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Abstract. Recent research has explored implicit representations, such
as signed distance function (SDF), for interacting hand-object recon-
struction. SDF enables modeling hand-held objects with arbitrary topol-
ogy and overcomes the resolution limitations of parametric models, allow-
ing for finer-grained reconstruction. However, directly modeling detailed
SDFs from visual clues presents challenges due to depth ambiguity and
appearance similarity, especially in cluttered real-world scenes. In this
paper, we propose a coarse-to-fine SDF framework for 3D hand-object
reconstruction, which leverages the perceptual advantages of RGB-D
modality in visual and geometric aspects, to progressively model the
implicit field. Specifically, we model a coarse SDF for visual perception
of overall scenes. Then, we propose a 3D Point-Aligned Implicit Func-
tion (3D PIFu) for fine-level SDF learning, which leverages both local
geometric clues and the coarse-level visual priors to capture intricate
details. Additionally, we propose a surface-aware efficient reconstruction
strategy that sparsely performs SDF query based on the hand-object
semantic priors. Experiments on two challenging hand-object datasets
show that our method outperforms existing methods by a large margin.

Keywords: 3D hand-object reconstruction · RGB-D fusion · Implicit
representation

1 Introduction

Modeling hand-object interaction [2, 9, 10, 15–18, 20, 27, 30, 51, 61] is critical for
immersive applications of human-computer interaction and augmented reality.
For instance, manipulating real-world objects, rather than relying solely on vir-
tual objects or mechanical devices, can significantly promote the user experience
and realism of immersive applications, such as virtual drawing and AR gaming.
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Early mainstream efforts in the field assume known object templates, and
use parametric models (e.g., MANO) with a fixed resolution, which hinders gen-
eralization and fine-grained reconstruction. Recently, some advancements, such
as AlignSDF [10] and Grasping Field [27], introduce implicit representation for
hand-object reconstruction, showcasing its capability to capture objects with ar-
bitrary topology and overcome the resolution constraints of parametric models.

Existing methods primarily rely on 2D visual features to model implicit rep-
resentations. However, cluttered real-world scenes are characterized by depth
ambiguity and appearance similarity, making it ill-posed to directly model the
fine-grained shape details based on such ambiguous visual information. For ex-
ample, hand-object interaction in the wild often suffers from severe self-occlusion,
occlusion of multiple overlapping objects, and cluttered backgrounds. These am-
biguities hinder the elaborate modeling of SDF. Previous methods often produce
implausible predictions in cluttered scenes, such as mesh collapse in occluded re-
gions, and the inadvertent merging of meshes from adjacent objects.

Additionally, existing SDF-based approaches suffer from computationally ex-
pensive reconstruction procedures due to the dense evaluation of the network in
3D space. A common procedure involves mapping the densely sampled points
in voxelized 3D space to signed distance values, followed by the employment of
the Marching Cube algorithm [38] to extract the high-fidelity hand-object mesh.
During this process, a substantial number of sampling points far from the sur-
face of hands and objects leads to redundant SDF queries, thereby increasing
the computational complexity during reconstruction.

With the widespread integration of depth sensors in mobile devices and head-
mounted displays, many depth-based or RGB-D fusion-based methods have been
widely studied in 3D hand pose estimation and reconstruction tasks [8,12,22,31,
35–37, 49]. Depth modality provides fine-grained 3D geometric structure clues
and can eliminate the depth ambiguity of visual features. Conversely, visual
features can offer semantic and global context information that depth data lacks.
By relying on global-aware visual information and local-aware geometric clues,
we enable SDF learning as a gradual and steady process, which avoids the abrupt
and simplistic direct modeling of SDF in existing methods.

Inspired by the above motivation, we decouple the implicit field modeling into
a coarse-to-fine approach, by progressively leveraging the unique advantages of
visual and geometric information. In particular, at the coarse level, we employ
global visual features to discern the position and overall shape of the hand and
object. Subsequently, at the fine level, we propose a 3D Point-Aligned Implicit
Function (3D PIFu), utilizing fine-grained geometric clues of depth point cloud
to capture intricate shape details. To establish a transition from coarse to fine,
the coarse-level SDF enriches the 3D point cloud with the global prior knowledge
of hand and object, such as point-level semantic information, which provides a
holistic perception of global scenes for subsequent local fine-level SDF learning.

In addition, the point-level semantics convey the position information of the
hand-object surface in 3D space, which can guide the elimination of redundant
SDF computations in empty regions. We propose an efficient hand-object recon-
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struction approach based on this surface-aware sparse query strategy. Leverag-
ing hierarchical semantic information, we focus SDF queries exclusively on 3D
regions containing the hand-object surface, to reduce redundant inference for
sampling points located far from the hand and object surfaces. Code is available
at https://github.com/ru1ven/C2F-SDF.

Our contributions can be summarized as follows:
1) We propose an RGB-D coarse-to-fine SDF framework for 3D hand-object

reconstruction, which models implicit representations transitioning from global
to local, by leveraging visual and geometric modalities in a progressive manner.

2) We propose a 3D Point-Aligned Implicit Function (3D PIFu) to aggregate
multi-modal features in 3D point cloud space, mitigating the challenges posed
by depth ambiguity in implicit representation learning.

3) We propose a Surface-Aware Efficient Reconstruction strategy (SER),
which sparsely perform SDF queries guided by hierarchical semantic informa-
tion, to reduce redundant inference of query points far from the surface.

4) Extensive experiments on synthetic and real-world hand-object datasets
show that our method achieves state-of-the-art (SOTA) performance.

2 Related Works

2.1 Hand Pose Estimation and Reconstruction

In recent years, numerous model-based and model-free hand pose estimation
and reconstruction methods have been proposed to predict the 3D positions of
hand joints or reconstruct hand meshes from RGB and depth images. Model-
based works [1, 7, 28, 32, 52, 60, 62, 64] reconstruct the hand mesh by estimating
the parameters of MANO models, leveraging hand shape priors to obtain more
plausible results. To address the highly non-linear mapping of directly regressing
MANO parameters from images, several model-free approaches [11,15,25,33,34]
use the Graph Convolutional Network (GCN) or Transformers to model the
relationships between hand joints or vertices, and then predict their 3D co-
ordinates. Alternatively, some works predict vertices and joints through other
representations, such as heatmap [24, 39–41, 63], UV map [5], and implicit rep-
resentations [21, 23]. However, due to the limited resolution of the parametric
model and the predetermined number of hand vertices, existing methods have
difficulty in recovering high-fidelity hand surfaces and cannot show vivid hand
details in immersive interactive applications.

2.2 Hand-Object Reconstruction

Hand-object reconstruction plays an important role in virtual reality, augmented
reality, and interactive applications, and is a challenging problem due to mutual
occlusion [44, 55]. Since many hand-object interaction benchmarks have been
released, numerous studies have been conducted to reconstruct the interacting
hand-object mesh. Some works [15,16,57,58] assume known instance-specific ob-
ject templates during inference, and reduce the object reconstruction to 6DoF

https://github.com/ru1ven/C2F-SDF
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pose estimation. In addition, several approaches [2,13,17,26] adopt optimization-
based contact modeling to jointly fit hand-object meshes. To achieve the gen-
eralization of unknown object classes, Hasson et al. [18] use the MANO model
to reconstruct 3D hand meshes, and simultaneously use AtlasNet [14] to deform
object vertices from a sphere. However, the resolution limitations of paramet-
ric models and AtlasNet prevent fine-grained hand-object mesh. To address this
problem, recent works introduce implicit representations, such as SDF, for high-
fidelity hand-object mesh reconstruction. Karunratanakul et al. [27] propose a
two-branch network to represent the hands and objects in a joint implicit field.
However, implicit representation lacks shape priors and often produces disem-
bodied and broken hands due to mutual occlusion. To mitigate this, several
works incorporate prior knowledge into SDF learning explicitly. For instance,
AlignSDF [10] combines the advantages of parametric models and implicit rep-
resentation by encoding pose priors into SDF. Chen et al. [9] and Ye et al. [59]
encode kinematic features into SDF to help reconstruct the hand-object mesh.
Despite integrating the pose prior knowledge, previous methods model SDF
heavily relying on 2D visual features, which are prone to depth and appearance
ambiguity. Consequently, they often produce implausible predictions in cluttered
scenes. In contrast, our method leverages visual information and geometric struc-
ture cues in a coarse-to-fine manner, enabling implicit representation learning as
a progressive and steady process.

3 Method

Fig. 1 illustrates the overview of our framework. Given the input RGB and depth
images, we employ an RGB-D encoder to extract multi-modal visual features,
and lift them into 3D space to construct point cloud features through a 2D-3D
projection module (Section 3.1). The SDF optimization adopts a coarse-to-fine
strategy (Section 3.2 and 3.3). We utilize global image features for coarse-level
SDF learning and point-level semantic refinement, thereby enhancing global con-
text perception (Section 3.2). Then, we learn a 3D Point-Aligned Implicit Func-
tion (3D PIFu) for hand and object branches, respectively, enabling the fine-level
SDF learning to perceive local geometric structure information (Section 3.3). To
efficiently reconstruct hand and object meshes, we construct hierarchical seman-
tic information, to perform sparse SDF queries exclusively in regions potentially
containing surfaces (Section 3.4).

3.1 Multi-Modal Point Cloud Feature Extraction

Given the input RGB and depth images, we adopt two parallel hourglass net-
works [42] as the dual-branch encoder, to extract the RGB-D global image fea-
ture Fglobal ∈ RC and the RGB-D visual feature Fvisual ∈ RH×W×C , where
H, W , and C represent the height, width, and channel dimension of features.
During feature extraction, we fuse RGB and depth features through a spa-
tial attention mechanism [54], similar to previous RGB-D image-based fusion
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Fig. 1: Overview. PCL represents the point cloud. The dotted line represents the data
flow only during training. We utilize an RGB-D encoder to extract global image fea-
tures, followed by a coarse-level SDF modeling for point cloud semantic refinement.
Then, we adaptively aggregate 3D point features from the coarse-level visual priors
and geometric clues of the point cloud for fine-level SDF learning. Finally, we extract
the hand-object mesh through the surface-aware efficient reconstruction strategy.

approaches [6, 19]. Instead of applying point-based networks such as Point-
Net [46, 47] to extract the point cloud feature, which is computationally ex-
pensive, we follow [49] to lift the RGB-D visual feature into 3D space through
a 2D-3D projection. Specifically, based on the depth value of the corresponding
image coordinate in the downsampled depth map, we calculate the 3D coordi-
nates of each RGB-D feature pixel through the camera intrinsic parameters, to
obtain the multi-modal point cloud feature F 3d ∈ RNpcl×C , where Npcl indicates
the number of depth points.

3.2 Point Cloud Feature Refinement

In this section, we demonstrate the utilization of coarse-level SDF learning for
global context perception and point cloud feature semantic refinement.

Coarse-Level SDF Learning. For each query point x ∈ R3 sampled in
3D space, we employ a global SDF decoder to map its initial signed distances
to the hand and object surface. Each query point is encoded with the global
image feature Fglobal, enabling the network to better perceive global context
information.

Point-Level Semantic Information Incorporation. Point clouds pro-
vide accurate depth information and capture the geometric properties in 3D
space. However, the lack of semantic information in the point cloud prevents a
more comprehensive understanding of the 3D scene. Several 3D object detec-
tion methods [53, 56] append point clouds with image-based semantics, which
demonstrates the effectiveness of point-level semantic information for 3D scene
understanding. Instead of employing the off-the-shelf semantic segmentation net-
works, we append semantic information on point clouds in an end-to-end manner
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Fig. 2: Comparison of feature encoding operations for (a) Pixel-Aligned Implicit Func-
tion and (b) proposed 3D Point-Aligned Implicit Function. During aggregation, the
background and noisy points (gray points) are masked based on their SDF values.

through the coarse-level SDF. Specifically, we concatenate the point cloud with
query points and input them into the global SDF decoder. Then, by mapping
the obtained signed distance value of each depth point to the hand-object se-
mantic scores, we extract 3D points near the hand-object surface as hand and
object point clouds, while points far from the surface are filtered out as noise
and background. The refined point cloud feature as well as the point-level se-
mantic information provide a comprehensive perception of 3D scenes, and can
be utilized to promote subsequent fine-level SDF learning in cluttered scenes.

3.3 Fine-Level SDF Learning

Preliminary: Pixel-Aligned Implicit Function To reconstruct the under-
lining 3D geometry and texture of a clothed human, Saito et al. [50] introduce a
Pixel-Aligned Implicit Function (PIFu), which defines a surface as the zero-level
set of a function f :

f(F (π(x)), Z(x)) = 0, (1)

where for a 3D query point x, Z(x) represents the depth value in the camera
coordinate space, π(x) represents the 2D projection location of x, and F (π(x))
represents the pixel-aligned image feature obtained through the bilinear sam-
pling. The pixel-aligned feature allows the learned functions to preserve the
local detail present in the image. However, the 2D pixel-aligned visual feature
lacks global context information and is prone to depth ambiguity.

3D PIFu: 3D Point-Aligned Implicit Function To alleviate the aforemen-
tioned problems, we propose a 3D Point-Aligned Implicit Function (3D PIFu),
defining the surface as:

f(FPA, x) = 0, (2)

where for each query point x, FPA represents the 3D point-aligned feature, which
is obtained by adaptive weighted aggregation of point cloud features in the 3D
neighborhood of the query point. Specifically, as shown in Fig. 2 (b), based
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Fig. 3: Details of the surface-aware efficient reconstruction. For visualization purposes,
we illustrate sparse sampling and Marching Cubes in 2D.

on the 3D coordinates of the query point, we select K closest point features
from the point cloud feature F 3d, and fuse the spatial position information and
signed distance information into the selected point features through channel de-
differentiation operations [48]. The k -th point feature is donated as:

F point
k = ReLU(BN(w0F

3d
k + w1Pk + w2Dk), (3)

where Pk ∈ R3 represents k -th depth point, Dk ∈ R represents the signed
distance value from k -th point to the surface of the hand or the object, w0, w1,
and w2 are learnable parameter matrices for point feature embedding, ReLU and
BN represent ReLU activation function and batch normalization layer, and K
is set to 16 by default. Then, according to the distances from each point feature
to the query point and to the hand-object surface, we adaptively aggregate K
point features to generate the 3D point-aligned feature:

FPA =

K−1∑
k=0

1

dx,Pk
+ αDk

F point
k , (4)

where dx,Pk
represents the 3D Euclidean distance between the k -th point feature

and the query point, and α is a learnable parameter used to adjust the distance
scale. In this way, 3D PIFu can effectively leverage local geometric structure
information, thereby reducing depth ambiguity. Moreover, refined point cloud
feature provides semantic priors of hands and objects, which enables fine-level
SDF learning to perceive global context information and eliminate semantic
ambiguity.
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Table 1: Ablation study for the feature encoding of SDF learning on the DexYCB
dataset. Pixel and 3D Point represent pixel-aligned feature and 3D point-aligned fea-
ture. Ref represents point cloud feature refinement. SER represents the surface-aware
efficient reconstruction strategy.

ID Pixel
(RGB)

Pixel
(RGBD) 3D Point Ref SER CDh↓ Fh@1↑ Fh@5↑ CDo↓ Fo@5↑ Fo@10↑

0 ✓ 0.334 0.163 0.782 2.04 0.391 0.660
1 ✓ 0.299 0.171 0.802 1.50 0.446 0.723
2 ✓ 0.280 0.180 0.815 1.56 0.456 0.732
3 ✓ ✓ 0.272 0.183 0.819 1.26 0.485 0.764
4 ✓ ✓ ✓ 0.267 0.185 0.823 1.24 0.488 0.764

3.4 Surface-Aware Efficient Reconstruction

For hand-object reconstruction, existing SDF-based methods [9, 10, 27, 59] vox-
elize the 3D space based on specific resolution and map the densely sampled
points to signed distance values. Then, they apply the Marching Cube algo-
rithm [38] to extract high-fidelity hand-object meshes. However, this procedure
frequently involves redundant calculations for numerous query points situated
far from the hand-object surface, resulting in inefficient reconstruction.

To enhance the efficiency of reconstruction, we estimate a volumetric seman-
tic heatmap by leveraging the hand-object point clouds and a learnable volu-
metric heatmap, and selectively sample query points in proximity to the hand-
object surface, thereby reducing unnecessary computations for distant points. As
shown in Fig. 3, we first use the global feature Fglobal to predict a low-resolution
heatmap. Each voxel value corresponds to the density of hand vertices and object
vertices within the 3D region. We apply a 3×3×3 average filter to smooth out
the outliers in the heatmap. Additionally, to enhance the robustness of our re-
construction results, we use the shape priors of hands and objects to supplement
sparse point clouds. In particular, to address challenges posed by missing and
occluded points, we predict MANO vertices to complete the hand point clouds.
Simultaneously, by capitalizing on the inherent symmetry of the object, we opti-
mize the object center and compute central symmetry points to supplement the
object point cloud. Then, we merge the hierarchical surface position informa-
tion from the supplemented point cloud and the volumetric heatmap, to obtain
a volumetric semantic heatmap. Finally, guided by the semantic heatmap, we
conduct sparse SDF queries on sampling points within the corresponding voxels.

4 Experiment

4.1 Datasets and Evaluation Metrics

DexYCB [4] is a hand-object dataset captured by multiple RGB-D cameras,
containing 582K RGB-D frames over 1,000 sequences of 10 subjects grasping 20
different objects from 8 views. We follow the same dataset split in [9], filtering
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Table 2: Comparison with more RGB-D fusion-based methods on DexYCB.

Methods CDh↓ Fh@1↑ Fh@5↑ CDo↓ Fo@5↑ Fo@10↑

gSDF [9] 0.302 0.177 0.801 1.55 0.437 0.709
RGB-D PIFu 0.299 0.171 0.802 1.50 0.446 0.723

gSDF + SA-Gate [6] 0.279 0.178 0.809 1.28 0.478 0.757

Ours 0.267 0.185 0.823 1.24 0.488 0.764

Table 3: Efficiency analysis of the surface-aware efficient reconstruction strategy (SER)
on DexYCB. RT and NS represent the average reconstruction time (s) and average
number of sampling points per frame on the DexYCB test set, respectively.

ID Methods Sparse
sampling CDh↓ Fh@1↑ Fh@5↑ CDo↓ Fo@5↑ Fo@10↑ RT NS

0 Ours w/o SER × 0.272 0.183 0.819 1.26 0.485 0.764 3.44 2.1M
1 gSDF [9] × 0.302 0.177 0.801 1.55 0.437 0.709 1.51 2.1M
2 Volumetric heatmap ✓ 0.279 0.182 0.815 1.32 0.475 0.746 1.23 83.0K
3 Heatmap+PCL × 0.267 0.185 0.823 1.23 0.490 0.768 3.45 2.1M
4 Heatmap+PCL ✓ 0.267 0.185 0.823 1.24 0.488 0.764 1.26 89.8K

samples without hand-object interactions and downsampling the video data to
6 frames per second, which obtains 29,656 training samples and 5,928 testing
samples. ObMan [18] is a large-scale synthetic image dataset of hands-grasping
objects, containing 21K hand grasp poses for 2.7K objects of 8 categories from
ShapeNet [3]. We follow previous works [9,27,43] to split the training and testing
sets, and remove meshes that contain too many double-sided triangles, to obtain
87,190 training samples and 6,285 testing samples.

Evaluation metrics. Following previous works [9, 59], for the evaluation
of hand reconstruction, we report Chamfer distance in cm2 (CDh) and F-score
evaluated at thresholds of 1mm and 5mm (Fh@1 and Fh@5). For object recon-
struction, we report Chamfer distance in cm2 (CDo) and F-score at 5mm and
10mm thresholds (Fo@5 and Fo@10). In the supplementary material, we addi-
tionally report the penetration depth, intersection volume, and contact ratio, to
evaluate the physical quality of hand-object contact.

4.2 Implementation Details

Our experiments are conducted with an NVIDIA RTX 4090 GPU. The network
is implemented based on PyTorch [45]. We use an AdamW optimizer [29] with
an initial learning rate of 1e-4. The whole training process takes 800 epochs with
a batch size of 32 on both DexYCB and ObMan datasets, and the learning rate
is decayed by half at 600th epoch. For data augmentation, we crop the input
RGB-D images to the size of 256×256, and perform random rotation and color
jittering. In all conducted experiments, we reconstruct hand and object meshes
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Table 4: Comparison with state-of-the-art methods on the ObMan dataset.

Methods CDh↓ Fh@1↑ Fh@5↑ CDo↓ Fo@5↑ Fo@10↑

Hasson et al. [18] 0.415 0.138 0.751 3.60 0.359 0.590
Grasping Field [27] 0.261 - - 6.80 - -

Ye et al. [59] - - - - 0.420 0.630
DDF-HO [61] - - - - 0.550 0.670
AlignSDF [10] 0.136 0.302 0.913 3.38 0.404 0.636

gSDF [9] 0.112 0.332 0.935 3.14 0.438 0.660

Ours 0.083 0.416 0.959 0.51 0.780 0.891

Table 5: Comparison with state-of-the-art methods on the DexYCB dataset.

Methods CDh↓ Fh@1↑ Fh@5↑ CDo↓ Fo@5↑ Fo@10↑

Hasson et al. [18] 0.537 0.115 0.647 1.94 0.383 0.642
Grasping Field [27] 0.364 0.154 0.764 2.06 0.392 0.660

AlignSDF [10] 0.358 0.162 0.767 1.83 0.410 0.679
gSDF [9] 0.302 0.177 0.801 1.55 0.437 0.709

Ours 0.267 0.185 0.823 1.24 0.488 0.764

with a resolution of 128×128×128. More details about the network architecture,
data preparation, and training losses are provided in the supplementary material.

4.3 Ablation Study

Feature Encoding for SDF Learning To verify the effectiveness of the pro-
posed 3D PIFu, we evaluate various feature encoding strategies for SDF model-
ing. As shown in Table 1, compared to the RGB and RGB-D baseline models (ID
0 and ID 1) that only utilize pixel-aligned visual features, the incorporation of
3D point-aligned features (ID 2) for optimizing the SDF results in superior per-
formance across almost all metrics. Additionally, by performing the point cloud
feature refinement through coarse-level SDF learning (ID 3) and the surface-
aware reconstruction strategy (ID 4), the network can further bring a significant
performance improvement.

Comparisons with More RGB-D Methods To further demonstrate the
effectiveness of our method, we conduct a quantitative comparison with more
RGB-D based methods. First, we re-implement an RGB-D based PIFu [50].
We utilize the RGB-D encoder of our model to generate the RGB-D visual
features, and adopt the PIFu to model SDF. Second, we construct a strong RGB-
D baseline by incorporating an existing RGB-D fusion method into single-modal
hand-object reconstruction methods. Specifically, we adopt a common RGB-D
image fusion method, SA-Gate [6], which utilizes channel-wise and spatial-wise



Coarse-to-Fine Implicit Representation Learning 11

Input 

Ours

gSDF

Ours
(Novel view)

gSDF
(Novel view)

Fig. 4: Qualitative results of gSDF [9] and our method on DexYCB and ObMan.

soft attention to aggregate RGB-D features per pixel. We incorporate this fusion
strategy into the current SOTA, gSDF [9], by replacing the single-modal image
encoder with the RGB-D encoder. As shown in Table 2, our method achieves
leading performance on all metrics.

Efficiency Analysis of Hand-Object Reconstruction To analyze the ef-
fectiveness of the proposed surface-aware efficient reconstruction strategy, we
compare the performance and efficiency of different reconstruction strategies in
Table 3. First, compared to our method without the surface-aware efficient re-
construction (ID 0), our full approach incorporating the sparse sampling (ID 4)
can maintain the original reconstruction accuracy, while significantly reducing
the average reconstruction time on the DexYCB test set, from 3.44 seconds to
1.26 seconds, and decreasing the number of sampling points from 1283 to 89.8K.
Second, despite the introduction of additional modalities, our method achieves
faster reconstruction speed compared to the SOTA single-modal method (ID
1). Additionally, relying exclusively on heatmaps to perform sparse queries (ID
2) leads to reduced reconstruction accuracy, despite offering slightly lower la-
tency. Furthermore, by ablating the sparse sampling process, we observe that
the optimization of heatmaps and MANO boosts network performance (ID 3).
We speculate that these components provide valuable prior knowledge about the
shape and potential location of the surface.
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Fig. 5: Results on consecutive DexYCB video frames.

4.4 Comparisons with State-of-the-arts

We present the performance comparison of hand-object reconstruction on the
ObMan dataset. Since several works only focus on hand-held objects without
performing hand mesh reconstruction, we only report their object reconstruc-
tion results. As shown in Table 4, our method outperforms existing hand-object
reconstruction methods and hand-held object reconstruction methods by a large
margin on F-score at various thresholds, and achieves better performance in
terms of Chamfer distance, for both hand (0.083cm2 vs. 0.112cm2) and object
(0.51cm2 vs. 3.14cm2).

The performance comparison with SOTA methods on the DexYCB dataset is
shown in Table 5. Our method demonstrates outstanding performance across all
metrics, outperforming the current SOTA method, gSDF [9], by a large margin
in terms of F-score and Chamfer distance for both hand (0.267cm2 vs. 0.302cm2)
and object (1.24cm2 vs. 1.55cm2).

4.5 Qualitative Results

Qualitative Comparison with SOTAs We present some qualitative compar-
isons on DexYCB and ObMan in Fig. 4. Compared with gSDF [9], our method
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Fig. 6: Qualitative ablation study on DexYCB.

can better avoid mesh collapse for occlusion from stacked objects (columns 2 and
3) and mesh merging for adjacent objects with similar appearances (column 1).
Additionally, our method reconstructs more complete meshes for objects with
complex shapes (columns 4 and 6), and effectively avoids mesh holes for thin
objects such as bowls (column 5). Meanwhile, ours achieves better hand-object
mesh alignment in the contact area (columns 3 and 4) and reconstructs more
plausible meshes for complex hand poses (columns 6 and 7).

Reconstruction Results of Consecutive Video Frames As shown in Fig.
5, in cluttered scenes with multiple stacked and obstructed objects (top three
rows), and scenarios involving hands with contorted poses and objects with intri-
cate shapes (bottom three rows), our method showcases superior generalization
capabilities in consecutive frames.

Qualitative Ablation Study In Fig. 6, we show the importance of 3D PiFU for
modeling high-frequency details, and coarse-level SDF for overall shape. First,
abandon fine-level SDF modeling with 3D PiFU, some shape details such as
fingers and holes cannot be recovered well (rows 3 and 4). Second, with coarse-
level SDF learning, the overall shape of objects reconstructed through our full
model is more regular.
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Fig. 7: Failure examples of our method on DexYCB.

Failure Examples As shown in Fig. 7, the blurring of hand and object mo-
tion leads to severe noise in depth modality, and our method produces irregular
shapes (row 1) and collapses (row 2) in such cases. Second, highly geometrically
complex objects may result in incomplete reconstruction, such as the handle of
cups (row 3). Meanwhile, tightly interaction may result in reconstructed hands
penetrating thin objects such as bowls (row 4).

5 Conclusion

In this paper, we propose a coarse-to-fine SDF framework for 3D hand-object
reconstruction. The key insight is to employ implicit representation as a medium
to progressively leverage the perceptual advantages of RGB-D modalities. We
achieve this by using the visual-based coarse-level SDF networks to refine point
clouds, and in turn, using geometric clues from point clouds to prevent fine-
level SDF learning from global and local depth ambiguities. Additionally, based
on the hand-object semantic priors, we reduce SDF queries far from the sur-
face during inference, achieving reconstruction efficiency even surpassing that
of single-modal methods. Qualitative and quantitative results on DexYCB and
ObMan show that our method outperforms existing methods by a large margin.

Limitation. Our method does not explicitly model physical constraints such
as penetration and contact between hands and objects, thus leading to acciden-
tal interpenetration and loose contact between hands and objects. A promising
future direction is to use implicit functions to model differentiable physical con-
straints and optimize the hand-object contact to obtain more plausible grasping.
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