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Fig.1: NeuroPictor achieves precise control over decoding low-level structures from
fMRI signals while preserving high-level semantics. The decoded images progress from
reconstructing visual stimulus solely from high-level semantics to both high-level se-
mantics and low-level structures as the influence increases from left to right.

Abstract. Recent fMRI-to-image approaches mainly focused on associ-
ating fMRI signals with specific conditions of pre-trained diffusion mod-
els. These approaches, while producing high-quality images, capture only
a limited aspect of the complex information in fMRI signals and offer
little detailed control over image creation. In contrast, this paper pro-
poses to directly modulate the generation process of diffusion models
using fMRI signals. Our approach, NeuroPictor, divides the fMRI-to-
image process into three steps: i) fMRI calibrated-encoding, to tackle
multi-individual pre-training for a shared latent space to minimize in-
dividual difference and enable the subsequent multi-subject training; ii)
fMRI-to-image multi-subject pre-training, perceptually learning to guide
diffusion model with high- and low-level conditions across different in-
dividuals; iii) fMRI-to-image single-subject refining, similar with step
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ii but focus on adapting to particular individual. NeuroPictor extracts
high-level semantic features from fMRI signals that characterizing the
visual stimulus and incrementally fine-tunes the diffusion model with a
low-level manipulation network to provide precise structural instructions.
By training with about 67,000 fMRI-image pairs from various individu-
als, our model enjoys superior fMRI-to-image decoding capacity, partic-
ularly in the within-subject setting, as evidenced in benchmark datasets.
Our code and model are available at https://jingyanghuo.github.io/
neuropictor/,

Keywords: Neural Decoding - FMRI-to-Image - Diffusion Model

1 Introduction

Decoding visual stimuli perceived by the eyes and recorded by our brains is a
fascinating task, serving as a bridge between two closely linked yet distinct fields:
computer vision and visual neuroscience. In neuroscience, we rely on functional
magnetic resonance imaging (fMRI), a non-invasive neuroimaging technique that
detects brain activity by measuring changes in blood flow, offering valuable in-
sights into cognitive processes and brain function |15|. Meanwhile, the generative
power of the Diffusion model enables the creation of visually appealing images
from prior conditions or random signals, making it intriguing to decode fMRI-
based brain activities and reconstruct images, as explored in [38|.

This paper explores the process of decoding fMRI signals into images. We
outline the experimental pipeline in three stages: "See it. Say it. Sorted". Es-
sentially, an individual unfamiliar with our task is presented with an image
("See it"). They then take a moment to reflect on this image ("Say it"), during
which their brain activity is scanned and recorded using fMRI equipment. Fi-
nally, our algorithm uses the recorded fMRI signals to reconstruct the original
image ("Sorted"). Most previous works [7,[29], focus on individual-specific {MRI-
to-image decoders. Unfortunately, due to the potential unique brain activation
patterns each brain processes information during the "say it" phase, there is no
direct empirical evidence to show that another individual’s fMRI data would
assist in decoding for a specific individual.

Furthermore, in the "sorted" stage, researchers often employ latent codes
extracted from fMRI signals to guide image generation through the Stable Dif-
fusion (SD) model. Nevertheless, these codes tend to prioritize high-level seman-
tics over low-level details, as fMRI voxels are aligned with CLIP text 28] and
image features [36] to capture semantic information. However, using latent codes
directly for SD presents challenges due to the fundamental mismatch between
the separately trained fMRI encoder/decoder for 1D signals and the SD model
for 2D images. Consequently, imperfections in both the fMRI signal-to-latent
and latent-to-image projections lead to inevitable information loss and error ac-
cumulation, resulting in blurry reconstructions with lacking clear structure and
pose information.
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Fig. 2: NeuroPictor can swap high-level fMRI features to manipulate image semantics
while maintaining structural consistency.

To address these challenges, we introduce NeuroPictonl} a novel framework
designed to refine fMRI-to-image reconstruction through multi-individual pre-
training and multi-level modulation. Unlike previous approaches focus-
ing on individual-specific decoders, NeuroPictor significantly improves fMRI-
to-image decoding for single individuals by leveraging pretraining on multiple-
individual fMRI-image pairs. Our method establishes a universal fMRI latent
space to capture diverse neural signal information across subjects. Within this
framework, we incorporate both low-level manipulation and high-level guiding
networks as in Fig. |1} The low-level manipulation network precisely adjusts the
diffusion model’s features, integrating complex brain signal information and elim-
inating the need for partial representation with intermediate images. Meanwhile,
the high-level guiding network rectifies semantic gaps between text captions and
visual images. These components form a unified pipeline, enabling training the
full model from fMRI signals to visual stimulus directly via the fMRI-to-image
reconstruction supervision and preventing information degradation and error ac-
cumulation from isolated processing. Moreover, disentangling high-level meaning
and low-level structure in fMRI signals opens up intriguing possibilities. For ex-
ample, we can swap the high-level features of one fMRI signal with another,
enabling precise semantic manipulation on the reconstructed image while pre-
serving the structures, as depicted in Fig.

Formally, our NeuroPictor initially learns a universal fMRI latent space across
individuals through multi-individual pre-training to capture all original signal
information and individual differences. We use an fMRI encoder-decoder archi-
tecture to reconstruct the fMRI signal as 2D brain activation flatmaps. After-
ward, we utilize the encoder to map the fMRI signal into latent codes. We intro-
duce a High-Level Guiding Network (HLGN) to extract semantic-related signals
essential in fMRI representations. The HLGN includes dual encoders aligning
with text information and providing supplementary data to enhance generative
model adaptability. Additionally, we incorporate a Low-Level Manipulation Net-

! The name combines "Neuro" (representing human neurons) with "Pictor" (an easel
for painting), symbolizing the depiction of neuron status.
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work (LLMN) to collaborate with the diffusion model by directly manipulating
underlying features. Recent studies |25,/47] have shown advancements through
feature map adjustments in generative models to control fine-grained visual de-
tails. Our LLMN combines a feature transformation technique with a U-net En-
coder to guide image generation by updating feature maps. By decoupling the
decoding process and separately controlling high-level semantics and low-level
manipulation, our NeuroPictor achieves precise fMRI-to-image reconstruction.
We propose to learn fMRI-to-image decoding in three steps. i) The fMRI
calibrated-encoding step. We pre-train the fMRI signal processing model for
fMRI reconstruction, calibrating fMRI signals of different individuals to a shared
latent space. ii) The fMRI-to-image multi-subject pre-training step. We pre-
train our full model directly for fMRI-to-image decoding, leveraging about 67k
fMRI-image pairs from different individuals. iii) For particular individual, we
perform single-subject refining, using the same training strategy of step ii but
focues on the refinement on the single subject. Our results demonstrate the
benefits of multi-individual pre-training for within-subject image reconstruction
and the potential of the foundation fMRI decoding model. Extensive experiments
validate the efficacy of our NeuroPictor.
Contribution. Our contributions are listed as follows: (1) We propose pre-
training on multiple-individual fMRI-image pairs to enhence fMRI-to-image de-
coding for single individuals; (2) We capture diverse neural signal information
and divide it into high-level and low-level guidance to supervise the diffusion
generation process; (3) We integrate all the components as a unified model for
multi-subject pre-training and single-individual refining, adapting the full model
directly based on the supervision of fMRI-to-image decoding.

2 Related Work

fMRI-to-image Reconstruction. This task focuses on reconstructing visual
images from recorded fMRI signals. The classical methods typically transform it
into semantic content identification [10], image classification [18}/43] or retrieval
tasks |21], or limited to simple images such as handwritten digits [35]. With the
development of deep networks, Generative Adversarial Networks (GANs) and
VAE are employed to better reconstruct natural images [17,26,31,39]. Recently,
diffusion models [32]| have spurred studies [8}|12,(13}28,/36}46] in natural image
decoding. Particularly, Chen et al. [§8] improve visual quality and semantic consis-
tency of reconstructed images using masked brain modeling and the Latent Dif-
fusion Model (LDM). However, the SD text condition utilized in their approach
cannot properly handle the learning of detailed spatial conditions. To achieve
consistent reconstructions both semantically and visually, some works [28,36|
use CLIP text and image features along with VAE to generate blurry interme-
diate images, further refined with image-to-image Versatile Diffusion [45]. Other
recent works employ depth maps [13] and silhouette maps [46] for low-level con-
sistency, yet potential information gaps remain. In contrast, NeuroPictor, our
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proposed approach, adapts the diffusion model to directly extract and decode
fMRI signals without relying on potentially insufficient intermediate information.
Conditional Diffusion Model. The vanilla stable diffusion |32] generates im-
ages based on text prompts. Conditional diffusion models incorporate additional
modalities like category [2], sketch [3], depth |25], normal [20], and semantic
maps [46] to guide image generation. Efforts have focused on fine-tuning sta-
ble diffusion for tasks such as image editing [4] and personalization [14}[34].
T2i-adapter |25] modifies stable diffusion’s feature maps directly for precise con-
trol, while ControlNet [46] learns a trainable-copy of SD to control generation
with localized image conditions. Inspired by these methods, we employ a low-
Level manipulation network, combining feature transformation techniques with
a U-net Encoder, enabling intricate low-level detail learning from fMRI signals,
leading to a fMRI-controllable generation model.

fMRI Representation. Learning a cross-subject representation for the fMRI
data could enhance the down-stream tasks. In [7}/9], the masked brain modeling
is pretrained on the Brain, Object, Landscape Dataset (BOLD5000) [6] to grasp
useful context knowledge of fMRI data. However, due to the varied lengths of
flattened 1-D fMRI voxels across individuals, only a single model can be trained
per subject for subsequent image decoding. Recently, Qian et al. [29] present a
large-scale transformer-based fMRI autoencoder using the UK Biobank dataset
(UKB) [24], transforming individual native-space fMRI signals into unified 2D
brain activation images for multi-individual brain modeling in a large-scale la-
tent space. Different from previous works [7,/29] learn an individual-specific
fMRI-to-image decoder, our NeuroPictor shows that leveraging the pretrain-
ing on multiple-individual fMRI-image pairs, can actually significantly improve
the fMRI-to-image decoding of one individual. Concurrent work [37] also aims to
develop a shared-subject fMRI-to-image model. Different from their approach,
which uses subject-specific ridge regression to map individuals’ fMRI data into a
common space, our method directly transforms native-space fMRI signals from
any individual into unified 2D activation images. This eliminates the need for
subject-specific encoding modules.

3 Method

Overview. The framework of NeuroPictor is illustrated in Fig. [3] NeuroPictor
is trained by three steps of fMRI calibrated-encoding, multi-subject pre-training
and single-subject refining for fMRI-to-image decoding.

i) In the fMRI calibrated-encoding stage, a universal latent fMRI space is learned
to represent fMRI signals across multi-individuals, addressing the individual dif-
ferences and data scarcity. This latent space is trained via a transformer-based
auto-encoder for reconstructing the fMRI brain surface maps (Sec. |3.1).

ii) In the multi-subject pre-training stage, we learn to extract high-level semantic
features (Sec. and low-level structure features (Sec. from the above
learned fMRI latent, and then use these features as conditions to guide the
generation process of diffusion model. These components are integrated via a
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Fig. 3: Our NeuroPictor framework is trained in three steps for fMRI-to-image decod-
ing. i) the fMRI calibrated-encoding stage, which establishes a universal latent fMRI
space across multiple individuals; ii) the fMRI-to-image multi-subject pre-training
stage, which achieves multi-level modulation through perceptual learning. iii) the
fMRI-to-image single-subject refining stage, using the same strategy in step ii but
focuses on refinement on particular subject.

Reconstruction :

unified model to directly train on fMRI-to-Image decoding task on multi-subject
fMRI-image pairs.

iii) For the particular single-subject, we use the same training strategy as in
step ii but focus on the single subject to refine our NeuroPictor.

3.1 fMRI Encoder

Inspired by the pre-processing of fMRI-PTE , we transform individual fMRI
signals into unified 2D brain activation images, resulting in a 1-channel image S
of size 256 x 256. This process unifies the fMRI representation across different in-
dividuals and thus enables training over multiple individuals to prevent missing
signals of different individuals. However, IMRI-PTE compresses {MRI signals
using VQ-GAN, contrary to our goal of learning a universal latent representa-
tion without compression. Instead, we directly use the masked auto-encoder to
reconstruct the fMRI surface map. In contrast to the random masking strategy
of MAE, we mask all the patches in the latent space and introduce an addi-
tional guide token along with masked tokens to reconstruct the surface map.
This forces the MAE learns to preserve all the information of fMRI signals in
the guide token, which is beneficial to learn a compressed and universal fMRI
latent. We train the autoencoder on the UKB dataset learning a universal
fMRI latent space capable of encoding information from different individuals.

After training, we discard the decoder and utilize the encoder E(-) to convert
the fMRI surface map into latent representation, described by:

§" =E(9), (1)
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(a) High-Level Guiding Network. (b) Low-Level Manipulation Network.

Fig. 4: Framework of our High-Level Guiding Network and Low-Level Manipulation
Network.

where 87 € RE»*dr [ and d, represent the number of tokens and feature
dimensions, respectively. S” serving as the representation of fMRI data in the
latent space. This fMRI latent is used to derive subsequent high-level semantic
and low-level structural features. Please refer to Supplementary for more details.

3.2 High-Level Semantic Feature Learning

The vanilla SD model uses text prompts to generate images aligned with the
given text. During the text condition stage, it utilizes a fixed CLIP encoder
to encode the text prompts as F*** ¢ REL7X47  These prompts then guide the
cross-attention layers in image generation. To maximize the potential of the high-
level adapted cross-attention layers, we suggest substituting text conditions with
high-level semantic fMRI features.

To fully upscale SD as a fMRI-to-image model, we replace the text encoder
with a semantic feature learned from fMRI signals. Using the encoded fMRI
feature S € RIrX4r we design a high-level guiding network to connect the
fMRI latent space and text condition space. Illustrated in Fig. [] the high-level
guiding network processes fMRI representations through two parallel branches:
the fMRI-to-text encoder aligns fMRI signals with CLIP Text features F®* of
image captions, while the auxiliary encoder provides additional semantic infor-
mation to compensate for inaccuracies in the fMRI-to-text encoder and capture
rich semantic details from images not explicitly described in captions.

In the fMRI-to-text encoder, two 1-D convolution layers are used to down-
sample the token number L, of fMRI representation S € RE*4 Subsequently,
MLP is employed to project it into text condition space:

ﬁvtmt — Emt(sr)7 (2)

where Ft*t ¢ RETXdT g yged to estimate the CLIP text feature of the ground
truth image caption and E;;; is the fMRI-to-text encoder we introduced.

To further enforce the learned feature Ft@t aligned with text condition, we
use the caption of the original image to optimize it. Specifically, a frozen CLIP



8 J. Huo et al.

text encoder is used to exact text feature F'** ¢ RETX4T a5 the ground truth
text condition. And we use mean square error as the semantic loss to optimize
it, which can be formulated as:

1 &
Esem - Fticvt _ Ftiwt 27 3
T 2 IFts B )

where F(t;;'t and F(tgt represents the i-th token feature of Ft=t and F*t, respec-
tively.

However, directly using the hard-mapped feature Ftt i not optimal. To
address inaccurate semantic information learned in the fMRI-to-text branch, we
introduce an auxiliary encoder to obtain an auxiliary semantic code F'**. The
architecture of the auxiliary encoder resembles that of the fMRI-to-text encoder,
with the addition of a 1D zero convolutional layer in the final layer to initialize
F as a zero tensor. This auxiliary semantic code is then residually added to
the text code, resulting in the semantic representation F*¢.

Fem — Fta:t + Fo, (4)

This adapted semantic feature F*¢ is then fed into SD to guide the cross-
attention layers.

3.3 Low-Level Manipulation Network

While learning general semantic information by mapping fMRI signals into a
textual condition space is feasible, bridging the gap between fMRI and intricate
images, rich in low-level details, poses challenges. To enhance low-level structure
guidance, we introduce a Low-Level Manipulation Network (LLMN). This net-
work injects low-level fMRI conditions by directly manipulating feature maps in
the SD’s U-net, adapting the generative model to fMRI signals.

Our LLMN consists of two components: a feature transformation module to

convert fMRI representation to SD latent space, and a manipulator to incremen-
tally trained to manipulate the SD latent.
Feature Transformation. Given an image of size H x W x 3, Stable Diffusion
apply an Autoencoder similar to VQGAN [11] to convert the pixel-space image
into latent space as zg € R**"*%  Then, a U-net 33| is used to progressively
denoise images in the latent space.

To directly manipulate feature maps in SD’s U-net, we introduce a fea-
ture transformation technique that simultaneously performs channel-wise and
dimensional-wise feature learning on fMRI embeddings EL This connects fMRI
representation learning with feature map learning, facilitating the subsequent
manipulation process. Specifically, we employ two layers of 1D convolution to
handle channel-wise correlations of fMRI embeddings and the MLP to conduct

2 We use the terms "channel" and "dimension" to refer to the second and third di-
mensions of the fMRI latent tensor.
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dimensional-wise feature learning. Finally, we use a reshape operation to form a
feature map F} € ROxw,
Fy = Ef(S"). (5)

The feature map F{ is then fed into the subsequent U-net encoder blocks, acting
as condition controlling the generation process.

Low-Level Manipulation. To regulate the generation results with fine-grained
low-level details, inspired by [47], we incrementally fine-tune the SD to improve
the coherence between fMRI signals and visual stimulus. Utilizing a residual
connection network, we effectively bridge the gap between fMRI representations
and real natural images. Specifically, we incrementally manipulate the blocks of
SD U-Net by adding low-level fMRI conditions within the proposed manipulation
network. As depicted in Fig. [3] our manipulation network additionally take as
inputs the feature map F} converted from the fMRI signal. Then, to manipulate
the SD latent in a fine-grained manner. We utilize a series of transformer layers
to manipulate different blocks of SD. Denoted as Ey, this series of feature maps
are produced by:

F' = By(F}), (6)
where F! = {F(li)|i =1,---,13} and F(li) is the i-th feature map produced by
i-th encoder block.

These feature maps are passed into zero convolution layers and residually
added with the outputs of the middle block and decoder blocks of locked SD
branch as, ~

Fl! = F,+aZ(F'), (7)

where Z represent the zero convolution layer, Fy; represent the latent codes in
SD U-net, « is a hyperparameters that balance the high-level semantic guidance
with low-level detail manipulation. In this way, the feature maps in SD U-net
is updated. We pass the feature map F! into the subsequent layers of locked
SD model to control the generation process. As a result, with the aid of the SD
decoder, we obtain the final reconstructed image corresponding to specific fMRI
signals. This incremental fine-tuning strategy is more efficient and stable than
fully fine-tuning the SD.

3.4 Training and Inference

Training Objectives. During the training process, our NeuroPictor takes fMRI-
image pairs as inputs. The input natural image X of size 512 x 512 is firstly com-
pressed into latent space as zg € R64X64X4 Then, the diffusion process produces
a noisy version z; of zy by progressively adding noise for ¢ time steps to the ini-
tial feature zy. In the denoising stage, we use a frozen U-Net in Stable Diffusion
and a trainable LLMN to jointly predict a denoised variant of the noisy input
2, conditioning on time step ¢, semantic condition F*¢™ and a low-level feature
map F! converted from the fMRI representaion S”. The learning objective of
the latent denoising stage can be formulated as:

Laig = Bayr.50 conion |6 = €o(z0,t, 8™, ) 3] (8)
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where €y represent the the LLMN. For simplify, we do not include the parameters
of fMRI encoder E and semantic mapper Er in Eq. . But these models are
all trainable, and the parameters will be optimized with backpropagation of the
gradients of S™ and F'*¢™.

We combine diffusion loss with semantic loss (Sec. to guide the training
process. The final objective function is:

L= Acdif + )\Esem» (9)

where A denotes the loss weight to balance both terms.

Training Strategy. Benefiting from the unified fMRI representation in Sec. [3.1]
NeuroPictor can be trained using fMRI-image pairs from different individuals.
Thus, we split the training into three stages: i) fMRI calibrated-encoding: We pre-
train the calibrated-encoder to enable the cross-subject fMRI latent space; ii)
Multi-subject pre-training: During pretraining, the Stable Diffusion branch and
LLMN are initialized with Stable Diffusion v2.1 trained on a large-scale dataset.
We jointly train the full model, excluding the auxiliary encoder, using about
67,000 fMRI-image pairs from 8 subjects in the Natural Scenes Dataset [1] for
pretraining, conducting 100k iterations to obtain a generalized fMRI-to-image
generation model for these 8 subjects. iii) single-individual refining: for better
modeling individually independent perception patterns, we fine-tune the network
for an additional 60k iterations.

Inference. To maintain visual consistency, we balance high-level semantic guid-
ance and low-level detail manipulation using a control scale instead of integrating
them too faithfully. Essentally, focusing too much on high-level aspects can result
in lost image detail, while prioritizing low-level features may impact the seman-
tic processing abilities of the SD model, causing generated images to prioritize
structural accuracy over semantic consistency. Thus in the inference stage, we
can adjust control scale a to weight the SD output and LLMN output in Eq. @
We show how control scale influence the generation process in Fig.[I} As the con-
trol scale enlarges from left to right, the decoded images gradually achieve the
reconstruction of visual stimuli, progressing from high-level semantics only to
high-level semantics and low-level structures consistently.

4 Experiments

4.1 Experimental setup

Dataset. We use Natural Scenes Dataset (NSD) [1] for both training and eval-
uation. NSD contains visual image stimulus and corresponding fMRI recordings
of 8 subjects, with each subject viewing 8,000-9,000 images. The original images
are collected from MS-COCO dataset |23|, which are consisted of complex nat-
ural images. Following [27], we use the corresponding captions of the images in
COCO dataset for training. For both training and evaluation, we average three
trials of fMRI signal of the same images. Previous works only use the data of
subjects 1, 2, 5 or 7 to train a model for each subject. Because these subjects
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Fig. 5: Qualitative comparision of our NeuroPictor and previous state-of-the-art meth-
ods. Compared with other methods, our NeuroPictor achieves both high-level semantics
and low-level structures consistency.

complete all scanning sessions, sharing the same 982 images as testing data. As
our unified fMRI representations enable training across different person, we use
all training data of 8 subjects to conduct a pretraining for modeling shared ac-
tivity of all subjects. This scales up our training data to about 67k pairs. Then,
following the setup of previous work, we finetune our NeuroPictor using the
train split of subject 1, 2, 5 and 7, respectively, and evaluate our model using
the shared test split.

Evaluation Metrics. We follow the metrics of Mindeye to evaluate both
high-level and low-level consistency. On the low-level aspect, we use pixelwise
correlation, Structural Similarity Index Metric (SSIM) [44], AlexNet(2), and
AlexNet(5). High-level metrics are calculated by extracting features using spe-
cific networks, including EffNet-B , SwAV , Inception , and CLIP .
Please refer to Supplementary for more details.

Implementation Details. The pretraining experiments are conducted using
6 NVIDIA RTX A6000 GPUs, with a batch size set to 96. During this stage,
we exclude the auxiliary encoder and semantic loss to learn a base model. The
entire network is trained for 100,000 iterations to achieve convergence. In the
finetuning stage, 2 NVIDIA RTX A6000 GPUs are employed to finetune the
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Table 1: Quantitative comparison of within-subject brain decoding of our NeuroPictor
and the previous state-of-the-art mothods on Natural Scenes Dataset.

Low-Level High-Level
METHOD
PixCorr 1 SSIM 1 AlexNet(2) 1 AlexNet(5) 1 Inception 1 CLIP 1 EffNet-B | SwAV |
Lin et al. |22 - - - - 78.2% - - -
Takagi... |41] — - 83.0% 83.0% 76.0%  77.0% - -
Gu et al. |16 .150 .325 - - - - .862 .465
Brain-Cap |13| .353 .327 89.0% 97.0% 84.0%  90.0% - -
Brain-Diff |27] .254 .356 94.2% 96.2% 87.2%  91.5% 775 423
MindEye [36] .309 .323 94.7% 97.8% 93.8%  94.1% .645 .367
NeuroPictor (w/o ft)  .141 .349 91.4% 95.7% 88.3%  88.9% 722 417
NeuroPictor .229 .375 96.5% 98.4% 94.5%  93.3% .639 .350

Table 2: Ablation study on Subject-1. "Random init" means the fMRI Encoder starts
without pre-trained weights from Sec. Instead, it’s trained from scratch using a
standard Xavier uniform initialization. "Frozen" means the fMRI Encoder remains
unchanged during fMRI-to-image training. "Full" initializes the fMRI Encoder with
pre-trained weights, making it trainable during fMRI-to-image training. "Multi Pret."
indicates whether fMRI-to-image multi-subject pre-training (subjects 1-8) is done. If
not, the entire network is trained directly on Subject-1 data.

Method Low-Level High-Level
Model fMRI Enc. Multi Pret. PixCorr 1 SSIM 1 AlexNet(2) 1 AlexNet(5) 1 Inception 1 CLIP 1 EffNet-B | SwAV |
NeuroPictor random init 128 .323 91.2% 95.1% 84.9%  86.0% 769 448
NeuroPictor |CLS] 139 313 90.8% 94.2% 87.9% 87.6% 736 437
NeuroPictor frozen 220 .342 97.5% 98.8% 93.8%  92.8% 657 .360
NeuroPictor full .265 .368 98.2% 99.1% 94.7% 93.4% 641 .342
W/o Finetune full v 167 .350 95.1% 97.7% 89.1%  90.7% .698 .399
W /o LLMN full v 11 .307 75.4% 88.4% 89.4% 89.9% 746 460
W/o Au. Enc. full v 221 276 91.1% 97.5% 94.5% 91.0% .668 387
W/o Lsem full v 255 373 98.0% 98.9% 94.3% 93.0% 647 .350
NeuroPictor full v 277 .385 98.8% 99.3% 96.2% 94.5% .619 .334

model for each subject, spanning 60,000 iterations. The batch size for finetuning
is set to 32. In Eq. @, the parameter X is set to 0.1. Additionally, we enables
NeuroPictor to adapt to Classifier-Free Guidance [19] by randomly replacing 5%
of the semantic features with unconditional CLIP embeddings corresponding to
empty characters in the end of each stage. During evaluation, the unconditional
guidance scale is set to 5.0.

4.2 Main Results

In this section, we comprehensively evaluate NeuroPictor against existing meth-
ods, using both quantitative and qualitative comparisons.

Competitors. We use the same test set as [36] and follow the values reported
in [36]. Additionally, we include a new method [13| for comparision, which is also
trained and tested on NSD.

Quantitative results. The results of quantitative comparison of our NeuroP-
ictor and previous state-of-the-art methods are displayed in Tab. [l We generate
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one sample for each subject and calculate the low-level and high-level metrics
following the official code of [36]. We average the metrics across 4 subjects (i.e.
Subject-1, 2, 5 and 7) and report both the pre-trained (i.e. “w/o ft” in line 7 of
Tab. [1) and fine-tuned results. The results show that our NeuroPictor outper-
forms other methods in six out of eight metrics, demonstrating that our recon-
struction results can maintain semantic consistency while preserving low-level
details present in the original images. We find that our method falls behind in
pixel correlation metrics compared to three other models. This could potentially
be attributed to the fact that other methods employ an image-to-image diffu-
sion model and use a blurred image produced by VAE as an initialization. As
reported in [13}[31], such a blurred image inherently exhibits higher pixel corre-
lation than finely reconstructed results. Furthermore, our non-finetuned model
achieves results comparable to other models, except for Mindeye. This validates
that our training on multi-individual data effectively captures shared perceptual
features across different individuals.

Qualitative results. We conduct qualitative comparisons with previous state-
of-the-art works, namely Mindeye and Brain-diffuser, through visualization. We
utilize the official codes to generate images for comparison. As shown in Fig. [5]
our reconstruction results exhibit high visual consistency with the ground truth
images, particularly in capturing some of the underlying details such as object
structures, positions, and human poses. For instance, the appearance and poses
of black motorcycles and trains, the positions of animals, as well as the gesture
of people holding skateboards or engaged in throwing actions. We successfully
reconstruct many challenging cases, such as a red "STOP" sign (row 1), ani-
mals like zebras and giraffes showing only their heads (row 3), and cats peeking
out from under blankets or through door gaps (row 4). Additionally, our Neu-
roPictor successfully decodes the white borders (row 6) in visual stimuli, while
other methods fails, highlighting the effectiveness of our direct low-level ma-
nipulation. Our reconstruction results maintain certain local matches with the
original images, attributed to our end-to-end training fashion and pretraining
on fMRI-image pairs.

4.3 Ablation Study

In this section, we perform ablation studies to evaluate the effects of our Neu-
roPictor framework techniques, focusing on Subject-1 for efficiency. Results are
shown in Tab. 2] with additional discussion on failure cases in the Supplementary.
Ablation of fMRI Encoder. We investigate the fMRI encoder’s pretrain-
ing and feature selection impacts. Compared with training from scratch us-
ing a Xavier uniform initialization, pretraining an autoencoder on the UKB
dataset before starting {MRI-to-image reconstruction significantly enhances per-
formance, as shown in Tab. 2] Furthermore, fine-tuning the pretrained fMRI
encoder, instead of freezing it during the fMRI-to-image stage, leads to im-
provements in all metrics. Switching the fMRI encoder’s output from a high-
dimensional feature to a [CLS] token results in reduced reconstruction quality.
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Fig. 6: Interpolating the control scale between 0 and 1 transitions the reconstructed
image from semantic consistency to fine-grained control.

Ablation of Multi-Subject Pre-training. We validate the impact of both our
pretraining and finetuning in fMRI-to-image reconstruction stage by removing
one at a time. The results indicate that pretraining on 8 subjects and finetuning
on a single subject simultaneously improve the model’s performance in both
high-level and low-level aspects.

Ablation of High-Level Guiding Network and Low-Level Manipulation
Network. Testing the High-Level Guiding Network without semantic loss shows
its importance for achieving high-level consistency in reconstructions. Removing
the auxiliary encoder and relying solely on the fMRI-to-Text Encoder for align-
ment with CLIP text features significantly degrades performance, highlighting
the challenge of bridging semantic gaps between text captions and visual stimuli.
Additionally, the presence or absence of the Low-Level Manipulation Network
(LLMN) indicates its primary function in refining details, while also secondarily
aiding in the preservation of high-level semantic coherence. As shown in Fig. [6]
we also visualize generated results with a control scale varying between 0 and 1
to confirm the efficacy of both low-level and high-level pipelines in NeuroPictor.

5 Conclusions

In conclusion, this paper introduces NeuroPictor, a novel framework that tackle
fMRI-to-image task by directly modulating the generation process of diffusion
models using fMRI signals. Unlike previous approaches that focus on associat-
ing fMRI signals with pre-trained diffusion model conditions, NeuroPictor offers
detailed control over image creation by dividing the fMRI-to-image process into
three key steps: fMRI calibrated-encoding, fMRI-to-image single-subject refining
and fMRI-to-image single-subject refining. NeuroPictor learns to exact high-level
semantic features from fMRI signals and incrementally fine-tunes the diffusion
model with a low-level manipulation network, providing precise structural in-
structions. Through training on over 60,000 fMRI-image pairs from diverse indi-
viduals, our model demonstrates superior fMRI-to-image decoding capabilities,
particularly in within-subject scenarios.
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