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Abstract. LiDAR semantic segmentation is important for understand-
ing the surrounding environment in autonomous driving. Existing meth-
ods assume closed-set situations with the same training and testing la-
bel space. However, in the real world, unknown classes not encountered
during training may appear during testing, making it difficult to ap-
ply existing methodologies. In this paper, we propose a novel on-the-
fly category discovery method for LiDAR semantic segmentation, aim-
ing to classify and segment both unknown and known classes instanta-
neously during test time, achieved solely by learning with known classes
in training. To embed instant segmentation capability in an inductive
setting, we adopt a hash coding-based model with an expandable pre-
diction space as a baseline. Based on this, dual prototypical learning is
proposed to enhance the recognition of the known classes by reducing
the sensitivity to intra-class variance. Additionally, we propose a novel
mixing-based category learning framework based on representation mix-
ing to improve the discovery capability of unknown classes. The proposed
mixing-based framework effectively models out-of-distribution represen-
tations and learns to semantically group them during training while dis-
tinguishing them from in-distribution representations. Extensive experi-
ments on SemanticKITTI and SemanticPOSS datasets demonstrate the
superiority of the proposed method compared to the baselines. The code
is available at https://github.com/hskim617/OCDSS.

Keywords: Autonomous driving · LiDAR semantic segmentation · On-
the-fly category discovery

1 Introduction

LiDAR semantic segmentation is crucial for recognizing the surrounding envi-
ronment in autonomous driving and has recently made significant progress [2,
11, 12, 26, 30, 38, 39, 50, 59, 65]. Although these models demonstrate promising
results across various datasets, their effectiveness is constrained to closed-set
settings, as they are assumed and trained within such scenarios. In real-world
scenarios, however, unknown classes are bound to appear during testing, making
it incapable of predicting unknown classes for closed-set models as in Fig. 1a.
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(a) Closed-set (b) Open-set (c) Novel category discovery (d) On-the-fly category discovery

T
ra

in
in

g
 s

ce
n

ar
io

T
es

ti
n

g
 s

ce
n

ar
io

unknown (class 1&2)

ignored

incapable
Unknown 

(class 1&2&3)

class 1

class 2

class 3

class 1

class 2

incapable

ignored

car bicycle truck
class 3

(other-vehicle)

class 1

(bicyclist)road
class 2

(parking)sidewalk bldg.veg. trunkterrain pole ignored

incapable

Known classes Unknown classes

Not appears during training

ignored ignored

Fig. 1: Illustration of training and testing scenarios for on-the-fly category discovery
in LiDAR semantic segmentation and relevant tasks. The goal of each task is (a)
recognizing known classes, (b) further identifying and rejecting unknown classes, (c)
learning clustering using unlabeled, unknown class data, and (d) cognizing unknown
classes that are not identified during training while recognizing known classes.

To address this challenge, open-set recognition (OSR) [47], which aims to fil-
ter out unknown classes has been explored in diverse fields, including image
classification [3,5,9,49,58], semantic segmentation [7,31,37,57], and 3D seman-
tic segmentation [8, 35]. Considering the nature of the human cognitive system
that can cognize novel visual concepts based on understanding, simply rejecting
unknown classes as in OSR (Fig. 1b) is unsatisfactory.

To narrow the gap between humans and machines by learning novel concepts,
novel category discovery (NCD) [15, 23, 24, 28, 63] and on-the-fly category dis-
covery (OCD) [14] are emerging as new research fields and attracting attention.
Given labeled data of known classes and unlabeled data of unknown classes, the
goal of NCD is to cluster the unlabeled data with the same semantics, aiming to
cognize them as in Fig. 1c. Therefore, NCD is formulated as transductive learning
in which data of unknown classes are available, making it incapable of predicting
unknown classes not identified during training. On the other hand, OCD aims
for a more realistic scenario by learning solely from data of known classes and
inductively cognizing unknown classes at test time. Furthermore, during test-
ing, the model should independently classify each test sample instantaneously,
regardless of the distribution of the test data.

In this paper, we broaden the scope of OCD to LiDAR point clouds and
introduce a new problem, on-the-fly category discovery for LiDAR semantic seg-
mentation (OCDSS). As shown in Fig. 1d, our goal is to classify and segment
both known and unknown classes instantaneously in an inductive manner dur-
ing test time, achieved solely by learning with known classes in training. To
achieve the goal, one straightforward solution is adopting the previous approach
in image classification [14] and applying it to the LiDAR semantic segmentation.
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Therefore, we implemented the hash coding-based model proposed by [14] as a
baseline for LiDAR point clouds. This model utilizes hash codes as class descrip-
tors, generated by binarizing each dimension of the learned representation based
on its sign. However, extending it to the LiDAR domain entails two limitations.

Firstly, due to LiDAR’s sparse nature and lack of texture information, hash
coding in learned representations is more sensitive to intra-class variance. In
practice, we observed that the method for reducing sensitivity to intra-class
variance by disentangling sign and magnitude [14] had shown unsatisfactory
results in the LiDAR domain (refer Fig. 4a). Secondly, prior work relies on rep-
resentation learning from known classes to discover unknown classes. Without a
dedicated mechanism for discovering unknown classes, only a tentative expecta-
tion that the learned representations will form semantically meaningful groups
for unknown classes is possible. This reliance, combined with the aforementioned
limitation, complicates OCDSS.

Therefore, we propose a novel learning method for OCDSS that learns rep-
resentations robust to intra-class variance in hash coding and suitable for un-
known class discovery. First, we propose dual prototypical learning (DPL) that
constrain the representation space by introducing extra hash prototypes, effec-
tively reducing the sensitivity of hash codes to intra-class variance. Specifically,
the hash prototypes enforce additional constraints to ensure that representations
within the same intra-class share the same hash code, dramatically enhancing
recognition capability for known classes. Second, we propose a novel mixing-based
category learning (MCL) framework to improve the ability to cognize unknown
classes. The proposed framework consists of three modules: a mixing module,
a discrimination module, and a grouping module. The mixing module mod-
els out-of-distribution (OOD) representation through representation mixing and
obtains mixed representation to mimic unknown classes during training. The
discrimination module then enhances the model’s OOD discrimination ability
by learning to distinguish the representation of known classes from mixed rep-
resentations. In addition, the grouping module develops the model’s clustering
capability for OOD representations by learning to cluster mixed representations
within the same semantics. Meanwhile, we integrate the hash prototypes of DPL
during MCL to fully exploit the discovering capability for unknown classes. Fi-
nally, we introduce an evaluation protocol for OCDSS and evaluate our approach
on SemanticKITTI [4] and SemanticPOSS [42] datasets. Extensive experiments
demonstrate the superiority of our method compared to baselines, while ablation
studies show the effectiveness of each component.

Our main contributions are four-fold: (I) We introduce a new problem of
on-the-fly category discovery for LiDAR semantic segmentation (OCDSS). (II)
We propose dual prototypical learning that effectively learns representations
that are less sensitive to intra-class variation in hash coding. (III) We present a
novel mixing-based category learning framework, enabling the model to discover
unknown classes. (IV) We introduce a new evaluation protocol for OCDSS and
demonstrate the superiority of our method through extensive experiments.
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2 Related Work

LiDAR Semantic Segmentation. LiDAR semantic segmentation is the task
of inferring semantic labels to individual 3D points within the LiDAR point
cloud. These approaches can be broadly categorized into point-based, projection-
based, and voxel-based according to the way they represent and process point
clouds. Point-based methods [26,36,44,51] directly operate on points in line with
the foundational work PointNet [43] by using multi-layer perceptrons. Despite
their advantages, such as minimal information loss and few parameters, applying
these methods to large-scale LiDAR point clouds demands heavy computational
resources and memory. Projection-based methods have been proposed to address
efficiency and leverage advanced 2D convolutional neural network architectures.
These methods project LiDAR points onto a range image [1,2,10,13,19,30,39,55,
56] using spherical projection or a bird-eye-view [59]. However, the projection of
3D points into 2D representation might lose some geometric information. Voxel-
based methods represent point clouds as 3D voxels and process them through
3D convolution [66] or sparse convolution [11, 12, 20, 38, 50, 65]. In particular,
sparse convolution achieves high performance with less computation, so we adopt
MinkowskiNet [12] as our backbone architecture.
Open-set Recognition. Open-set recognition (OSR) was first introduced in
[47], extending the closed-set assumption to realistic scenarios where unknown
classes appear during testing. As OSR aims to detect unknown classes, previ-
ous studies estimate the unknown probability based on extreme value theory [5]
or estimate uncertainty through maximum softmax probability [25], maximum
logit [3], or Bayesian inference approximation [16,33]. Other approaches include
training a redundancy classifier for unknown classes [54,64] or using metric learn-
ing [9,22,48]. Meanwhile, generative model-based approaches employ generative
adversarial networks to synthesize unknown class samples [18, 40] or use image
reconstruction error for the criterion of determining unknown classes [41,49,58].
Unlike these methods for object recognition, studies for semantic segmenta-
tion [7, 31, 37, 57], panoptic segmentation [17, 27] in open-set situations have
also been proposed. Recently, open-set semantic segmentation for LiDAR point
clouds has emerged [8,35], extending an open-set problem to the LiDAR domain.
While OSR methods are aware of unknown classes, they focus on identification,
whereas we aim to go beyond achieving semantically cognizing them.
Novel Category Discovery. Novel category discovery (NCD), first formalized
in [24], is another relevant task that aims to cognize unknown classes in unlabeled
data by transferring the knowledge from known classes in labeled data. After
DTC [24] proposed deep transfer clustering for NCD, several studies were sug-
gested, achieving significant progress [15, 21,23, 28,60, 62, 63]. These approaches
first learn representations using supervised learning from labeled known classes,
and then discover unknown classes by transferring knowledge through pseudo-
labeling on unknown classes based on pair-wise similarity [23, 28, 60, 62, 63] or
cluster assignment [15, 21]. Additionally, EUMS [61] and NOPS [45] extend the
NCD problem to semantic segmentation in images and LiDAR point clouds, re-
spectively. Nevertheless, NCD usually assumes the number of unknown classes
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as prior knowledge [15, 23, 28, 60, 62, 63], and presuppose all unlabeled data as
unknown classes. Hence, generalized category discovery (GCD) was introduced
where unlabeled data contain both known and unknown classes [6,52]. However,
as pointed out in [14], two limitations in prior settings still exist: 1) transduc-
tive learning and 2) offline evaluation. In prior settings, category discovery is
formulated as transductive learning in which data of unknown classes are avail-
able during training. Also, offline evaluation constrains the results depending
on the entire test data distribution, making instant feedback on each test sam-
ple impossible. Therefore, [14] proposed a new task named on-the-fly category
discovery (OCD), which aims to recognize known classes and cognize unknown
classes instantaneously in an inductive manner. In this study, we tackle the
challenging OCD for LiDAR semantic segmentation, which instantaneously seg-
ments LiDAR point clouds from both known and unknown classes while learning
exclusively from known classes.

3 Method

In Sec. 3.1, we first elaborate on our problem formulation of on-the-fly category
discovery for LiDAR semantic segmentation (OCDSS). In Sec. 3.2, we introduce
a hash coding-based baseline model for OCDSS that embeds expandable pre-
diction space and instant inference capability within an inductive setting. Then,
in Sec. 3.3, we describe our dual prototypical learning for reducing the sensi-
tivity of representation in hash coding, improving the closed-set performance.
In Sec. 3.4, we propose a mixing-based category learning framework to enable the
model to possess category discovery capabilities for both known and unknown
classes. Fig. 2 shows the overview of the proposed method.

3.1 Problem Formulation

In this section, we formulate the problem of OCDSS, which aims to recognize
known classes and cognize unknown classes during testing in an inductive man-
ner. Let DS = {PS} be a support set used for training and DQ = {PQ} be a
query set for testing. Then, we have 3D point clouds PS = {(x, y)} ∈ R3 × YS

and PQ = {(x, y)} ∈ R3 × YQ, representing a single LiDAR scan from DS and
DQ, respectively. Here, x denotes each point, and y is the corresponding la-
bel. YS and YQ are the label spaces of support and query sets. Following the
setting of OCD [14], YS defines the known classes observed during training,
while YQ contains both known and unknown classes that appear at testing, i.e.
YS ⊂ YQ. We denote the number of known and unknown classes as Ck = |YS |
and Cu = |YQ\YS |, where we assume Cu is unknown. This is different from ex-
isting NCD approaches [15,23,28,45,60,62,63] that assume Cu as a known prior.
The goal is to train a model using only DS so that the model can inductively
classify and segment point clouds in DQ instantaneously.
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Fig. 2: Overview of the proposed framework. Given the LiDAR point cloud, the model
extracts the features through feature extractor E , which are then mapped into the
prediction space to obtain the representations by the projection head ϕ. Through dual
prototypical learning (DPL), the model learns representations suitable for hash code-
based clustering, enhancing its recognition ability for known classes. Besides, mixing-
based category learning (MCL) improves the model’s cognition capability for unknown
classes through three modules: mixing module, discrimination module, and grouping
module. The final prediction is obtained by the hash code-based clustering.

3.2 Hash Coding-based Baseline Model

We first introduce a hash coding-based baseline model for OCDSS. To embed
the expandable prediction space and instant inference capability while learning
the model inductively, we adopt the basic pipeline of hash coding-based model
from [14]. Formally, our baseline model consists of a feature extractor E and a
projection head ϕ. Given point cloud PS = {(x, y)}Ni=1, the feature extractor first
extracts the feature representation fi for each point xi. The projection head maps
fi to the prediction space, obtaining the projected representation pi = ϕ(fi) ∈
RL, which is used for the hash coding. Here, L is the dimension of the hash code.
Then, the hash code for point xi is obtained by hash(ϕ(E(xi))), where hash is
a hashing operation. For an arbitrary vector v = [v1, . . . , vl, . . . , vL] ∈ RL, the
hashing operation is defined as,

hash(v) = [v∗1 , . . . , v
∗
l , . . . , v

∗
L], v

∗
l =

{
1, vl ≥ 0

0, vl < 0
. (1)

To predict classes of points from PQ during testing, we use the hash code as a
class descriptor where points with the same code are considered to be in the same
class. This hash coding-based inference allows the model to have an expanded
label space to predict new classes beyond the known classes in an inductive
setting. Moreover, it also has the advantage of being able to immediately predict
the result of each test sample individually.
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For representation learning of the baseline model, [14] used supervised con-
trastive learning [29]; however, there is a lack of clear design choices for represen-
tation learning in LiDAR point clouds. For example, in the case of contrastive
learning where pair-wise computation between samples is required, it is not suit-
able due to its high demand for computation and memory. Instead, we use a
standard cross-entropy loss on the known classes. To learn a more discriminative
representation, we employ parametric prototypes G = {g1, g2, . . . , gCk

} ∈ RCk×L

for known classes as in [7] and replace the classifier as cosine similarity between
the prototype and the projected representation pi. Specifically, we compute the
distance based on the cosine similarity as,

dcos(pi, gj) = 1− pi · gj
∥pi∥∥gj∥

. (2)

Then, let us define σG(pi, yi) that computes the softmax probability of pi with
respect to G as follows:

σG(pi, yi) =
exp(−dcos(pi, gyi

)/τcos)∑Ck

j=1 exp(−dcos(pi, gj)/τcos)
, (3)

where gyi
denotes the prototype corresponding to the label yi and τcos is a

temperature parameter. The loss function for the baseline model is defined as,

Lbase =
∑
i

− log σG(pi, yi). (4)

3.3 Dual Prototypical Learning

The baseline model is trained to generate similar representations for points be-
longing to the same class. However, during inference, points are classified into
different classes if they do not share the same hash code, which can be sensitive
to intra-class variance. Due to the sparse nature and lack of texture information
in LiDAR, hash coding in learned representations becomes more sensitive to
intra-class variance compared to images. To address this issue, we propose dual
prototypical learning (DPL) to learn the representation robust to intra-class vari-
ance in hash coding. Specifically, DPL employs extra parametric prototypes to
constrain the representation space, denoted as H = {h1, h2, . . . , hCk

} ∈ RCk×L,
referred to as hash prototypes. Similar to G, we calculate the distance between
the projected representation pi and the hash prototypes. In this case, based on
the fact that the sign of each dimension in representation determines the hash
code, we utilize the L2 distance between signs instead of cosine similarity. In
practice, for stable optimization, we use the hyperbolic tangent function, tanh,
instead of the sign operation as,

dhash(pi, hj) = ∥tanh(pi)− tanh(hj)∥22/L. (5)

Similar to σG in Eq. (3), we define softmax probability σH(pi, yi) as follows:

σH(pi, yi) =
exp(−dhash(pi, hyi

)/τhash)∑Ck

j=1 exp(−dhash(pi, hj)/τhash)
, (6)
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where hyi
denotes the hash prototype corresponding to the label yi and τhash is a

temperature parameter. The prototypical learning loss based on hash prototypes
is defined as,

Lhash =
∑
i

− log σH(pi, yi). (7)

Along with Lbase, the final loss function of dual prototypical learning is as follows:

LDPL = Lbase + Lhash. (8)

With the proposed DPL, we impose additional constraints on representations
to make hash codes less sensitive to intra-class variance, improving the model’s
recognition capability.

3.4 Mixing-based Category Learning

Along with the recognition, our goal is to train the model to cognize unknown
classes through semantic understanding. Our basic idea to achieve this goal is to
mimic unknown classes during training and learn the model to distinguish and
group them from known classes for a comprehensive understanding of unknown
semantics. To this end, we propose mixing-based category learning (MCL), which
consists of a mixing module, a discrimination module, and a grouping module.
Mixing Module. We mix the representations of different known classes to
mimic the unknown classes during training. Our intention in using representa-
tion mixing is that 1) it can effectively model OOD representations, as stated
in [64], and 2) it can further mimic diverse unknown classes by modeling OOD
representations that share common semantics depending on which classes are
mixed. Specifically, we use manifold mixup technique [53] to mix two feature
representations fi and fj of different classes yi and yj , where yi ̸= yj . The mixed
representation fi,j is calculated as,

fi,j = rfi + (1− r)fj , (9)

where r is a mixing ratio. We can also define the imaginary corresponding label
yi,j of fi,j , referred to as a mix label. Note that if (i, j) ̸= (k, l), then yi,j ̸=
yk,l. These mixed representations are considered as OOD representations in the
following modules.
Discrimination Module. In the discrimination module (DM), we train the
model to distinguish mixed representations from prototypes. In particular, we
learn parametric prototypes G and H to be discriminative from the mixed rep-
resentation. To this end, we first project fi,j into projection space and obtain
ϕ(fi,j). Then, we enforce ϕ(fi,j) not to be close to the prototype of any specific
class in the form of entropy maximization as follows:

Ldisc =
∑
i,j

(
∑
k

σG(ϕ(fi,j), k) log σG(ϕ(fi,j), k)

+
∑
k

σH(ϕ(fi,j), k) log σH(ϕ(fi,j), k)).
(10)
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Notably, we stop the gradient of ϕ(fi,j) and only optimize prototypes. In addi-
tion, we incorporate mixed representations that are mixed after being projected
into the Ldisc to enhance discrimination for more diverse OOD representations.
Grouping Module. We propose a grouping module (GM) to enhance the
model’s understanding of the underlying semantics. Since the mixed represen-
tations might share common semantics depending on which classes are mixed,
we can group them using the mix labels. For mathematical brevity, we omit the
summation over i and j here. Specifically, we employ contrastive loss [29] and
propose contrastive learning on mixed representation based on mixed labels:

Lgp =
−1

|P (i, j)|
∑

p∈P (i,j)

log σA(i,j)(
−dcos(ϕ(fi,j), ϕ(fp))

τcos
), (11)

where A(i, j) denotes all mixed representations excluding ϕ(fi,j) and P (i, j) is all
positive pairs of ϕ(fi,j) that share the same mix label. σ(A(i,j)) refers to a softmax
operation with respect to A(i, j). In practice, we perform sub-sampling on A(i, j)
to reduce the computation from heavy pair-wise operations. Additionally, we
impose the following constraint so that mixed representations with the same
mix label share the hash code as,

Lgp–hash = log
∑

p∈P (i,j)

exp(dhash(ϕ(fi,j), ϕ(fp))/τhash). (12)

The loss function for the proposed MCL is defined as,

LMCL = Ldisc + λ(Lgp + Lgp–hash), (13)

where, λ is the weight for Lgp and Lgp–hash.
Finally, the total loss function of our method is,

Ltotal = LDPL + LMCL. (14)

4 Evaluation Protocol

4.1 Data Split

Datasets. We evaluate our method on two datasets, SemanticKITTI [4] and
SemanticPOSS [42]. SemanticKITTI consists of 43,552 frames with point-wise
annotations of 19 classes. We follow the official split and use sequences 00 to 07
and 09 to 10 with 19,130 frames for training, and sequence 08 with 4,071 frames
for validation. SemanticPOSS contains 2,988 frames with point-wise annotations
of 13 classes. We use sequence 03 for validation, while the remaining sequences
are used for training, following the official split.
Scenarios. We designed three scenarios considering various real-world situa-
tions. More precisely, we defined two unknown class types that can exist in
the real world: observed-unknown and unobserved-unknown. Observed-unknown
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Table 1: Data splits of scenario-A on SemanticPOSS and SemanticKITTI datasets.
The POSSi and the KITTIi denotes the ith split.

Split Unknown classes

POSS0 trashcan, traffic sign, bike, plants
POSS1 pole, person, building
POSS2 rider, fence, ground
POSS3 cone/stone, trunk, car

Split Unknown classes

KITTI0 bicycle, other-vehicle, trunk, terrain, vegetation
KITTI1 bicyclist, traffic-sign, other-ground, fence, road
KITTI2 motorcyclist, motorcycle, pole, car, sidewalk
KITTI3 person, truck, parking, building

class refers to cases where data was captured during acquisition but remains
unlabeled. An example could be cases where instances are not included in the
pre-defined category set or when it is challenging to define a class at the time
of annotation, resulting in their assignment as a void or an ignore label. On
the other hand, unobserved-unknown class corresponds to cases where it first
appears during testing without being captured during data acquisition. We then
constructed three scenarios based on the presence of each unknown class type.

Scenario-A: In scenario-A, we assess the discovery capability for observed-
unknown classes. Following the previous open-set 3D semantic segmentation [8,
35] literature that addresses the observed-unknown classes in testing, we set the
labels of unknown classes to be void and ignore them during training. Depending
on the choice of the unknown class, we made four splits each for SemanticKITTI
and SemanticPOSS, as shown in Tab. 1. The splits are selected considering the
diversity of unknown classes and the relationship between classes. We provide
details on the selection process in the Supplementary Material.

Scenario-B: In scenario-B, we evaluate the capability to discover unob-
served-unknown classes that do not appear in the training data. Specifically,
we select relatively infrequent classes from SemanticKITTI, {other-vehicle, bi-
cyclist}, as unknown classes to prevent a significant decrease in the amount of
training data. Frames containing any points of these classes are then excluded
from training data. As a result, 13,501 out of 19,130 frames are used for training.
We did not use SemanticPOSS, as all classes appear in most frames. The eval-
uation is conducted for all classes, including unobserved-unknown classes, using
the same validation data as the official benchmark.

Scenario-C: Both observed-unknown and unobserved-unknown classes are
considered in scenario-C. In SemanticKITTI, we select {other-vehicle, parking}
as observed-unknown classes, and {bicyclist} as an unobserved-unknown class.
Frames containing any points of the unobserved-unknown class are excluded from
training data, resulting in 17,954 frames for training, and observed-unknown
classes are ignored during training. The evaluation proceeds as in scenario-B.

4.2 Baselines

Since OCDSS necessitates inductive learning with known classes while enabling
instant inference during testing, many previous approaches are impractical un-
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der our setting. Clustering-based methods do not provide instant inference and
demand a substantial amount of memory due to the large number of points in the
LiDAR point cloud, making them more impractical. Previous NCD method [45]
is also unable to learn under our setting where unknown classes are unavailable.
Therefore, following the previous OCD approach [14], we implement MLDG [34]
and SMILE [14], representative OCD methods in image classification, in the 3D
LiDAR points domain as baselines.
Baseline. The baseline is the hash coding-based model introduced in Sec. 3.2.
MLDG. MLDG is a meta-learning method for domain generalization. Since
OCDSS is more like generalizing to unknown classes from known classes, we
simulate introducing unknown classes during training. At each training iteration,
we randomly divide known classes into two groups, using one group for meta-
training and the other for meta-testing, and then applying MLDG to Baseline.
SMILE. SMILE proposes sign-magnitude disentanglement to better capture
the class-level semantics. Following [14], we modified the projection head ϕ by
replacing the final single MLP layer with two separate MLP layers for sign and
magnitude predictions, and subsequently applying SMILE.
Implementation Details. We use the same backbone network and optimiza-
tion strategy for all baselines. Specifically, MinkUNet34 [12] is used as the feature
extractor E . For the projection head ϕ, we use multi-layer perceptrons. We use
SGD optimizer [46] with learning rate 0.01, momentum 0.9, and weight decay
1e − 4 with the batch size of 4. We use fixed mixing ratio r = 0.1, τcos = 0.07,
τhash = 0.14, and L = 12. More details on baselines and implementation are
provided in Supplementary Material.

4.3 Evaluation Metrics

We adopt Greedy-Hungarian [15] and Strict-Hungarian [52] evaluation pro-
tocols by following [14]. During testing, the class descriptor from the hash code
directly forms clusters. Then, we match these clusters with ground truth us-
ing the Hungarian matching algorithm [32]. Clusters that are not matched are
regarded as misclassified. In Greedy-Hungarian, we divide the points into two
groups, known and unknown classes, based on the ground truth and then per-
form Hungarian matching separately within each group. On the other hand,
Strict-Hungarian conducts Hungarian matching for all clusters without distin-
guishing between known and unknown classes. The mean IoU (mIoU) is used for
evaluating semantic segmentation performance.

5 Experimental Results

5.1 Comparison

Quantitative Results. We conduct comparative experiments with baselines on
all proposed scenarios. We report the results on scenario-A in Tab. 2, while the
results on scenario-B and scenario-C are reported in Tab. 3. As shown in Tabs. 2
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Table 2: On-the-fly category discovery results on SemanticPOSS (left) and Se-
manticKITTI (right) within Scenario-A. Best in bold.

Strict-Hungarian (%) Greedy-Hungarian (%)

Split Method Unknown Known All Unknown Known All

POSS0

Baseline 9.20 28.59 22.63 11.41 32.71 26.16
MLDG 6.33 34.69 25.96 7.55 40.54 30.39
SMILE 5.79 40.34 29.71 9.05 56.52 41.91
Ours 17.88 49.60 39.84 20.30 56.54 45.39

POSS1

Baseline 13.21 23.16 20.87 20.01 30.11 27.78
MLDG 15.72 28.97 25.91 23.66 35.65 32.89
SMILE 15.20 32.47 28.48 18.22 46.40 39.89
Ours 26.68 44.11 40.09 39.28 50.47 47.89

POSS2

Baseline 21.03 19.82 20.10 28.51 27.15 27.46
MLDG 10.04 30.17 25.52 19.82 33.40 30.27
SMILE 9.00 31.64 26.42 25.27 38.24 35.24
Ours 24.52 41.40 37.51 39.59 46.71 45.07

POSS3

Baseline 4.47 28.92 23.28 18.12 28.63 26.21
MLDG 2.24 33.12 26.00 15.43 33.96 29.68
SMILE 1.89 36.60 28.59 24.04 37.38 34.30
Ours 17.09 51.39 43.48 49.19 52.54 51.77

Avg

Baseline 11.98 25.12 21.72 19.51 29.65 26.90
MLDG 8.58 31.74 25.85 16.62 35.89 30.81
SMILE 7.97 35.26 28.30 19.15 44.64 37.84
Ours 21.54 46.63 40.23 37.09 51.57 47.53

Strict-Hungarian (%) Greedy-Hungarian (%)

Split Method Unknown Known All Unknown Known All

KITTI0

Baseline 10.47 25.34 21.43 13.22 30.28 25.79
MLDG 12.65 23.17 20.40 20.59 27.34 25.56
SMILE 9.94 28.09 23.31 21.66 38.96 34.41
Ours 22.55 45.91 39.77 32.93 55.12 49.28

KITTI1

Baseline 13.51 23.72 21.04 20.46 25.13 23.90
MLDG 8.99 28.87 23.64 12.71 29.76 25.27
SMILE 6.59 36.61 28.71 22.63 43.32 37.88
Ours 22.23 38.70 34.36 36.26 42.64 40.96

KITTI2

Baseline 10.03 26.75 22.35 12.54 28.45 24.27
MLDG 9.50 30.15 24.72 13.58 31.33 26.66
SMILE 11.12 31.09 25.84 25.75 39.79 36.10
Ours 14.98 38.39 32.23 23.39 42.90 37.77

KITTI3

Baseline 12.93 26.12 23.34 21.69 27.27 26.10
MLDG 7.80 25.44 21.72 16.00 27.51 25.09
SMILE 19.21 30.97 28.49 32.73 36.60 35.79
Ours 17.74 45.15 39.38 27.94 47.89 43.69

Avg

Baseline 11.74 25.48 22.04 16.98 27.78 25.02
MLDG 9.74 26.91 22.62 15.72 28.99 25.65
SMILE 11.72 31.69 26.59 25.69 39.67 36.05
Ours 19.38 42.04 36.44 30.13 47.14 42.93

Table 3: On-the-fly category discovery results on SemanticKITTI within Scenario-B
(left) and Scenario-C (right). Best in bold.

Strict-Hungarian (%) Greedy-Hungarian (%)

Method Unknown Known All Unknown Known All

Baseline 14.63 24.89 23.81 33.64 25.98 26.79
MLDG 25.80 25.68 25.70 40.75 25.49 27.10
SMILE 13.10 31.61 29.67 47.67 32.55 34.14
Ours 21.73 47.83 45.08 42.12 48.96 48.24

Strict-Hungarian (%) Greedy-Hungarian (%)

Method Unknown Known All Unknown Known All

Baseline 11.77 30.61 27.63 19.14 31.07 29.19
MLDG 11.80 33.77 30.30 29.47 34.70 33.87
SMILE 11.08 41.74 36.90 51.86 43.89 45.15
Ours 16.66 47.29 42.45 37.19 47.76 46.09

and 3, in all scenarios, the baseline model exhibits diminished recognition ability
for known classes due to its sensitive representation in hash coding, while the
MLDG and SMILE demonstrate improved recognition capabilities compared to
the baseline. Compared to all baselines, the proposed method achieves superior
performance for known classes, demonstrating the effectiveness of the proposed
representation learning for OCDSS, including DPL and MCL. Furthermore, the
proposed method’s comparative performance in the known classes compared to
the oracle (All: 46.16% in SemanticPOSS, All: 49.23% in SemanticKITTI) in-
dicates its superior recognition ability. MLDG and SMILE exhibit lower results
for unknown classes in Strict-Hungarian except for MLDG in scenario-B. This
implies that these models tend to become overly focused on the semantics of
known classes, making them particularly confused when faced with unknown
classes. MLDG performing well for unknown classes in scenario-B is speculated
to be the simulation of unknown classes during training, which enhances gen-
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Fig. 3: Qualitative comparison results on POSS3 within scenario-A (top), scenario-B
(middle), and scenario-C (bottom). Best viewed when zoomed in with colors.

eralization to unobserved-unknown classes. However, this approach offers only
limited performance improvements for known classes. In the case of SMILE, its
favorable performance on unknown classes in the Greedy-Hungarian suggests
that it understands the semantics of unknown classes well. Yet, the poor re-
sults in the Strict-Hungarian imply that SMILE frequently confuses known and
unknown classes. Overall, the proposed method outperforms baselines in both
known and unknown classes in scenario-A and scenario-C. In scenario-B as well,
our proposed method consistently outperforms in all classes average, further val-
idating the efficacy of our approach.
Qualitative Results. In Fig. 3, we visualize the qualitative comparison re-
sults on scenario-A (top), scenario-B (middle), and scenario-C (bottom). While
MLDG and SMILE fail to predict the known and unknown classes correctly, the
proposed method not only successfully recognizes the known classes but also cog-
nizes the unknown classes (top: plant/car, middle: terrain/other-vehicle, bottom:
vegetation/bicyclist). This implies that the proposed method learns the better
representations for OCDSS through the DPL and MCL. Additional qualitative
results are provided in Supplementary Material.

5.2 Ablation Studies

To demonstrate the effectiveness of our proposed method, we conduct an abla-
tion study as depicted in Fig. 4. Here, we set the baseline as the model intro-
duced in Sec. 3.2. The experiments are conducted on the SemanticPOSS within
scenario-A, and the results are averaged over four splits. Please refer to the Sup-
plementary Material for the discussion with class-wise results and analysis on
the hash code dimension L, mixing ratio r, weight λ, and sub-sampling in GM.
DPL helps to recognize known classes. Comparing the baseline and base-
line+DPL, we observe a significant improvement in performance for the known
classes. When the model is trained only with the baseline, hash codes from the
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Fig. 4: (a) Results of using dual prototypical learning (DPL) with the baseline and
SMILE. (b) Ablation study of the proposed method. Base refers to the baseline model.

learned representations are sensitive to intra-class variation, which is supported
by the poor performance for known classes. Conversely, adding hash prototypes
through DPL imposes additional constraints on the representation, making it
more suitable for hash code-based clustering. To further analyze the effects of
DPL, we conduct an experiment by integrating the DPL with the baseline and
SMILE [14]. As shown in Fig. 4a, when DPL is used together, the performance
for known classes of both baseline and SMILE is significantly improved in both
Strict- and Greedy-Hungarian. This implies that the proposed DPL effectively
improves the robustness of learned representation under intra-class variation.
The proposed DPL benefits both baseline and SMILE, demonstrating its effec-
tiveness in a hash-code-based framework for addressing the OCDSS problem.
MCL helps to cognize unknown classes. To excavate the ability to discover
unknown classes, we proposed mixing-based category learning based on DPL.
With DM, the prototypes become discriminative for ID and OOD. This en-
hancement leads to improved performance not only for known classes but also for
unknown classes. The proposed GM further boosts the performance of unknown
classes. Comparing the results of using (c) DM and (d) DM+GM in Fig. 4b,
we observe approximately 5% and 5.7% gains in Strict- and Greedy-Hungarian,
respectively. Although performance on known classes experiences a slight reduc-
tion, considering the inherent challenge of distinguishing unknown classes that
the model has not seen during training, this underscores the necessity of GM.

6 Conclusion

In this paper, we introduce a new problem named on-the-fly category discovery
for LiDAR semantic segmentation. Along with the baseline model based on hash
coding, we propose dual prototypical learning to enhance the model’s recogni-
tion ability. We further design the mixing-based category learning to inductively
transfer recognition knowledge from known classes to unknown classes. Extensive
experiments demonstrate the effectiveness of the proposed method for recogniz-
ing known classes and discovering unknown classes. While the proposed method
effectively addresses the problem, performance disparities between the known
and unknown classes remain. In this respect, exploring suitable representation
learning for discovering unknown classes presents a promising research direction.
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