59
21.66
32.93

30.28
27.34
38.96
55.12

25.79
25.56
34.41
49.28

KITTI1

Baseline
MLDG
SMILE
Ours

45.92
65.75
92.52
59.69

0.40
0.52
0.32
0.12

21.62
25.59
27.92
34.21

31.55
32.34
80.47
15.91

19.71
8.71
24.57
33.24

29.37
29.71
61.32
55.27

28.28
3.13
12.80
24.96

3.67
2.58
0.30
0.08

14.54
17.40
23.85
78.55

8.03
21.30
25.50
32.76

33.37
15.35
7.83

77.19

5.79
10.51
1.76

17.81

53.42
39.11
75.02
88.00

23.95
17.21
30.31
37.10

14.23
55.21
78.95
48.30

43.83
36.50
49.10
62.57

22.29
35.49
45.72
68.11

24.46
48.43
36.96
21.55

29.73
15.27
44.43
22.86

20.46
12.71
22.63
36.26

25.13
29.76
43.32
42.64

23.90
25.27
37.88
40.96

KITTI2

Baseline
MLDG
SMILE
Ours

16.77
12.29
48.00
23.23

0.28
2.39
0.23
3.29

2.25
1.19
2.73
7.81

39.93
23.54
47.63
0.14

7.95
11.94
64.24
54.90

22.43
22.94
50.98
31.21

61.30
36.96
48.06
34.09

8.32
5.05
3.54
8.09

42.82
73.43
66.88
93.69

23.41
10.97
36.59
39.73

14.35
19.33
61.33
51.80

0.99
0.41
0.15
0.37

38.18
61.90
74.44
66.14

20.47
27.37
4.29

40.89

44.71
57.39
76.32
75.98

35.00
35.11
37.35
46.54

40.48
44.57
28.16
74.04

21.03
30.05
13.15
25.99

20.40
29.74
21.79
39.64

12.54
13.58
25.75
23.39

28.45
31.33
39.79
42.90

24.27
26.66
36.10
37.77

KITTI3

Baseline
MLDG
SMILE
Ours

69.98
70.29
91.88
92.90

5.70
3.92
2.73
0.43

22.49
1.10

36.98
29.36

40.30
9.10

47.20
31.16

6.63
27.20
19.18
26.25

3.87
4.31
3.72
0.63

54.55
50.79
52.70
66.55

0.06
0.10
0.02
5.00

28.15
48.12
86.44
77.93

25.90
30.05
33.74
30.22

54.02
28.09
43.80
69.06

0.38
0.49
0.08
0.28

16.69
20.51
46.27
49.74

33.08
25.59
58.49
58.00

24.32
41.72
59.01
83.86

25.35
27.76
41.46
60.51

18.70
41.13
9.92

66.51

47.13
22.62
21.56
43.39

18.52
23.74
24.81
38.38

21.69
16.00
32.73
27.94

27.27
27.51
36.60
47.89

26.10
25.09
35.79
43.69

Avg

Baseline
MLDG
SMILE
Ours

16.98
15.72
25.69
30.13

27.78
28.99
39.67
47.14

25.02
25.65
36.05
42.93

Table 7: On-the-fly category discovery results on SemanticKITTI within scenario-B.
The values highlighted in blue are the unobserved-unknown classes. The best value
is in bold.

Method car bi.cle mt.cle truck oth-v. pers. bi.clst mt.clst road park. sidew. oth-g build. fence veget. trunk terra. pole traff. mIoU
Unknown Known All

St
ri

ct

Baseline 71.69 0.46 9.67 59.40 12.72 32.67 16.54 0.07 36.76 4.07 38.81 0.60 13.93 26.71 47.38 27.07 18.80 15.81 19.20 14.63 24.89 23.81
MLDG 80.61 0.38 7.53 20.19 18.53 41.92 33.07 1.95 24.75 17.42 33.44 0.46 27.44 39.63 45.59 20.83 23.16 28.93 22.40 25.80 25.68 25.70
SMILE 0.15 1.57 8.42 35.66 0.70 49.76 25.51 0.60 84.24 0.87 44.81 0.46 70.42 56.87 48.61 35.91 22.60 46.78 29.71 13.10 31.61 29.67
Ours 89.95 3.94 13.00 53.69 7.25 41.16 36.22 0.89 88.38 34.82 70.85 0.22 85.38 38.60 80.30 62.40 64.01 51.83 33.71 21.73 47.83 45.08

G
re

ed
y Baseline 73.06 0.46 9.84 69.51 26.56 39.58 40.73 0.07 36.76 4.07 38.81 0.60 13.94 26.73 47.38 27.08 18.80 15.81 19.21 33.64 25.98 26.79

MLDG 81.76 0.38 1.23 21.14 46.24 42.45 35.27 2.25 24.75 17.42 33.45 0.46 27.44 39.63 45.59 20.83 23.16 28.96 22.41 40.75 25.49 27.10
SMILE 0.21 1.57 8.56 48.16 65.30 52.18 30.04 0.66 84.24 0.87 44.81 0.46 70.53 56.89 49.00 36.13 22.60 46.80 29.74 47.67 32.55 34.14
Ours 92.87 3.99 13.87 66.52 45.21 42.85 39.02 0.93 88.38 34.82 70.86 0.22 85.61 38.74 80.33 62.61 64.01 51.85 33.90 42.12 48.96 48.24

Table 8: On-the-fly category discovery results on SemanticKITTI within scenario-C.
The values highlighted in gray and blue are the observed-unknown and unobserved-
unknown classes, respectively. The best value is in bold.

Method car bi.cle mt.cle truck oth-v. pers. bi.clst mt.clst road park. sidew. oth-g build. fence veget. trunk terra. pole traff. mIoU
Unknown Known All

St
ri

ct

Baseline 77.18 5.13 33.99 70.30 16.82 43.95 15.60 0.11 41.03 2.90 35.77 0.70 71.09 10.61 20.29 28.73 21.21 21.43 8.22 11.77 30.61 27.63
MLDG 80.91 0.37 27.89 61.06 11.07 52.57 19.99 1.04 52.78 4.35 25.09 0.32 46.41 14.43 25.57 56.32 31.96 42.48 21.07 11.80 33.77 30.30
SMILE 90.84 5.44 35.84 58.40 10.08 50.83 22.35 0.72 72.17 0.81 51.82 0.01 73.25 1.73 67.68 41.00 63.03 25.44 29.62 11.08 41.74 36.90
Ours 91.44 0.29 34.06 37.16 15.65 51.82 28.94 2.15 85.94 5.39 46.74 2.61 86.97 51.90 74.59 55.58 60.03 52.08 23.20 16.66 47.29 42.45

G
re

ed
y Baseline 78.08 5.17 34.28 73.06 21.40 46.47 15.98 0.11 41.57 20.03 35.95 0.72 71.23 10.61 20.29 28.73 21.28 21.43 8.22 19.14 31.07 29.19

MLDG 84.19 0.38 32.84 64.72 55.86 54.77 20.01 1.22 53.21 12.54 25.14 0.32 46.41 14.44 25.57 56.32 31.96 42.48 21.15 29.47 34.70 33.87
SMILE 94.10 5.84 38.63 80.64 49.73 52.16 33.03 0.80 75.05 72.83 52.65 0.01 73.60 41.00 67.73 41.01 63.20 25.44 29.63 51.86 43.89 45.15
Ours 94.40 0.29 37.62 33.14 43.32 53.24 30.68 2.35 88.02 37.56 47.20 2.66 87.14 52.13 74.61 55.65 60.14 52.11 23.38 37.19 47.76 46.09
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2 Class-wise Results

As mentioned in Sec. 4.1 of the main paper, we conducted experiments in various
scenarios to demonstrate the validity of our proposed method. The class-wise IoU
results and mIoU for each scenario are presented in Tabs. 5 to 8.
Analysis for known classes. In the experiments conducted for scenario-A
on the SemanticPOSS and SemanticKITTI, our method outperforms baselines
on known classes. Specifically, when comparing the class-wise results of known
classes for each split of the SemanticPOSS with other baselines, our method
exhibits the highest performance in a majority of cases (29 out of 39 known
classes in POSS0-POSS3 in Tab. 5) in Strict-Hungarian. Similarly, for the Se-
manticKITTI, when comparing the class-wise results of known classes for each
split (37 out of 57 known classes in KITTI0-KTTI3 in Tab. 6), our method
demonstrates the highest performance in most cases in Strict-Hungarian. For the
results of scenario-B shown in Tab. 7, our method performs better than others
for 12 out of 17 known classes in Strict-Hungarian. In scenario-C of Tab. 8, where
observed-unknown and unobserved-unknown classes coexist, our method exhibits
the highest performance for 8 out of 16 known classes in Strict-Hungarian. Thus,
our proposed method consistently shows superior performance on known classes
across various scenarios when compared to different baselines. Notably, the minor
performance difference of known classes between Strict- and Greedy-Hungarian
metrics, particularly in scenario-B and C, suggests that the primary cause of the
lower performance on known classes of baselines is not due to confusion between
known and unknown classes. Instead, the lower performance of known classes can
be attributed to 1) the high sensitivity of hash code to intra-class variation and
2) confusion among known classes. Considering the performance of baseline and
MLDG on known classes in Tabs. 5 to 8, along with the qualitative results, it can
be interpreted that these methods are vulnerable to intra-class variation. Un-
like baseline and MLDG, SMILE benefits from sign-magnitude disentanglement
proposed in [2], resulting in a reduction in misclassifications due to intra-class
variation. However, it still exhibits confusion among known classes, leading to
lower performance compared to the proposed method. In conclusion, the pro-
posed method demonstrates robustness to both sources of problems, intra-class
variation and class confusion, as confirmed quantitatively and qualitatively.
Analysis for unknown classes. In various scenarios, the proposed MCL con-
sistently demonstrates high performance in unknown classes. As shown in Tabs. 5
and 6, our method shows meaningful gain over other baselines on unknown
classes (both in Strict- and Greedy-Hungarian). For the scenario-A, the pro-
posed model particularly shows significant improvement in observed-unknown
classes such as plants, car, building, and bike. In some splits, however, specific
unknown classes exhibit lower performance in Strict-Hungarian than other base-
lines. As the model gains a better understanding of the semantics for known
classes, without a specific solution, it may lead to potential confusion when
assessing unknown classes since the unknown classes are cognized based on the
knowledge acquired from the known classes. Considering this performance trade-
off between known and unknown classes, the most challenging aspect of OCDSS
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is the ability to cognize unknown classes without compromising the performance
of known classes. In the case of SMILE, it enhances recognition ability for known
classes in exchange for cognition ability for unknown classes. Although we can
observe slightly lower performance compared to SMILE in KITTI3, the proposed
method demonstrates its effectiveness by achieving a remarkable 14% higher per-
formance for known classes in Strict-Hungarian. Considering the aforementioned
trade-off between known and unknown classes, this suggests that the proposed
method remains effective or even superior. In scenario-B, as shown in Tab. 7,
MLDG exhibits slightly higher performance on unknown classes compared to
our method. Though the meta-learning-based approach in MLDG helps to learn
unobserved-unknown classes, it results in inadequate representation learning for
known classes. In contrast, our method manages to achieve meaningful gains
not only in known classes but also in unknown classes. Upon the scenario-C,
our method performs well on both observed-unknown classes (other-vehicle and
parking) and unobserved-unknown class (bicyclist) which is only cognizable by
OCDSS. Our method demonstrates superior performance compared to other
methods in scenario-C, according to the Strict-Hungarian. However, according
to the Greedy-Hungarian, SMILE performs better in unknown classes. This can
be attributed to SMILE’s proficiency in clustering semantic classes well in simple
situations where known and unknown classes are clearly separated, but it strug-
gles in complicated scenarios where known and unknown classes coexist. For
instance, SMILE exhibits lower performance in parking under Strict-Hungarian
compared to the notably higher performance observed in the Greedy-Hungarian.
This observation suggests that SMILE effectively clusters parking into a single
cluster when known-unknown distinctions between parking and road are guided
by the ground truth. However, when parking coexists with road, SMILE strug-
gles to differentiate parking from road or sidewalk accurately. Considering that
ground truth-based separation between known and unknown classes is impossi-
ble in real situations, and confusing classes coexist, our method demonstrates
practicality and effectiveness by achieving high performance according to the
Strict-Hungarian.

3 Implementation Details

3.1 Proposed Method

We use MinkUNet34 [1] as the feature extractor E . For the projection head
ϕ, we use three multi-layer perceptrons (MLP) where the channel dimension is
(96,256,256,32) followed by a single MLP layer that maps the features into pro-
jection space with the dimension L = 12. We voxelize the point cloud using a
voxel size of 0.05m. We use SGD optimizer [6] with learning rate lr = 0.01, mo-
mentum 0.9, and weight decay 1e− 4 with the batch size of 4. During training,
we use a fixed mixing ratio r = 0.1 in the mixing module. For the tempera-
ture parameters, τcos = 0.07 and τhash = 0.14 are used. We use λ = 0.1 for
SemanticKITTI and λ = 0.05 for SemanticPOSS in scenario-A. In addition, we
use λ = 0.01 in scenario-B and scenario-C. For data augmentation, we augment
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the data with random downsampling of the points, random scaling, and ran-
dom rotation along the z-axis during training. Additionally, we do not use the
intensity value of the points.

3.2 Baselines

For a fair comparison, we use the same backbone architecture, optimizing strat-
egy, and data augmentation for all baselines and the proposed method.
MLDG [5]. MLDG is a meta-learning method for domain generalization. As
the proposed OCDSS tends more towards generalizing to unknown classes from
known classes, we simulate the presence of unknown classes during training and
apply the MLDG method to the baseline. Specifically, at each training itera-
tion, we divide the existing known classes in half, with one half used as known
classes appearing in the meta-train and the remaining used as unknown classes
appearing in the meta-test. MLDG involves hyperparameters α and β, where α
represents the meta-train step size and β is a weighting parameter that balances
meta-train and meta-test. Following the original paper, we experiment with val-
ues such as α = 0.01, the same as the learning rate, and β = 1, achieving the
best performance.
SMILE [2]. SMILE proposes sign-magnitude disentanglement to reduce the
sensitivity of hash codes to intra-class variance and capture the class-level se-
mantics better. For SMILE, we use the same architecture for the feature extrac-
tor as the proposed method (i.e. MinkUNet34) while the projection head ϕ is
modified by following the original paper. Instead of the final single MLP layer
in ϕ, two separate MLP layers are employed for sign and magnitude predictions.
Then, the representation is obtained by the element-wise multiplication of sign
and magnitude. SMILE involves hyperparameter α that weights the magnitude
regularization loss for sign predictions. When the value α = 3, as used in the
original paper, is employed, the magnitude regularization loss dominates the
training procedure, causing instability in the training process and resulting in
lower performance compared to the baseline. Therefore, we search appropriate
values for α, and use α = 0.1, which achieves the best performance.

3.3 Computational Cost Analysis

In Tab. 9, we report the details regarding computational cost and the number
of parameters for each method. Our method additionally uses only negligible
parameters compared to other baselines, resulting in a nearly identical total
number of parameters. However, during the training process, the time taken per
iteration (s/it) increases slightly compared to the baseline. The MLDG method,
which performs meta-learning during training, requires the most time and mem-
ory. During inference, the time and memory usage are the same since the same
backbone is used.
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Table 9: Computational cost and number of parameters for each method. The cost is
computed on SemanticPOSS.

Training Inference

Parameters Time Memory Time Memory

Baseline 0.66s/it 10.6GB
MLDG 2.06s/it 25.6GB
SMILE 0.67s/it 10.8GB
Ours

37.9M

0.85s/it 12.1GB

0.086s/it 2.6GB

3.4 Data Split

In the supplementary material, we elaborate on the details of the class selection
process in scenario-A. To assess the discovery capability for various observed-
unknown classes, we make four distinct splits each for SemanticKITTI and
SemanticPOSS in scenario-A, depending on the choice of the unknown class.
Specifically, we consider the diversity in the size and geometry of the unknown
classes and use these considerations to select classes for each split. For exam-
ple, in SemanticPOSS, we distribute massive classes such as plants, building,
and ground into separate splits, considering the diversity in class size. Simi-
larly, in SemanticKITTI, we distribute classes like vegetation, road, sidewalk,
and building into distinct splits. Notably, as OCDSS generalizes from known to
unknown classes, selecting massive classes altogether as unknown during train-
ing may hinder meaningful learning. Therefore, we prevent this by distributing
massive classes across different splits. Additionally, we structured the unknown
classes in each split to have a diversity of geometries. Therefore, as examples,
POSS0 and KITTI0 are composed of {trashcan, traffic sign, bike, plants} and
{bicycle, other-vehicle, trunk, terrain, vegetation}, respectively, ensuring that the
unknown classes have diverse sizes and geometries.

3.5 Evaluation Metrics

We adopt Greedy-Hungarian [3] and Strict-Hungarian [7] evaluation protocols
by following [2]. During testing, the class descriptor from the hash code directly
forms clusters, which are then matched with ground truth using the Hungarian
matching algorithm [4]. Clusters that are not matched are regarded as misclas-
sified. Then, the intersection over union (IoU) for each class and mean values
(mIoU) are calculated for evaluating semantic segmentation performance. In
the Greedy-Hungarian, we first divide the points into known and unknown
classes based on the ground truth before evaluation, and then perform Hungarian
matching separately within each group. Consequently, in the Greedy-Hungarian
criterion, there may exist cases where a single class descriptor (i.e. hash code) is
simultaneously assigned to both known and unknown classes. Therefore, Greedy-
Hungarian evaluates the ability to form semantically meaningful clusters within
the known and unknown groups separately, excluding the ability to distinguish
between known and unknown classes. On the other hand, the Strict-Hungarian
conducts Hungarian matching for the entire set of classes without distinguishing
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between known and unknown classes. Accordingly, a single class descriptor (i.e.
hash code) is assigned to only one class among the entire set. Strict-Hungarian
evaluates both the ability to form semantically meaningful clusters and the abil-
ity to distinguish between known and unknown classes simultaneously. This bet-
ter reflects real-world scenarios where known and unknown classes are not dis-
tinguished and appear together, making it a more practical criterion compared
to Greedy-Hungarian.

4 Additional Qualitative Results

We provide additional qualitative results for three scenarios in Figs. 1 to 3. Fig-
ures 1 and 2 respectively show the results on SemanticPOSS and SemanticKITTI
within scenario-A, and Fig. 3 show the results in scenario-B and scenario-C. The
results are visualized using the Strict-Hungarian evaluation protocol. In general,
both the baseline and MLDG show high misclassification rates across all sce-
narios due to their vulnerability to intra-class variance. While SMILE reduces
misclassifications compared to the baseline and MLDG, it still reveals some con-
fusion between classes and struggles to classify and segment unknown classes.
On the other hand, our proposed method demonstrates successful segmentation
for both known and unknown classes compared to the baselines.
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Baseline MLDG [5] SMILE [2] Ours Ground Truth

Unknown class : *person rider car plants* traffic-sign* pole trashcan* building cone/stone fencetrunk bike* ground misclassified POSS!

person* rider car plants traffic-sign pole* trashcan building* cone/stone fencetrunk bike ground misclassified POSS"

person rider* car plants traffic-sign pole trashcan building cone/stone fence*trunk bike ground* misclassified POSS#

person rider car* plants traffic-sign pole trashcan building cone/stone* fencetrunk* bike ground misclassified POSS$

Fig. 1: Qualitative results on SemanticPOSS within scenario-A. Best viewed when
zoomed in with colors.
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Baseline MLDG [5] SMILE [2] Ours Ground Truth

Unknown class : *
KITTI!

car

bicyclist

motorcycle

motorcyclist

truck

road other-vehicle*

parking person

other-ground

bicycle*

vegetation*

sidewalk

terrain*

building

pole

fence

traffic-sign

trunk*

misclassified

KITTI"
car

bicyclist*

motorcycle

motorcyclist

truck

road* other-vehicle

parking person

other-ground*

bicycle

vegetation

sidewalk

terrain

building

pole

fence*

traffic-sign*

trunk

misclassified

KITTI#
car*

bicyclist

motorcycle*

motorcyclist*

truck

road other-vehicle

parking person

other-ground

bicycle

vegetation

sidewalk*

terrain

building

pole*

fence

traffic-sign

trunk

misclassified

KITTI$
car

bicyclist

motorcycle

motorcyclist

truck*

road other-vehicle

parking* person*

other-ground

bicycle

vegetation

sidewalk

terrain

building*

pole

fence

traffic-sign

trunk

misclassified

Fig. 2: Qualitative results on SemanticKITTI within scenario-A. Best viewed when
zoomed in with colors.
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Baseline MLDG [5] SMILE [2] Ours Ground Truth

Scenario-B
car

bicyclist*

motorcycle

motorcyclist

truck

road other-vehicle*

parking person

other-ground

bicycle

vegetation*

sidewalk

terrain

building

pole

fence

traffic-sign

trunk

misclassified

Unknown class : *

Scenario-C
car

bicyclist*

motorcycle

motorcyclist

truck

road other-vehicle*

parking* person

other-ground

bicycle

vegetation

sidewalk

terrain

building

pole

fence

traffic-sign

trunk

misclassified

Fig. 3: Qualitative results on SemanticKITTI within scenario-B and scenario-C. The
red circle refers to the part of unknown class. Best viewed when zoomed in with colors.
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